Monomanganese, pentacarbonyl-


Gas phase thermochemistry data

Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: José A. Martinho Simões

Quantity Value Units Method Reference Comment
Δfgas-715. ± 22.kJ/molReviewMartinho Simões 
Δfgas-744.7 ± 6.8kJ/molReviewMartinho Simões 
Δfgas-745.7kJ/molReviewMartinho SimõesThe enthalpy of formation relies on -1585.3 ± 4.3 kJ/mol for the enthalpy of formation of Mn2(CO)10(g)

Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: José A. Martinho Simões

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

Hydromanganese pentacarbonyl (solution) = Hydrogen atom (solution) + C5MnO5 (solution)

By formula: C5HMnO5 (solution) = H (solution) + C5MnO5 (solution)

Quantity Value Units Method Reference Comment
Δr284.5 ± 4.2kJ/molEChemParker, Handoo, et al., 1991solvent: Acetonitrile; Please also see Tilset and Parker, 1989. The reaction enthalpy was obtained from the pKa of the hydride complex (MH), 14.1, and from the oxidation potential of the anion (M-), Mn(CO)5(-), by using the equation: ΔHrxn [kJ/mol] = 5.71pKa(MH) + 96.485(Eo)ox(M-) + C. C is a constant that was calculated as 248.9 kJ/mol Parker, Handoo, et al., 1991, by adjusting the previous equation to the calorimetrically derived values for the reactions Cr(Cp)(CO)3(H)(solution) = Cr(Cp)(CO)3(solution) + H(solution), 257.3 ± 4.2 kJ/mol, and Cr(Cp)(CO)2(PPh3)(H)(solution) = Cr(Cp)(CO)2(PPh3)(solution) + H(solution), 250.2 ± 4.2 kJ/mol Kiss, Zhang, et al., 1990. C depends on the solvent and on the reference electrode. The value given implies that the electrode potentials are referenced to ferrocene/ferricinium electrode
Δr269.7kJ/molKinSBillmers, Griffith, et al., 1986solvent: Benzene; Please also see Sweany, Butler S.C., et al., 1981. The reaction enthalpy was derived according to the following procedure: the activation energy for the reaction 9,10-Me2C14H8(solution) + 2Mn(CO)5(H)(solution) = 9,10-Me2C14H10(solution) + Mn2(CO)10(solution), 90.8 kJ/mol, was reported in Sweany, Butler S.C., et al., 1981. The rate-limiting step of this reaction is the abstraction of hydrogen from Mn(CO)5(H), producing Mn(CO)5 and 9,10-Me2C14H9 radicals. Therefore, the activation energy is approximately equal to the difference between the enthalpies of the reactions Mn(CO)5(H)(solution) = Mn(CO)5(solution) + H(solution) and 9,10-Me2C14H9(solution) = 9,10-Me2C14H8(solution). The latter was taken as 178.9 kJ/mol Billmers, Griffith, et al., 1986

Dimanganese decacarbonyl (solution) = 2C5MnO5 (solution)

By formula: C10Mn2O10 (solution) = 2C5MnO5 (solution)

Quantity Value Units Method Reference Comment
Δr158. ± 17.kJ/molES/EChemPugh and Meyer T.J., 1992solvent: Acetonitrile; The value relies on the reaction Gibbs energy, 118. ± 17. kJ/mol Pugh and Meyer T.J., 1992, and an estimated value, 133.9 J/(mol K), for the reaction entropy Pugh and Meyer T.J., 1992
Δr>104.2kJ/molES/EChemPugh and Meyer, 1988solvent: Acetonitrile; The lower limit is the reaction Gibbs energy
Δr159. ± 21.kJ/molPACGoodman, Peters, et al., 1986solvent: Hexane, cyclohexane, thf or acetonitrile; The average value of the enthalpy of the reaction Mn2(CO)10(solution) = 2xMn(CO)5(solution) + (1-x)Mn2(CO)9(solution) + (1-x)CO(solution) in the solvents indicated is 53.4 ± 5.2 kJ/mol. This value, together with several estimates and auxiliary data led to the reaction enthalpy for the cleavage of Mn-Mn bond
Δr>154.kJ/molKinSHopgood and Poë, 1966solvent: Decalin; Please also see Poë, 1981. The reaction enthalpy was derived from the enthalpy of activation, 153.8 ± 1.6 kJ/mol Hopgood and Poë, 1966 Poë, 1981, by assuming a negligible barrier for the radical recombination. This procedure was later considered to yield a low limit of the reaction enthalpy Poë, 1983 Marcomini and Poë, 1984 Marcomini and Poë, 1983 Coville, Stolzenberg, et al., 1983. See also Schmidt, Trogler, et al., 1984

C12H7MnO5 (g) = C5MnO5 (g) + Benzyl radical (g)

By formula: C12H7MnO5 (g) = C5MnO5 (g) + C7H7 (g)

Quantity Value Units Method Reference Comment
Δr135. ± 19.kJ/molICR/PESMartinho Simões, Schultz, et al., 1985Please also see Martinho Simões and Beauchamp, 1990. The reaction enthalpy was derived from the appearance energy of Mn(CO)5(+), 830. ± 19. kJ/mol, using Mn(CO)5(Bz) as the neutral precursor, together with the adiabatic ionization energy of Bz radical, 694.7 ± 1.9 kJ/mol Martinho Simões, Schultz, et al., 1985. The enthalpy of formation relies on -642.5 ± 9.4 kJ/mol for the enthalpy of formation of Mn(CO)5(Bz)(g)

Dimanganese decacarbonyl (g) = 2C5MnO5 (g)

By formula: C10Mn2O10 (g) = 2C5MnO5 (g)

Quantity Value Units Method Reference Comment
Δr>176.kJ/molESTSmith, 1988 
Δr94.kJ/molESTConnor, Zafarani-Moattar, et al., 1982 
Δr96. ± 13.kJ/molEG/EIMSBidinosti and McIntyre, 1970The reaction enthalpy includes an estimated correction to 298 K. A value of 104.2 ± 8.4 kJ/mol was reported at an average temperature of 540 K Bidinosti and McIntyre, 1970. The enthalpy of formation relies on -1585.3 ± 4.3 kJ/mol for the enthalpy of formation of Mn2(CO)10(g)

C6H2FMnO5 (g) = C5MnO5 (g) + Fluoromethyl radical (g)

By formula: C6H2FMnO5 (g) = C5MnO5 (g) + CH2F (g)

Quantity Value Units Method Reference Comment
Δr139. ± 15.kJ/molPIMSMartinho Simões and Beauchamp, 1990The reaction enthalpy was derived from the appearance energy of Mn(CO)5(+), 887.7 ± 4.8 kJ/mol, using Mn(CO)5(CH2F) as the neutral precursor, together with the adiabatic ionization energy of Mn(CO)5 radical, 749. ± 14. kJ/mol Martinho Simões and Beauchamp, 1990

C6HF2MnO5 (g) = C5MnO5 (g) + Difluoromethyl radical (g)

By formula: C6HF2MnO5 (g) = C5MnO5 (g) + CHF2 (g)

Quantity Value Units Method Reference Comment
Δr144. ± 15.kJ/molPIMSMartinho Simões and Beauchamp, 1990The reaction enthalpy was derived from the appearance energy of Mn(CO)5(+), 892.5 ± 4.8 kJ/mol, using Mn(CO)5(CHF2) as the neutral precursor, together with the adiabatic ionization energy of Mn(CO)5 radical, 749. ± 14. kJ/mol Martinho Simões and Beauchamp, 1990

C6F3MnO5 (g) = C5MnO5 (g) + Trifluoromethyl radical (g)

By formula: C6F3MnO5 (g) = C5MnO5 (g) + CF3 (g)

Quantity Value Units Method Reference Comment
Δr182. ± 15.kJ/molPIMSMartinho Simões and Beauchamp, 1990The reaction enthalpy was derived from the appearance energy of Mn(CO)5(+), 931.1 ± 4.8 kJ/mol, using Mn(CO)5(CF3) as the neutral precursor, together with the adiabatic ionization energy of Mn(CO)5 radical, 749. ± 14. kJ/mol Martinho Simões and Beauchamp, 1990

Hydromanganese pentacarbonyl (g) = Hydrogen atom (g) + C5MnO5 (g)

By formula: C5HMnO5 (g) = H (g) + C5MnO5 (g)

Quantity Value Units Method Reference Comment
Δr245. ± 17.kJ/molPIMSMartinho Simões and Beauchamp, 1990The reaction enthalpy was derived from the appearance energy of Mn(CO)5(+), 993.8 ± 9.6 kJ/mol, using Mn(CO)5(H) as the neutral precursor, together with the adiabatic ionization energy of Mn(CO)5 radical, 749. ± 14. kJ/mol Martinho Simões and Beauchamp, 1990

Manganese, pentacarbonylmethyl- (g) = C5MnO5 (g) + Methane (g)

By formula: C6H3MnO5 (g) = C5MnO5 (g) + CH4 (g)

Quantity Value Units Method Reference Comment
Δr192. ± 15.kJ/molPIMSMartinho Simões and Beauchamp, 1990The reaction enthalpy was derived from the appearance energy of Mn(CO)5(+), 940.7 ± 4.8 kJ/mol, using Mn(CO)5(Me) as the neutral precursor, together with the adiabatic ionization energy of Mn(CO)5 radical, 749. ± 14. kJ/mol Martinho Simões and Beauchamp, 1990

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to C5MnO5+ (ion structure unspecified)

Ionization energy determinations

IE (eV) Method Reference Comment
8.1DERStevens, 1981LLK
8.2EISvec and Junk, 1968RDSH
8.44 ± 0.10EIBidinosti and McIntyre, 1966RDSH

References

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Martinho Simões
Martinho Simões, J.A., Private communication (see http://webbook.nist.gov/chemistry/om/). [all data]

Parker, Handoo, et al., 1991
Parker, V.D.; Handoo, K.L.; Roness, F.; Tilset, M., J. Am. Chem. Soc., 1991, 113, 7493. [all data]

Tilset and Parker, 1989
Tilset, M.; Parker, V.D., J. Am. Chem. Soc., 1989, 111, 6711; ibid. 1990. [all data]

Kiss, Zhang, et al., 1990
Kiss, G.; Zhang, K.; Mukerjee, S.L.; Hoff, C.; Roper, G.C., J. Am. Chem. Soc., 1990, 112, 5657. [all data]

Billmers, Griffith, et al., 1986
Billmers, R.; Griffith, L.L.; Stein, S.E., J. Phys. Chem., 1986, 90, 517. [all data]

Sweany, Butler S.C., et al., 1981
Sweany, R.; Butler S.C.; Halpern, J., J. Organometal. Chem., 1981, 213, 487. [all data]

Pugh and Meyer T.J., 1992
Pugh, J.R.; Meyer T.J., J. Am. Chem. Soc., 1992, 114, 3784. [all data]

Pugh and Meyer, 1988
Pugh, J.R.; Meyer, T.J., J. Am. Chem. Soc., 1988, 110, 8245. [all data]

Goodman, Peters, et al., 1986
Goodman, J.L.; Peters, K.S.; Vaida, V., Organometallics, 1986, 5, 815. [all data]

Hopgood and Poë, 1966
Hopgood, D.; Poë, A.J., J. Chem. Soc., Chem. Commun., 1966, 831.. [all data]

Poë, 1981
Poë, A., ACS Symp. Ser., 1981, No. 155, 135. [all data]

Poë, 1983
Poë, A., Chem. Brit., 1983, 19, 997. [all data]

Marcomini and Poë, 1984
Marcomini, A.; Poë, A., J. Chem. Soc., Dalton Trans., 1984, 95.. [all data]

Marcomini and Poë, 1983
Marcomini, A.; Poë, A., J. Am. Chem. Soc., 1983, 105, 6952. [all data]

Coville, Stolzenberg, et al., 1983
Coville, N.J.; Stolzenberg, A.M.; Muetterties, E.L., J. Am. Chem. Soc., 1983, 105, 2499. [all data]

Schmidt, Trogler, et al., 1984
Schmidt, S.P.; Trogler, W.C.; Basolo, F., J. Am. Chem. Soc., 1984, 106, 1308. [all data]

Martinho Simões, Schultz, et al., 1985
Martinho Simões, J.A.; Schultz, J.C.; Beauchamp, J.L., Organometallics, 1985, 4, 1238. [all data]

Martinho Simões and Beauchamp, 1990
Martinho Simões, J.A.; Beauchamp, J.L., Chem. Rev., 1990, 90, 629. [all data]

Smith, 1988
Smith, G.P., Polyhedron, 1988, 7, 1605. [all data]

Connor, Zafarani-Moattar, et al., 1982
Connor, J.A.; Zafarani-Moattar, M.T.; Bickerton, J.; El-Saied, N.I.; Suradi, S.; Carson, R.; Al Takkhin, G.; Skinner, H.A., Organomet., 1982, 1, 1166. [all data]

Bidinosti and McIntyre, 1970
Bidinosti, D.R.; McIntyre, N.S., Mass spectrometric study of the thermal decomposition of dimanganese decacarbonyl and dicobalt octacarbonyl, Can. J. Chem., 1970, 48, 593. [all data]

Stevens, 1981
Stevens, A.E., [Title unavailable], Ph.D. Thesis, California Institute of Technology, 1981. [all data]

Svec and Junk, 1968
Svec, H.J.; Junk, G.A., Thermal reactions in the mass spectrometry of organometallic compounds, Inorg. Chem., 1968, 7, 1688. [all data]

Bidinosti and McIntyre, 1966
Bidinosti, D.R.; McIntyre, N.S., The metal-metal bond dissociation energy in manganese carbonyl, Chem. Commun., 1966, 555. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, References