Methyl cation


Gas phase ion energetics data

Go To: Top, Ion clustering data, Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: John E. Bartmess

De-protonation reactions

CH2- + Hydrogen cation = Methyl cation

By formula: CH2- + H+ = CH3+

Quantity Value Units Method Reference Comment
Δr409.11 ± 0.41kcal/molD-EALeopold, Murray, et al., 1985gas phase; Singlet-triplet splitting of CH2 = 9.0 kcal
Quantity Value Units Method Reference Comment
Δr401.42 ± 0.48kcal/molH-TSLeopold, Murray, et al., 1985gas phase; Singlet-triplet splitting of CH2 = 9.0 kcal

Ion clustering data

Go To: Top, Gas phase ion energetics data, Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

CH2- + Hydrogen cation = Methyl cation

By formula: CH2- + H+ = CH3+

Quantity Value Units Method Reference Comment
Δr409.11 ± 0.41kcal/molD-EALeopold, Murray, et al., 1985gas phase; Singlet-triplet splitting of CH2 = 9.0 kcal; B
Quantity Value Units Method Reference Comment
Δr401.42 ± 0.48kcal/molH-TSLeopold, Murray, et al., 1985gas phase; Singlet-triplet splitting of CH2 = 9.0 kcal; B

Methyl cation + Argon = (Methyl cation • Argon)

By formula: CH3+ + Ar = (CH3+ • Ar)

Quantity Value Units Method Reference Comment
Δr11.3 ± 2.0kcal/molPHPMSHiraoka, Kudaka, et al., 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr20.1cal/mol*KPHPMSHiraoka, Kudaka, et al., 1991gas phase; M

(Methyl cation • Argon) + Argon = (Methyl cation • 2Argon)

By formula: (CH3+ • Ar) + Ar = (CH3+ • 2Ar)

Quantity Value Units Method Reference Comment
Δr2.3 ± 0.2kcal/molPHPMSHiraoka, Kudaka, et al., 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr15.7cal/mol*KPHPMSHiraoka, Kudaka, et al., 1991gas phase; M

(Methyl cation • 2Argon) + Argon = (Methyl cation • 3Argon)

By formula: (CH3+ • 2Ar) + Ar = (CH3+ • 3Ar)

Quantity Value Units Method Reference Comment
Δr2.0 ± 0.2kcal/molPHPMSHiraoka, Kudaka, et al., 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr22.3cal/mol*KPHPMSHiraoka, Kudaka, et al., 1991gas phase; M

(Methyl cation • 3Argon) + Argon = (Methyl cation • 4Argon)

By formula: (CH3+ • 3Ar) + Ar = (CH3+ • 4Ar)

Quantity Value Units Method Reference Comment
Δr2.0 ± 0.2kcal/molPHPMSHiraoka, Kudaka, et al., 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr21.1cal/mol*KPHPMSHiraoka, Kudaka, et al., 1991gas phase; M

(Methyl cation • 4Argon) + Argon = (Methyl cation • 5Argon)

By formula: (CH3+ • 4Ar) + Ar = (CH3+ • 5Ar)

Quantity Value Units Method Reference Comment
Δr1.9 ± 0.2kcal/molPHPMSHiraoka, Kudaka, et al., 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr20.6cal/mol*KPHPMSHiraoka, Kudaka, et al., 1991gas phase; M

(Methyl cation • 5Argon) + Argon = (Methyl cation • 6Argon)

By formula: (CH3+ • 5Ar) + Ar = (CH3+ • 6Ar)

Quantity Value Units Method Reference Comment
Δr1.9 ± 0.3kcal/molPHPMSHiraoka, Kudaka, et al., 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr21.0cal/mol*KPHPMSHiraoka, Kudaka, et al., 1991gas phase; M

(Methyl cation • 6Argon) + Argon = (Methyl cation • 7Argon)

By formula: (CH3+ • 6Ar) + Ar = (CH3+ • 7Ar)

Quantity Value Units Method Reference Comment
Δr1.9 ± 0.4kcal/molPHPMSHiraoka, Kudaka, et al., 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr21.2cal/mol*KPHPMSHiraoka, Kudaka, et al., 1991gas phase; M

(Methyl cation • 7Argon) + Argon = (Methyl cation • 8Argon)

By formula: (CH3+ • 7Ar) + Ar = (CH3+ • 8Ar)

Quantity Value Units Method Reference Comment
Δr1.93kcal/molPHPMSHiraoka, Kudaka, et al., 1991gas phase; Entropy change calculated or estimated; M

Methyl cation + Bromotrifluoromethane = (Methyl cation • Bromotrifluoromethane)

By formula: CH3+ + CBrF3 = (CH3+ • CBrF3)

Quantity Value Units Method Reference Comment
Δr53.6kcal/molPHPMSMcMahon, Heinis, et al., 1988gas phase; switching reaction(CH3+)N2, Entropy change calculated or estimated, uses MCA(N2) = 48.3 kcal/mol; Foster, Williamson, et al., 1974; M

Methyl cation + Chlorotrifluoromethane = (Methyl cation • Chlorotrifluoromethane)

By formula: CH3+ + CClF3 = (CH3+ • CClF3)

Quantity Value Units Method Reference Comment
Δr52.9kcal/molPHPMSMcMahon, Heinis, et al., 1988gas phase; switching reaction(CH3+)N2, Entropy change calculated or estimated, uses MCA(N2) = 48.3 kcal/mol; Foster, Williamson, et al., 1974; M

Methyl cation + Methane, trifluoroiodo- = (Methyl cation • Methane, trifluoroiodo-)

By formula: CH3+ + CF3I = (CH3+ • CF3I)

Quantity Value Units Method Reference Comment
Δr60.0kcal/molPHPMSMcMahon, Heinis, et al., 1988gas phase; switching reaction(CH3+)N2, Entropy change calculated or estimated, uses MCA(N2) = 48.3 kcal/mol; Foster, Williamson, et al., 1974; M

Methyl cation + Methane, bromo- = (Methyl cation • Methane, bromo-)

By formula: CH3+ + CH3Br = (CH3+ • CH3Br)

Quantity Value Units Method Reference Comment
Δr63.3kcal/molPHPMSMcMahon, Heinis, et al., 1988gas phase; switching reaction(CH3+)N2, Entropy change calculated or estimated, uses MCA(N2) = 48.3 kcal/mol; Foster, Williamson, et al., 1974; M

Methyl cation + Chloromethane = (Methyl cation • Chloromethane)

By formula: CH3+ + CH3Cl = (CH3+ • CH3Cl)

Quantity Value Units Method Reference Comment
Δr62.0kcal/molPHPMSMcMahon, Heinis, et al., 1988gas phase; switching reaction(CH3+)N2, Entropy change calculated or estimated, uses MCA(N2) = 48.3 kcal/mol; Foster, Williamson, et al., 1974; M

Methyl cation + Methyl fluoride = (Methyl cation • Methyl fluoride)

By formula: CH3+ + CH3F = (CH3+ • CH3F)

Quantity Value Units Method Reference Comment
Δr54.9kcal/molPHPMSMcMahon, Heinis, et al., 1988gas phase; switching reaction(CH3+)N2, Entropy change calculated or estimated, uses MCA(N2) = 48.3 kcal/mol; Foster, Williamson, et al., 1974; M

Methyl cation + Carbonyl sulfide = (Methyl cation • Carbonyl sulfide)

By formula: CH3+ + COS = (CH3+ • COS)

Quantity Value Units Method Reference Comment
Δr57.2kcal/molPHPMSMcMahon, Heinis, et al., 1988gas phase; switching reaction(CH3+)N2, Entropy change calculated or estimated, uses MCA(N2) = 48.3 kcal/mol; Foster, Williamson, et al., 1974; M

Methyl cation + Carbon dioxide = (Methyl cation • Carbon dioxide)

By formula: CH3+ + CO2 = (CH3+ • CO2)

Quantity Value Units Method Reference Comment
Δr49.4kcal/molPHPMSMcMahon, Heinis, et al., 1988gas phase; switching reaction(CH3+)N2, Entropy change calculated or estimated, uses MCA(N2) = 48.3 kcal/mol; Foster, Williamson, et al., 1974; M

Methyl cation + Carbon disulfide = (Methyl cation • Carbon disulfide)

By formula: CH3+ + CS2 = (CH3+ • CS2)

Quantity Value Units Method Reference Comment
Δr60.2kcal/molPHPMSMcMahon, Heinis, et al., 1988gas phase; switching reaction(CH3+)N2, Entropy change calculated or estimated, uses MCA(N2) = 48.3 kcal/mol; Foster, Williamson, et al., 1974; M

Methyl cation + C2ClF3O = (Methyl cation • C2ClF3O)

By formula: CH3+ + C2ClF3O = (CH3+ • C2ClF3O)

Quantity Value Units Method Reference Comment
Δr60.1kcal/molPHPMSMcMahon, Heinis, et al., 1988gas phase; switching reaction(CH3+)N2, Entropy change calculated or estimated, uses MCA(N2) = 48.3 kcal/mol; Foster, Williamson, et al., 1974; M

Methyl cation + Ethyl Chloride = (Methyl cation • Ethyl Chloride)

By formula: CH3+ + C2H5Cl = (CH3+ • C2H5Cl)

Quantity Value Units Method Reference Comment
Δr71.kcal/molPHPMSSharma, Meza de Hojer, et al., 1985gas phase; from Et+ + CH3Cl; Cox and Pilcher, 1970, Rosenstock, Buff, et al., 1982; Sen Sharma and Kebarle, 1978; M

Methyl cation + 2-Propanone, 1,1,1,3,3,3-hexafluoro- = (Methyl cation • 2-Propanone, 1,1,1,3,3,3-hexafluoro-)

By formula: CH3+ + C3F6O = (CH3+ • C3F6O)

Quantity Value Units Method Reference Comment
Δr58.5kcal/molPHPMSMcMahon, Heinis, et al., 1988gas phase; switching reaction(CH3+)N2, Entropy change calculated or estimated, uses MCA(N2) = 48.3 kcal/mol; Foster, Williamson, et al., 1974; M

Methyl cation + Propane, 2-chloro- = (Methyl cation • Propane, 2-chloro-)

By formula: CH3+ + C3H7Cl = (CH3+ • C3H7Cl)

Quantity Value Units Method Reference Comment
Δr77.kcal/molPHPMSSharma, Meza de Hojer, et al., 1985gas phase; from i-C3H7+ + CH3Cl; Cox and Pilcher, 1970, Rosenstock, Buff, et al., 1982, Sen Sharma and Kebarle, 1978; M

Methyl cation + Propane, 2-chloro-2-methyl- = (Methyl cation • Propane, 2-chloro-2-methyl-)

By formula: CH3+ + C4H9Cl = (CH3+ • C4H9Cl)

Quantity Value Units Method Reference Comment
Δr81.kcal/molPHPMSSharma, Meza de Hojer, et al., 1985gas phase; from t-C4H9+ + CH3Cl; Cox and Pilcher, 1970, Rosenstock, Buff, et al., 1982; M

Methyl cation + sulphuryl dichloride = (Methyl cation • sulphuryl dichloride)

By formula: CH3+ + Cl2O2S = (CH3+ • Cl2O2S)

Quantity Value Units Method Reference Comment
Δr62.1kcal/molPHPMSMcMahon, Heinis, et al., 1988gas phase; switching reaction(CH3+)N2, Entropy change calculated or estimated, uses MCA(N2) = 48.3 kcal/mol; Foster, Williamson, et al., 1974; M

Methyl cation + Sulfuryl fluoride = (Methyl cation • Sulfuryl fluoride)

By formula: CH3+ + F2O2S = (CH3+ • F2O2S)

Quantity Value Units Method Reference Comment
Δr55.3kcal/molPHPMSMcMahon, Heinis, et al., 1988gas phase; switching reaction(CH3+)N2, Entropy change calculated or estimated, uses MCA(N2) = 48.3 kcal/mol; Foster, Williamson, et al., 1974; M

Methyl cation + Nitrogen trifluoride = (Methyl cation • Nitrogen trifluoride)

By formula: CH3+ + F3N = (CH3+ • F3N)

Quantity Value Units Method Reference Comment
Δr53.6kcal/molPHPMSMcMahon, Heinis, et al., 1988gas phase; switching reaction(CH3+)N2, Entropy change calculated or estimated, uses MCA(N2) = 48.3 kcal/mol; Foster, Williamson, et al., 1974; M

Methyl cation + Hydrogen bromide = (Methyl cation • Hydrogen bromide)

By formula: CH3+ + HBr = (CH3+ • HBr)

Quantity Value Units Method Reference Comment
Δr55.4kcal/molPHPMSMcMahon, Heinis, et al., 1988gas phase; switching reaction(CH3+)N2, Entropy change calculated or estimated, uses MCA(N2) = 48.3 kcal/mol; Foster, Williamson, et al., 1974; M

Methyl cation + Hydrogen chloride = (Methyl cation • Hydrogen chloride)

By formula: CH3+ + HCl = (CH3+ • HCl)

Quantity Value Units Method Reference Comment
Δr51.7kcal/molPHPMSMcMahon, Heinis, et al., 1988gas phase; switching reaction(CH3+)N2, Entropy change calculated or estimated, uses MCA(N2) = 48.3 kcal/mol; Foster, Williamson, et al., 1974; M

Methyl cation + Krypton = (Methyl cation • Krypton)

By formula: CH3+ + Kr = (CH3+ • Kr)

Quantity Value Units Method Reference Comment
Δr44.0kcal/molPHPMSMcMahon, Heinis, et al., 1988gas phase; switching reaction(CH3+)N2, Entropy change calculated or estimated, uses MCA(N2) = 48.3 kcal/mol; Foster, Williamson, et al., 1974; M
Δr47.7 ± 2.5kcal/molICRHovey and McMahon, 1987gas phase; switching reaction(CH3+)N2, Entropy change calculated or estimated; M

Methyl cation + Nitrous oxide = (Methyl cation • Nitrous oxide)

By formula: CH3+ + N2O = (CH3+ • N2O)

Quantity Value Units Method Reference Comment
Δr52.9kcal/molPHPMSMcMahon, Heinis, et al., 1988gas phase; switching reaction(CH3+)N2, Entropy change calculated or estimated, uses MCA(N2) = 48.3 kcal/mol; Foster, Williamson, et al., 1974; M

Methyl cation + Nitrogen = (Methyl cation • Nitrogen)

By formula: CH3+ + N2 = (CH3+ • N2)

Quantity Value Units Method Reference Comment
Δr48.4kcal/molPDissFoster, Williamson, et al., 1974gas phase; M

Methyl cation + Sulfur dioxide = (Methyl cation • Sulfur dioxide)

By formula: CH3+ + O2S = (CH3+ • O2S)

Quantity Value Units Method Reference Comment
Δr60.6kcal/molPHPMSMcMahon, Heinis, et al., 1988gas phase; switching reaction(CH3+)N2, Entropy change calculated or estimated, uses MCA(N2) = 48.3 kcal/mol; Foster, Williamson, et al., 1974; M

Methyl cation + Xenon = (Methyl cation • Xenon)

By formula: CH3+ + Xe = (CH3+ • Xe)

Quantity Value Units Method Reference Comment
Δr50.9kcal/molPHPMSMcMahon, Heinis, et al., 1988gas phase; switching reaction(CH3+)N2, Entropy change calculated or estimated, uses MCA(N2) = 48.3 kcal/mol; Foster, Williamson, et al., 1974; M
Δr55.2 ± 2.5kcal/molICRHovey and McMahon, 1986gas phase; switching reaction(CH3+)CH3F, Entropy change calculated or estimated; M

Vibrational and/or electronic energy levels

Go To: Top, Gas phase ion energetics data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Marilyn E. Jacox

State:   A 1E'


 Energy 
 (cm-1
 Med.   Transition   λmin 
 (nm) 
 λmax 
 (nm) 
 References

To = 50510 ± 280 gas Dyke, Jonathan, et al., 1976

State:   a 3E'


 Energy 
 (cm-1
 Med.   Transition   λmin 
 (nm) 
 λmax 
 (nm) 
 References

To = 39700 ± 280 gas Dyke, Jonathan, et al., 1976

State:   X


Vib. 
sym. 
 No.   Approximate 
 type of mode 
 cm-1   Med.   Method   References

a2 2 OPLA 1359 ± 7 gas TPE PD Koenig, Balle, et al., 1975
Dyke, Jonathan, et al., 1976
Liu, Gross, et al., 2001
Cunha de Miranda, Alcaraz, et al., 2010
e' 3 CH stretch 3108.38 gas LD Crofton, Kreiner, et al., 1985
Crofton, Jagod, et al., 1988
Jagod, Gabrys, et al., 1994
3 CH stretch 3115.05 T H gas PF Olkhov, Nizkorodov, et al., 1999
3 CH stretch 3119.37 T gas PF Dopfer, Olkhov, et al., 2000
3 CH stretch 3145 ± 30 A gas PF Olkhov, Nizkorodov, et al., 1998
4 Deformation 1370 ± 7 gas PD Liu, Gross, et al., 2001

Additional references: Jacox, 1994, page 124; Jacox, 1998, page 213; Jacox, 2003, page 156; Dickinson, Chelmick, et al., 2001; Schulenburg, Alcaraz, et al., 2006

Notes

H(1/2)(2ν)
TTentative assignment or approximate value
oEnergy separation between the v = 0 levels of the excited and electronic ground states.
A0~1 cm-1 uncertainty

References

Go To: Top, Gas phase ion energetics data, Ion clustering data, Vibrational and/or electronic energy levels, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Leopold, Murray, et al., 1985
Leopold, D.G.; Murray, K.K.; Miller, A.E.S.; Lineberger, W.C., Methylene: A study of the X3B1 and the 1A1 states by photoelectron spectroscopy of CH2- and CD2-, J. Chem. Phys., 1985, 83, 4849. [all data]

Hiraoka, Kudaka, et al., 1991
Hiraoka, K.; Kudaka, I.; Yamabe, S., A Charge-Transfer Complex CH3+ Ar in the Gas Phase, Chem. Phys. Lett., 1991, 178, 1, 103, https://doi.org/10.1016/0009-2614(91)85060-A . [all data]

McMahon, Heinis, et al., 1988
McMahon, T.; Heinis, T.; Nicol, G.; Hovey, J.K.; Kebarle, P., Methyl Cation Affinities, J. Am. Chem. Soc., 1988, 110, 23, 7591, https://doi.org/10.1021/ja00231a002 . [all data]

Foster, Williamson, et al., 1974
Foster, M.S.; Williamson, A.D.; Beauchamp, J.L., Photoionization mass spectrometry of trans-azomethane, Int. J. Mass Spectrom. Ion Phys., 1974, 15, 429. [all data]

Sharma, Meza de Hojer, et al., 1985
Sharma, D.M.S.; Meza de Hojer, S.; Kebarle, P., Stabilities of halonium ions from a study of gas-phase equilibria R+ + XR' = (RXR')+, J. Am. Chem. Soc., 1985, 107, 13, 3757, https://doi.org/10.1021/ja00299a002 . [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds in Academic Press, New York, 1970. [all data]

Rosenstock, Buff, et al., 1982
Rosenstock, H.M.; Buff, R.; Ferreira, M.A.A.; Lias, S.G.; Parr, A.C.; Stockbauer, R.L.; Holmes, J.L., Fragmentation mechanism and energetics of some alkyl halide ions, J. Am. Chem. Soc., 1982, 104, 2337. [all data]

Sen Sharma and Kebarle, 1978
Sen Sharma, D.K.; Kebarle, P., Binding Energies and Stabilities of Chloronium Ions from Study of the Gas - Phase Equilibria: R1+ + ClR2 = R1ClR2+, J. Am. Chem. Soc., 1978, 100, 18, 5826, https://doi.org/10.1021/ja00486a039 . [all data]

Hovey and McMahon, 1987
Hovey, J.K.; McMahon, T.B., Bond Strength in the Methylkryptonium Ion Determined from Ion Cyclotron Resonance Methyl Cation Exchange Equilibria, J. Phys. Chem., 1987, 91, 17, 4560, https://doi.org/10.1021/j100301a028 . [all data]

Hovey and McMahon, 1986
Hovey, J.K.; McMahon, T.B., C-Xe Bond strength in the methylxenonium cation determined from ion cyclotron resonance methyl cation exchange equilibria, J. Am. Chem. Soc., 1986, 108, 528. [all data]

Dyke, Jonathan, et al., 1976
Dyke, J.; Jonathan, N.; Lee, E.; Morris, A., J. Chem. Soc., 1976, Faraday Trans. 2 72, 1385. [all data]

Koenig, Balle, et al., 1975
Koenig, T.; Balle, T.; Snell, W., Helium(I) photoelectron spectra of organic radicals, J. Am. Chem. Soc., 1975, 97, 662. [all data]

Liu, Gross, et al., 2001
Liu, X.; Gross, R.L.; Suits, A.G., "Heavy Electron" Photoelectron Spectroscopy: Rotationally Resolved Ion Pair Imaging of CH3+, Science, 2001, 294, 5551, 2527, https://doi.org/10.1126/science.1066595 . [all data]

Cunha de Miranda, Alcaraz, et al., 2010
Cunha de Miranda, B.K.; Alcaraz, C.; Elhanine, M.; Noller, B.; Hemberger, P.; Fischer, I.; Garcia, G.A.; Soldi-Lose, H., et al., Threshold Photoelectron Spectroscopy of the Methyl Radical Isotopomers, CH, J. Phys. Chem. A, 2010, 114, 14, 4818, https://doi.org/10.1021/jp909422q . [all data]

Crofton, Kreiner, et al., 1985
Crofton, M.W.; Kreiner, W.A.; Jagod, M.-F.; Rehfuss, G.D.; Oka, T., Observation of the infrared spectrum of methyl cation CH+3, J. Chem. Phys., 1985, 83, 7, 3702, https://doi.org/10.1063/1.449125 . [all data]

Crofton, Jagod, et al., 1988
Crofton, M.W.; Jagod, M.-F.; Rehfuss, B.D.; Kreiner, W.A.; Oka, T., Infrared spectroscopy of carbo-ions. III. ν3 band of methyl cation CH+3, J. Chem. Phys., 1988, 88, 2, 666, https://doi.org/10.1063/1.454194 . [all data]

Jagod, Gabrys, et al., 1994
Jagod, M.-F.; Gabrys, C.M.; Rosslein, M.; Uy, D.; Oka, T., Infrared spectrum of CH, Can. J. Phys., 1994, 72, 11-12, 1192, https://doi.org/10.1139/p94-153 . [all data]

Olkhov, Nizkorodov, et al., 1999
Olkhov, R.V.; Nizkorodov, S.A.; Dopfer, O., Intermolecular interaction in the CH[sub 3][sup +]--He ionic complex revealed by ab initio calculations and infrared photodissociation spectroscopy, J. Chem. Phys., 1999, 110, 19, 9527, https://doi.org/10.1063/1.478917 . [all data]

Dopfer, Olkhov, et al., 2000
Dopfer, O.; Olkhov, R.V.; Maier, J.P., Microsolvation of the methyl cation in neon: Infrared spectra and ab initio calculations of CH[sub 3][sup +]--Ne and CH[sub 3][sup +]--Ne[sub 2], J. Chem. Phys., 2000, 112, 5, 2176, https://doi.org/10.1063/1.480783 . [all data]

Olkhov, Nizkorodov, et al., 1998
Olkhov, R.V.; Nizkorodov, S.A.; Dopfer, O., Infrared photodissociation spectra of CH[sub 3][sup +]--Ar[sub n] complexes (n=1--8), J. Chem. Phys., 1998, 108, 24, 10046, https://doi.org/10.1063/1.476465 . [all data]

Jacox, 1994
Jacox, M.E., Vibrational and electronic energy levels of polyatomic transient molecules, American Chemical Society, Washington, DC, 1994, 464. [all data]

Jacox, 1998
Jacox, M.E., Vibrational and electronic energy levels of polyatomic transient molecules: supplement A, J. Phys. Chem. Ref. Data, 1998, 27, 2, 115-393, https://doi.org/10.1063/1.556017 . [all data]

Jacox, 2003
Jacox, M.E., Vibrational and electronic energy levels of polyatomic transient molecules: supplement B, J. Phys. Chem. Ref. Data, 2003, 32, 1, 1-441, https://doi.org/10.1063/1.1497629 . [all data]

Dickinson, Chelmick, et al., 2001
Dickinson, H.; Chelmick, T.; Softley, T.P., (2+1´) mass analyzed threshold ionization (MATI) spectroscopy of the CD3 radical, Chem. Phys. Lett., 2001, 338, 1, 37, https://doi.org/10.1016/S0009-2614(01)00229-9 . [all data]

Schulenburg, Alcaraz, et al., 2006
Schulenburg, A.M.; Alcaraz, Ch.; Grassi, G.; Merkt, F., Rovibrational photoionization dynamics of methyl and its isotopomers studied by high-resolution photoionization and photoelectron spectroscopy, J. Chem. Phys., 2006, 125, 10, 104310, https://doi.org/10.1063/1.2348875 . [all data]


Notes

Go To: Top, Gas phase ion energetics data, Ion clustering data, Vibrational and/or electronic energy levels, References