Copper monofluoride


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Gas phase ion energetics data, Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
Δfgas-3.000kcal/molReviewChase, 1998Data last reviewed in December, 1977
Quantity Value Units Method Reference Comment
gas,1 bar54.132cal/mol*KReviewChase, 1998Data last reviewed in December, 1977

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (cal/mol*K)
    H° = standard enthalpy (kcal/mol)
    S° = standard entropy (cal/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 298. to 1500.1500. to 6000.
A 8.06280212.45350
B 1.989930-2.430130
C -1.4587810.607764
D 0.391097-0.037437
E -0.049943-2.274651
F -5.647900-10.52810
G 63.0775165.58960
H -3.000000-3.000000
ReferenceChase, 1998Chase, 1998
Comment Data last reviewed in December, 1977 Data last reviewed in December, 1977

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
Δfsolid-67.000kcal/molReviewChase, 1998Data last reviewed in December, 1977
Quantity Value Units Method Reference Comment
solid15.49cal/mol*KReviewChase, 1998Data last reviewed in December, 1977

Solid Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (cal/mol*K)
    H° = standard enthalpy (kcal/mol)
    S° = standard entropy (cal/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 298. to 2000.
A 11.15040
B 8.036291
C -4.990770
D 1.022011
E -0.065535
F -70.86231
G 26.43320
H -67.00010
ReferenceChase, 1998
Comment Data last reviewed in December, 1977

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
LL - Sharon G. Lias and Joel F. Liebman
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to CuF+ (ion structure unspecified)

Ionization energy determinations

IE (eV) Method Reference Comment
10.8EIHildenbrand and Lau, 1991LL
10.15 ± 0.02PEDyke, Fayad, et al., 1980LLK
10.5 ± 0.3EIHastie and Margrave, 1968Unpublished result of D.L.Hildenbrand; RDSH
8.6 ± 0.3EIKent, McDonald, et al., 1966RDSH
10.90 ± 0.01PEDyke, Fayad, et al., 1980Vertical value; LLK

Constants of diatomic molecules

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Klaus P. Huber and Gerhard H. Herzberg

Data collected through August, 1975

Symbols used in the table of constants
SymbolMeaning
State electronic state and / or symmetry symbol
Te minimum electronic energy (cm-1)
ωe vibrational constant – first term (cm-1)
ωexe vibrational constant – second term (cm-1)
ωeye vibrational constant – third term (cm-1)
Be rotational constant in equilibrium position (cm-1)
αe rotational constant – first term (cm-1)
γe rotation-vibration interaction constant (cm-1)
De centrifugal distortion constant (cm-1)
βe rotational constant – first term, centrifugal force (cm-1)
re internuclear distance (Å)
Trans. observed transition(s) corresponding to electronic state
ν00 position of 0-0 band (units noted in table)
Diatomic constants for 63Cu19F
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
C 1Π 20258.47 645.07 HQ 4.19  [0.3746] 1   (0.00000051)  [1.7561] C ↔ X R 20269.62 Z
Ritschl, 1927; missing citation
B 1Σ+ 19717.5 657.0 2 3.92  0.3716 0.0032 3  (0.00000048)  1.7632 B ↔ X R 19734.66 Z
Ritschl, 1927; missing citation
A 1Π 17543.4 649.2 4 HQ 4.00  [0.3675] 5     [1.7730] A ↔ X R 17556.7 HQ
Ritschl, 1927; Woods, 1943
X 1Σ+ 0 622.65 HQ 3.95  0.3794029 0.0032298 0.0000123 0.000000563  1.744930 6  
Hoeft, Lovas, et al., 1970; Honerjager and Tischer, 1974

Notes

1Λ-type doubling Δνef = +0.0010J(J+1).
2From bandheads, taking into account head-origin separations.
3Slight modification of the analysis of the 1-1 band in Woods, 1943.
40-0 sequence only. Constants recalculated assuming that the lower state is X 1Σ+.
5From a partial rotational analysis, assuming that the lower state is X 1Σ+.
6Microwave sp. 8
7Thermochemical value (mass.spectrom.) Hildenbrand, 1968. See also Kent, McDonald, et al., 1966.
8μel(v=0) = 5.77 D. Values for eqQ(Cu) in Hoeft, Lovas, et al., 1970, magnetic constants from Zeeman effect measurements in Honerjager and Tischer, 1974.

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Gas phase ion energetics data, Constants of diatomic molecules, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Hildenbrand and Lau, 1991
Hildenbrand, D.L.; Lau, K.H., Redetermination of the thermochemistry of gaseous UF5, UF2, and UF, J. Chem. Phys., 1991, 94, 1420. [all data]

Dyke, Fayad, et al., 1980
Dyke, J.M.; Fayad, N.K.; Josland, G.D.; Morris, A., Study by high-temperature photoelectron spectroscopy of the electronic structure of the transition metal difluorides, CuF2 and ZnF2, J. Chem. Soc. Faraday Trans. 2, 1980, 76, 1672. [all data]

Hastie and Margrave, 1968
Hastie, J.W.; Margrave, J.L., Ionization potentials and molecule-ion dissociation energies for diatomic metal halides, Fluorine Chem. Rev., 1968, 2, 77. [all data]

Kent, McDonald, et al., 1966
Kent, R.A.; McDonald, J.D.; Margrave, J.L., Mass spectrometric studies at high temperatures. IX. The sublimation pressure of copper(II) fluoride, J. Phys. Chem., 1966, 70, 874. [all data]

Ritschl, 1927
Ritschl, R., Uber den bau einer klasse von absorptionsspektren, Z. Phys., 1927, 42, 172. [all data]

Woods, 1943
Woods, L.H., Rotational analysis of the emission spectrum of CuF, Phys. Rev., 1943, 64, 259. [all data]

Hoeft, Lovas, et al., 1970
Hoeft, J.; Lovas, F.J.; Tiemann, E.; Torring, T., The rotational spectra and dipole moments of AgF and CuF by microwave absorption, Z. Naturforsch. A, 1970, 25, 35. [all data]

Honerjager and Tischer, 1974
Honerjager, R.; Tischer, R., Magnetische Konstanten der Molekeln CuF und GaF, Z. Naturforsch. A, 1974, 29, 1919. [all data]

Hildenbrand, 1968
Hildenbrand, D.L., Dissociation energy of copper monofluoride, J. Chem. Phys., 1968, 48, 2457. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Gas phase ion energetics data, Constants of diatomic molecules, References