sec-Butylamine
- Formula: C4H11N
- Molecular weight: 73.1368
- IUPAC Standard InChIKey: BHRZNVHARXXAHW-UHFFFAOYSA-N
- CAS Registry Number: 13952-84-6
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Species with the same structure:
- Stereoisomers:
- Other names: 2-Butanamine; Butafume; Propylamine, 1-Methyl-; Tutane; 1-Methylpropanamine; 1-Methylpropylamine; 2-Aminobutane; 2-AB; 2-Butylamine; sec-C4H9NH2; sec-Butanamine; Deccotane; Frucote; 2-Aminobutane base; (RS)-2-aminobutane; (RS)-sec-butylamine; Secondary butylamine; NSC 8030; (.+/-.)-sec-Butylamine
- Information on this page:
- Other data available:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -106. ± 2. | kJ/mol | Ccb | Evans, Fairbrother, et al., 1959 | Heat of formation derived by Cox and Pilcher, 1970; ALS |
ΔfH°gas | -155.5 | kJ/mol | N/A | Lemoult, 1907 | Value computed using ΔfHliquid° value of -187.0 kj/mol from Lemoult, 1907 and ΔvapH° value of 31.5 kj/mol from Evans, Fairbrother, et al., 1959.; DRB |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | -137.5 ± 1.0 | kJ/mol | Ccb | Evans, Fairbrother, et al., 1959 | Heat of formation derived by Cox and Pilcher, 1970 |
ΔfH°liquid | -187. | kJ/mol | Ccb | Lemoult, 1907 | |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -3008.6 ± 0.92 | kJ/mol | Ccb | Evans, Fairbrother, et al., 1959 | Heat of formation derived by Cox and Pilcher, 1970 |
ΔcH°liquid | -2979. | kJ/mol | Ccb | Lemoult, 1907 |
Phase change data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 336. | K | N/A | American Tokyo Kasei, 1988 | BS |
Tboil | 336.15 | K | N/A | Holmberg, 1962 | Uncertainty assigned by TRC = 1.5 K; not certain that this was measured; TRC |
Tboil | 336.15 | K | N/A | Schuerch and Huntress, 1949 | Uncertainty assigned by TRC = 2. K; TRC |
Tboil | 336.15 | K | N/A | Sabatier and Mailhe, 1909 | Uncertainty assigned by TRC = 2. K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 168.65 | K | N/A | Timmermans and Mattaar, 1921 | Uncertainty assigned by TRC = 0.6 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 514.3 | K | N/A | Toczylkin. L.S. and Young, 1980 | Uncertainty assigned by TRC = 0.51 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Pc | 50.00 | bar | N/A | Toczylkin. L.S. and Young, 1980 | Uncertainty assigned by TRC = 4.9979 bar; Visual; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 32.7 ± 0.1 | kJ/mol | C | Majer, Svoboda, et al., 1979 | AC |
ΔvapH° | 32.6 ± 0.1 | kJ/mol | C | Wadsö, Heikkilä, et al., 1969 | AC |
ΔvapH° | 32.64 ± 0.06 | kJ/mol | C | Wadso, 1969 | ALS |
ΔvapH° | 31. ± 1. | kJ/mol | V | Evans, Fairbrother, et al., 1959 | Heat of formation derived by Cox and Pilcher, 1970; ALS |
ΔvapH° | 31.5 | kJ/mol | N/A | Evans, Fairbrother, et al., 1959 | DRB |
Enthalpy of vaporization
ΔvapH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
34.1 | 279. | A | Stephenson and Malanowski, 1987 | Based on data from 264. to 371. K. See also Dykyj, 1971.; AC |
32.4 | 315. | EB | Majer, Svoboda, et al., 1979 | Based on data from 300. to 335. K.; AC |
31.6 ± 0.1 | 313. | C | Majer, Svoboda, et al., 1979 | AC |
30.5 ± 0.1 | 328. | C | Majer, Svoboda, et al., 1979 | AC |
29.4 ± 0.1 | 343. | C | Majer, Svoboda, et al., 1979 | AC |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, Ion clustering data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Michael M. Meot-Ner (Mautner) and Sharon G. Lias
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
By formula: C3H9Si+ + C4H11N = (C3H9Si+ • C4H11N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 242. | kJ/mol | PHPMS | Li and Stone, 1990 | gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)C6H5COOC2H5; Wojtyniak and Stone, 1986 |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 163. | J/mol*K | PHPMS | Li and Stone, 1990 | gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)C6H5COOC2H5; Wojtyniak and Stone, 1986 |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Ion clustering data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
Data compiled as indicated in comments:
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
LL - Sharon G. Lias and Joel F. Liebman
View reactions leading to C4H11N+ (ion structure unspecified)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Proton affinity (review) | 929.7 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Quantity | Value | Units | Method | Reference | Comment |
Gas basicity | 895.7 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
8.5 ± 0.1 | PE | Aue, Webb, et al., 1976 | LLK |
8.70 | PI | Watanabe, Nakayama, et al., 1962 | RDSH |
Appearance energy determinations
Ion | AE (eV) | Other Products | Method | Reference | Comment |
---|---|---|---|---|---|
C2H6N+ | 9.10 | C2H5 | EI | Holmes, Lossing, et al., 1988 | LL |
C3H8N+ | 9.12 | CH3 | EI | Lossing, Lam, et al., 1981 | LLK |
Ion clustering data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Michael M. Meot-Ner (Mautner) and Sharon G. Lias
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.
Clustering reactions
By formula: C3H9Si+ + C4H11N = (C3H9Si+ • C4H11N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 242. | kJ/mol | PHPMS | Li and Stone, 1990 | gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)C6H5COOC2H5; Wojtyniak and Stone, 1986 |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 163. | J/mol*K | PHPMS | Li and Stone, 1990 | gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)C6H5COOC2H5; Wojtyniak and Stone, 1986 |
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Evans, Fairbrother, et al., 1959
Evans, F.W.; Fairbrother, D.M.; Skinner, H.A.,
The heats of combustion of organic compounds of nitrogen Part 3.-Butylamines, and the cis-dimer of nitrosoisobutane,
Trans. Faraday Soc., 1959, 55, 399-403. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]
Lemoult, 1907
Lemoult, M.P.,
Recherches theoriques et experimentales sur les chaleurs de combustion et de formation des composes organiques,
Ann. Chim. Phys., 1907, 12, 395-432. [all data]
American Tokyo Kasei, 1988
American Tokyo Kasei,
TCI American Organic Chemical 88/89 Catalog, American Tokyo Kasei, Portland, OR, 1988, 1610. [all data]
Holmberg, 1962
Holmberg, K.E.,
Isotopic Effects in Systems Containing an Amine and Carbon Dioxide,
Acta Chem. Scand., 1962, 16, 2117. [all data]
Schuerch and Huntress, 1949
Schuerch, C.; Huntress, E.H.,
The Schmidt Reaction II. A New Rearangement Obseved during Degradation of Triethylacetic Acid,
J. Am. Chem. Soc., 1949, 71, 2238. [all data]
Sabatier and Mailhe, 1909
Sabatier, P.; Mailhe, A.,
New Applications of the General Method of Hydrogenation with Various Metals,
Ann. Chim. Phys., 1909, 16, 70. [all data]
Timmermans and Mattaar, 1921
Timmermans, J.; Mattaar, J.F.,
Freezing points of orgainic substances VI. New experimental determinations.,
Bull. Soc. Chim. Belg., 1921, 30, 213. [all data]
Toczylkin. L.S. and Young, 1980
Toczylkin. L.S.; Young, C.L.,
Gas-liquid criticl temperatures of mixtures containing electron donors. II. Amine mixtures,
J. Chem. Thermodyn., 1980, 12, 365. [all data]
Majer, Svoboda, et al., 1979
Majer, Vladimír; Svoboda, Václav; Koubek, Josef; Pick, Jirí,
Temperature dependence of heats of vaporization, saturated vapour pressures and cohesive energies for a group of amines,
Collect. Czech. Chem. Commun., 1979, 44, 12, 3521-3528, https://doi.org/10.1135/cccc19793521
. [all data]
Wadsö, Heikkilä, et al., 1969
Wadsö, Ingemar; Heikkilä, Jussi; Beagley, B.; Aalto, Tarja; Werner, Per-Erik; Junggren, Ulf; Lamm, Bo; Samuelsson, Benny,
Enthalpies of Vaporization of Organic Compounds. III. Amines.,
Acta Chem. Scand., 1969, 23, 2061-2064, https://doi.org/10.3891/acta.chem.scand.23-2061
. [all data]
Wadso, 1969
Wadso, I.,
Enthalpies of vaporization of organic compounds,
Acta Chem. Scand., 1969, 23, 2061. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Dykyj, 1971
Dykyj, J.,
Petrochemia, 1971, 11, 2, 27. [all data]
Li and Stone, 1990
Li, X.; Stone, A.J.,
Gas-Phase (CH3)3Si+ Affinities of Alkylamines and Proton Affinities of Trimethylsilyl Alkylamines,
Int. J. Mass Spectrom. Ion Proc., 1990, 101, 2-3, 149, https://doi.org/10.1016/0168-1176(90)87008-5
. [all data]
Wojtyniak and Stone, 1986
Wojtyniak, A.C.M.; Stone, A.J.,
A High-Pressure Mass Spectrometric Study of the Bonding of Trimethylsilylium to Oxygen and Aromatic Bases,
Can. J. Chem., 1986, 74, 59. [all data]
Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G.,
Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update,
J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018
. [all data]
Aue, Webb, et al., 1976
Aue, D.H.; Webb, H.M.; Bowers, M.T.,
Quantitative proton affinities, ionization potentials, and hydrogen affinities of alkylamines,
J. Am. Chem. Soc., 1976, 98, 311. [all data]
Watanabe, Nakayama, et al., 1962
Watanabe, K.; Nakayama, T.; Mottl, J.,
Ionization potentials of some molecules,
J. Quant. Spectry. Radiative Transfer, 1962, 2, 369. [all data]
Holmes, Lossing, et al., 1988
Holmes, J.L.; Lossing, F.P.; Maccoll, A.,
Heats of formation of alkyl radicals from appearance energies,
J. Am. Chem. Soc., 1988, 110, 7339. [all data]
Lossing, Lam, et al., 1981
Lossing, F.P.; Lam, Y.-T.; Maccoll, A.,
Gas phase heats of formation of alkyl immonium ions,
Can. J. Chem., 1981, 59, 2228. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, References
- Symbols used in this document:
AE Appearance energy Pc Critical pressure Tboil Boiling point Tc Critical temperature Tfus Fusion (melting) point ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.