Zinc ion (1+)
- Formula: Zn+
- Molecular weight: 65.38
- IUPAC Standard InChIKey: PLSXAKJQEDOMBH-UHFFFAOYSA-N
- CAS Registry Number: 15176-26-8
- Chemical structure:
This structure is also available as a 2d Mol file - Other names: Zinc cation
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Options:
Ion clustering data
Go To: Top, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
RCD - Robert C. Dunbar
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.
Clustering reactions
By formula: Zn+ + CS = (Zn+ • CS)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 141. ± 9.2 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
By formula: Zn+ + C4H4N2 = (Zn+ • C4H4N2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 208. ± 7.5 | kJ/mol | CIDT | Amunugama and Rodgers, 2001 | RCD |
By formula: Zn+ + C5H5N = (Zn+ • C5H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 247. ± 7.1 | kJ/mol | CIDT | Rodgers, Stanley, et al., 2000 | RCD |
By formula: Zn+ + C5H5N5 = (Zn+ • C5H5N5)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | ≥238. ± 5.4 | kJ/mol | CIDT | Rodgers and Armentrout, 2002 | RCD |
By formula: Zn+ + H2O = (Zn+ • H2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 160. ± 10. | kJ/mol | CID | Magnera, David, et al., 1989 | gas phase; M |
References
Go To: Top, Ion clustering data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Rodgers and Armentrout, 2000
Rodgers, M.T.; Armentrout, P.B.,
Noncovalent Metal-Ligand Bond Energies as Studied by Threshold Collision-Induced Dissociation,
Mass Spectrom. Rev., 2000, 19, 4, 215, https://doi.org/10.1002/1098-2787(200007)19:4<215::AID-MAS2>3.0.CO;2-X
. [all data]
Amunugama and Rodgers, 2001
Amunugama, R.; Rodgers, M.T.,
Periodic Trends in the Binding of Metal Ions to Pyrimidine Studied by Threshold Collision-Induced Dissociation and Density Functional Theory,
J. Phys. Chem. A, 2001, 105, 43, 9883, https://doi.org/10.1021/jp010663i
. [all data]
Rodgers, Stanley, et al., 2000
Rodgers, M.T.; Stanley, J.R.; Amunugama, R.,
Periodic Trends in the Binding of Metal Ions to Pyridine Studied by Threshold Collision-Induced Dissociation and Density Functional Theory,
J. Am. Chem. Soc., 2000, 122, 44, 10969, https://doi.org/10.1021/ja0027923
. [all data]
Rodgers and Armentrout, 2002
Rodgers, M.T.; Armentrout, P.B.,
Influence of d orbital occupation on the binding of metal ions to adenine,
J. Am. Chem. Soc., 2002, 124, 11, 2678, https://doi.org/10.1021/ja011278+
. [all data]
Magnera, David, et al., 1989
Magnera, T.F.; David, D.E.; Michl, J.,
Gas -Phase Water and Hydroxyl Binding Energies for Monopoisitive First - Row Transition - Metal Ions,
J. Am. Chem. Soc., 1989, 111, 11, 4101, https://doi.org/10.1021/ja00193a051
. [all data]
Notes
Go To: Top, Ion clustering data, References
- Symbols used in this document:
ΔrH° Enthalpy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.