1-Butanol, 2-methyl-
- Formula: C5H12O
- Molecular weight: 88.1482
- IUPAC Standard InChIKey: QPRQEDXDYOZYLA-UHFFFAOYSA-N
- CAS Registry Number: 137-32-6
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Species with the same structure:
- Isotopologues:
- Stereoisomers:
- Other names: sec-Butylcarbinol; Active amyl alcohol; Active primary amyl alcohol; Primary active amyl alcohol; 2-Methyl-n-butanol; 2-Methyl-1-butanol; 2-Methylbutyl alcohol; CH3CH2CH(CH3)CH2OH; dl-2-Methyl-1-butanol; 2-Methyl butanol-1; 2-Methylbutanol; dl-sec-Butyl carbinol; Butanol, 2-methyl-; 2-Methyl-butan-1-ol; 3-Methyl iso-butanol; Methyl-2-butan-1-ol; NSC 8431; 34713-94-5; 2-methyl-1-butanol (active amyl alcohol)
- Information on this page:
- Other data available:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Condensed phase thermochemistry data
Go To: Top, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | -85.24 ± 0.15 | kcal/mol | Ccb | Chao and Rossini, 1965 | |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -794.92 ± 0.13 | kcal/mol | Ccb | Chao and Rossini, 1965 | Corresponding ΔfHºliquid = -85.23 kcal/mol (simple calculation by NIST; no Washburn corrections) |
Phase change data
Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
AC - William E. Acree, Jr., James S. Chickos
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 402. ± 2. | K | AVG | N/A | Average of 29 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 575.4 ± 0.5 | K | N/A | Gude and Teja, 1995 | |
Tc | 575.4 | K | N/A | Quadri, Khilar, et al., 1991 | Uncertainty assigned by TRC = 0.7 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Pc | 38.9 ± 0.2 | atm | N/A | Gude and Teja, 1995 | |
Pc | 38.88 | atm | N/A | Quadri, Khilar, et al., 1991 | Uncertainty assigned by TRC = 0.39 atm; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 13.04 ± 0.30 | kcal/mol | V | Chao and Rossini, 1965 | Heat of formation derived by Cox and Pilcher, 1970; ALS |
ΔvapH° | 13.0 | kcal/mol | N/A | Chao and Rossini, 1965 | DRB |
ΔvapH° | 12.9 | kcal/mol | C | McCurdy and Laidler, 1963 | AC |
Enthalpy of vaporization
ΔvapH (kcal/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
10.4 | 317. | N/A | Easton, Hargreaves, et al., 2007 | Based on data from 302. to 410. K. See also Boublik, Fried, et al., 1984.; AC |
12.2 | 345. | N/A | Aucejo, Burguet, et al., 1994 | Based on data from 330. to 405. K.; AC |
11.9 | 353. | A | Stephenson and Malanowski, 1987 | Based on data from 338. to 402. K.; AC |
12.9 | 332. | A | Stephenson and Malanowski, 1987 | Based on data from 317. to 403. K.; AC |
14.0 | 264. | A | Stephenson and Malanowski, 1987 | Based on data from 249. to 319. K. See also Thomas, Meatyard, et al., 1979.; AC |
13.6 | 313. | N/A | Boublik, Fried, et al., 1984 | Based on data from 298. to 393. K. See also Butler, Ramchandani, et al., 1935.; AC |
13.4 | 322. | N/A | Wilhoit and Zwolinski, 1973 | Based on data from 307. to 403. K.; AC |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (atm)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
298.12 to 393.70 | 4.47695 | 1360.367 | -99.937 | Butler, Ramchandani, et al., 1935, 2 | Coefficents calculated by NIST from author's data. |
Reaction thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: John E. Bartmess
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
C5H11O- + =
By formula: C5H11O- + H+ = C5H12O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 373.9 ± 2.0 | kcal/mol | CIDC | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 367.3 ± 2.1 | kcal/mol | H-TS | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy. |
Gas phase ion energetics data
Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
View reactions leading to C5H12O+ (ion structure unspecified)
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
9.86 | EI | Holmes, Fingas, et al., 1981 | LLK |
De-protonation reactions
C5H11O- + =
By formula: C5H11O- + H+ = C5H12O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 373.9 ± 2.0 | kcal/mol | CIDC | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy.; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 367.3 ± 2.1 | kcal/mol | H-TS | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy.; B |
References
Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Chao and Rossini, 1965
Chao, J.; Rossini, F.D.,
Heats of combustion, formation, and isomerization of nineteen alkanols,
J. Chem. Eng. Data, 1965, 10, 374-379. [all data]
Gude and Teja, 1995
Gude, M.; Teja, A.S.,
Vapor-Liquid Critical Properties of Elements and Compounds. 4. Aliphatic Alkanols,
J. Chem. Eng. Data, 1995, 40, 1025-1036. [all data]
Quadri, Khilar, et al., 1991
Quadri, S.K.; Khilar, K.C.; Kudchadker, A.P.; Patni, M.J.,
Measurement of the critical temperatures and critical pressures of some thermally stable or mildly unstable alkanols,
J. Chem. Thermodyn., 1991, 23, 67-76. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]
McCurdy and Laidler, 1963
McCurdy, K.G.; Laidler, K.J.,
HEATS OF VAPORIZATION OF A SERIES OF ALIPHATIC ALCOHOLS,
Can. J. Chem., 1963, 41, 8, 1867-1871, https://doi.org/10.1139/v63-274
. [all data]
Easton, Hargreaves, et al., 2007
Easton, B.C.; Hargreaves, M.K.; Mitchell, R.K.,
The isolation of (-)-sec.-butylcarbinol from fusel oil,
J. Appl. Chem., 2007, 7, 4, 198-204, https://doi.org/10.1002/jctb.5010070407
. [all data]
Boublik, Fried, et al., 1984
Boublik, T.; Fried, V.; Hala, E.,
The Vapour Pressures of Pure Substances: Selected Values of the Temperature Dependence of the Vapour Pressures of Some Pure Substances in the Normal and Low Pressure Region, 2nd ed., Elsevier, New York, 1984, 972. [all data]
Aucejo, Burguet, et al., 1994
Aucejo, Antonio; Burguet, M.C.; Monton, Juan B.; Munoz, Rosa; Sanchotello, Margarita; Vazquez, M. Isabel,
Isothermal Vapor-Liquid Equilibria of 1-Pentanol with 2-Methyl-1-butanol, 2-Methyl-2-butanol, and 3-Methyl-2-butanol,
J. Chem. Eng. Data, 1994, 39, 3, 578-580, https://doi.org/10.1021/je00015a040
. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Thomas, Meatyard, et al., 1979
Thomas, Leo H.; Meatyard, Robert; Smith, Harry; Davies, Gwyn H.,
Vapor pressures and molar entropies of vaporization of monohydric alcohols,
J. Chem. Eng. Data, 1979, 24, 3, 159-161, https://doi.org/10.1021/je60082a032
. [all data]
Butler, Ramchandani, et al., 1935
Butler, J.A.V.; Ramchandani, C.N.; Thomson, D.W.,
58. The solubility of non-electrolytes. Part I. The free energy of hydration of some aliphatic alcohols,
J. Chem. Soc., 1935, 280, https://doi.org/10.1039/jr9350000280
. [all data]
Wilhoit and Zwolinski, 1973
Wilhoit, R.C.; Zwolinski, B.J.,
Physical and thermodynamic properties of aliphatic alcohols,
J. Phys. Chem. Ref. Data Suppl., 1973, 1, 2, 1. [all data]
Butler, Ramchandani, et al., 1935, 2
Butler, J.A.V.; Ramchandani, C.N.; Thomson, D.W.,
The Solubility of Non-Electrolytes. Part 1. The Free Energy of Hydration of Some Alphatic Alcohols,
J. Chem. Soc., 1935, 280-285, https://doi.org/10.1039/jr9350000280
. [all data]
Haas and Harrison, 1993
Haas, M.J.; Harrison, A.G.,
The Fragmentation of Proton-Bound Cluster Ions and the Gas-Phase Acidities of Alcohols,
Int. J. Mass Spectrom. Ion Proc., 1993, 124, 2, 115, https://doi.org/10.1016/0168-1176(93)80003-W
. [all data]
Holmes, Fingas, et al., 1981
Holmes, J.L.; Fingas, M.; Lossing, F.P.,
Towards a general scheme for estimating the heats of formation of organic ions in the gas phase. Part I. Odd-electron cations,
Can. J. Chem., 1981, 59, 80. [all data]
Notes
Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, References
- Symbols used in this document:
Pc Critical pressure Tboil Boiling point Tc Critical temperature ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.