Iron tetracarbonyl
- Formula: C4FeO4
- Molecular weight: 167.885
- CAS Registry Number: 15281-98-8
- Information on this page:
- Data at other public NIST sites:
- Options:
Gas phase thermochemistry data
Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: José A. Martinho Simões
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -105.1 ± 3.4 | kcal/mol | Review | Martinho Simões |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: José A. Martinho Simões
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
By formula: C5FeO5 (g) = C4FeO4 (g) + CO (g)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 41.5 ± 3.0 | kcal/mol | LPHP | Lewis, Golden, et al., 1984 | Please also see Smith and Laine, 1981. Temperature range: 670-780 K. The reaction enthalpy at 298 K relies on an activation energy of 40.01 kcal/mol and assumes a negligible activation barrier for product recombination. The enthalpy of formation relies on -173.0 ± 1.6 kcal/mol for the enthalpy of formation of Fe(CO)5(g). At least two other estimates of the activation energy for the Fe(CO)4(g) + CO(g) recombination have been reported: 1.7 kcal/mol Miller and Grant, 1985 and 3.99 kcal/mol Walsh, 1986. In Lewis, Golden, et al., 1984 authors have considered that the Fe(CO)4(g) fragment is in its singlet excited state. However, it has also been suggested that the fragment is formed in its triplet ground state Ray, Brandow, et al., 1988 Sunderlin, Wang, et al., 1992 |
ΔrH° | 55. ± 11. | kcal/mol | N/A | Engelking and Lineberger, 1979 | Please also see Compton and Stockdale, 1976. Method: LPS and collision with low energy electrons. |
C4H2FeO4 (g) = 2 (g) + C4FeO4 (g)
By formula: C4H2FeO4 (g) = 2H (g) + C4FeO4 (g)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 130. | kcal/mol | EST | Miller and Beauchamp, 1991 | Please also see Martinho Simões and Beauchamp, 1990. The reaction enthalpy was estimated from the activation enthalpy for thermal decomposition in solution, 26. ± 2. kcal/mol Pearson and Mauermann, 1982, yielding Fe(CO)4 and H2, and from the activation enthalpy of the oxidative addition of H2 to Fe(CO)4 in a rare gas matrix, ca. 0. kcal/mol Sweany, 1981, yielding Fe(CO)4H2. The enthalpy of formation relies on -105.1 ± 3.4 kcal/mol for the enthalpy of formation of Fe(CO)4(g) |
C4FeO4 (g) = C3FeO3 (g) + (g)
By formula: C4FeO4 (g) = C3FeO3 (g) + CO (g)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 28.0 ± 8.6 | kcal/mol | FA-SIFT | Sunderlin, Wang, et al., 1992 | |
ΔrH° | 10. | kcal/mol | N/A | Venkataraman, Bandukwalla, et al., 1989 | Method: Velocity distributions of photofragments from Fe(CO)5. |
ΔrH° | 4.5 ± 9.3 | kcal/mol | N/A | Engelking and Lineberger, 1979 | Please also see Compton and Stockdale, 1976. Method: LPS and collision with low energy electrons. |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
B - John E. Bartmess
View reactions leading to C4FeO4+ (ion structure unspecified)
Electron affinity determinations
EA (eV) | Method | Reference | Comment |
---|---|---|---|
2.34 ± 0.10 | LPES | Nakajima, Taguwa, et al., 1994 | Vertical Detachment Energy: 3.02±0.13 eV; B |
2.40 ± 0.30 | LPES | Engelking and Lineberger, 1979 | B |
2.08 ± 0.26 | EIAE | Compton and Stockdale, 1976 | Fe(CO)5 + e- -> Fe(CO)4- + CO 'near thermoneutral'; B |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
8.48 | EI | Pignataro and Lossing, 1968 | RDSH |
References
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Martinho Simões
Martinho Simões, J.A.,
Private communication (see http://webbook.nist.gov/chemistry/om/). [all data]
Lewis, Golden, et al., 1984
Lewis, K.E.; Golden, D.M.; Smith, G.P.,
Organometallic bond dissociation energies: Laser pyrolysis of Fe(CO)5, Cr(CO)6, Mo(CO)6, and W(CO)6,
J. Am. Chem. Soc., 1984, 106, 3905. [all data]
Smith and Laine, 1981
Smith, G.P.; Laine, R.M.,
Organometallic bond dissociation energies. Laser pyrolysis of Fe(CO)5,
J. Phys. Chem., 1981, 85, 1620. [all data]
Miller and Grant, 1985
Miller, M.E.; Grant, E.R.,
J. Am. Chem. Soc., 1985, 107, 3386. [all data]
Walsh, 1986
Walsh, R.,
NATO Advanced Workshop on the Design, Activation and Transformation of Organometallics into Common and Exotic Materials, Montpellier, France, 1986. [all data]
Ray, Brandow, et al., 1988
Ray, U.; Brandow, S.L.; Bandukwalla, G.; Venkataraman, B.K.; Zhang, Z.; Vernon, M.,
J. Chem. Phys., 1988, 89, 4092. [all data]
Sunderlin, Wang, et al., 1992
Sunderlin, L.S.; Wang, D.; Squires, R.R.,
Metal Carbonyl Bond Strengths in Fe(CO)n- and Ni(CO)n-,
J. Am. Chem. Soc., 1992, 114, 8, 2788, https://doi.org/10.1021/ja00034a004
. [all data]
Engelking and Lineberger, 1979
Engelking, P.C.; Lineberger, W.C.,
Laser photoelectron spectrometry of the negative ions of iron and iron carbonyls. Electron affinity determination for the series Fe(CO)n,n=0,1,2,3,4,
J. Am. Chem. Soc., 1979, 101, 5569. [all data]
Compton and Stockdale, 1976
Compton, R.N.; Stockdale, J.A.D.,
Formation of gas phase negative ions in Fe(CO)5 and Ni(CO)4,
Int. J. Mass Spectrom. Ion Phys., 1976, 22, 47. [all data]
Miller and Beauchamp, 1991
Miller, A.E.S.; Beauchamp, J.L.,
J. Am. Chem. Soc., 1991, 113, 8765. [all data]
Martinho Simões and Beauchamp, 1990
Martinho Simões, J.A.; Beauchamp, J.L.,
Chem. Rev., 1990, 90, 629. [all data]
Pearson and Mauermann, 1982
Pearson, R.G.; Mauermann, H.,
J. Am. Chem. Soc., 1982, 104, 500. [all data]
Sweany, 1981
Sweany, R.L.,
J. Am. Chem. Soc., 1981, 103, 2410. [all data]
Venkataraman, Bandukwalla, et al., 1989
Venkataraman, B.K.; Bandukwalla, G.; Zhang, Z.; Vernon, M.,
J. Chem. Phys., 1989, 90, 5510. [all data]
Nakajima, Taguwa, et al., 1994
Nakajima, A.; Taguwa, T.; Kaya, K.,
Photoelectron Spectroscopy of Iron Carbonyl Cluster Anions (Fen(CO)m(-), n=1-4),
Chem. Phys. Lett., 1994, 221, 5-6, 436, https://doi.org/10.1016/0009-2614(94)00301-7
. [all data]
Pignataro and Lossing, 1968
Pignataro, S.; Lossing, F.P.,
Thermal decomposition of organometallic compounds in the ion source of a mass spectrometer,
J. Organometal. Chem., 1968, 11, 571. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, References
- Symbols used in this document:
EA Electron affinity ΔfH°gas Enthalpy of formation of gas at standard conditions ΔrH° Enthalpy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.