Iron pentacarbonyl


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
MS - José A. Martinho Simões

Quantity Value Units Method Reference Comment
Δfgas-727.85kJ/molReviewChase, 1998Data last reviewed in March, 1978
Δfgas-723.9 ± 6.7kJ/molReviewMartinho SimõesMS
Quantity Value Units Method Reference Comment
gas,1 bar439.29J/mol*KReviewChase, 1998Data last reviewed in March, 1978

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (J/mol*K)
    H° = standard enthalpy (kJ/mol)
    S° = standard entropy (J/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 700. to 1500.1500. to 6000.
A 159.1390252.9650
B 128.15802.567381
C -65.53340-0.380698
D 12.302400.024066
E -1.878761-26.02530
F -786.7370-860.0320
G 585.9010671.4010
H -727.8490-727.8490
ReferenceChase, 1998Chase, 1998
Comment Data last reviewed in March, 1978 Data last reviewed in March, 1978

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
MS - José A. Martinho Simões

Quantity Value Units Method Reference Comment
Δfliquid-766.09kJ/molReviewChase, 1998Data last reviewed in March, 1978
Δfliquid-764.1 ± 6.7kJ/molReviewMartinho SimõesMS
Quantity Value Units Method Reference Comment
Δcliquid-1614.6 ± 6.3kJ/molCC-SBCotton, Fischer, et al., 1959Please also see Pedley and Rylance, 1977 and Cox and Pilcher, 1970.; MS
Quantity Value Units Method Reference Comment
liquid,1 bar337.08J/mol*KReviewChase, 1998Data last reviewed in March, 1978

Liquid Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (J/mol*K)
    H° = standard enthalpy (kJ/mol)
    S° = standard entropy (J/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 298. to 700.
A 233.7852
B 0.000014
C -0.000022
D 0.000012
E 6.567542×10-8
F -835.7958
G 619.9977
H -766.0904
ReferenceChase, 1998
Comment Data last reviewed in March, 1978

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
MS - José A. Martinho Simões
AC - William E. Acree, Jr., James S. Chickos

Quantity Value Units Method Reference Comment
Tboil376.KN/APCR Inc., 1990BS
Quantity Value Units Method Reference Comment
Δvap40.2 ± 0.8kJ/molCC-SBLeadbetter and Spice, 1959MS
Δvap38.1 ± 0.4kJ/molN/ALeadbetter and Spice, 1959, 2AC

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Reference Comment
40.1 ± 0.5279.Gilbert and Sulzmann, 1974Based on data from 254. to 304. K.; AC
39.0309.Valerga, 1970Based on data from 266. to 353. K.; AC
37.6281.Stull, 1947Based on data from 266. to 378. K.; AC

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
254. to 304.3.897631258.218-61.563Gilbert and Sulzmann, 1974, 2Coefficents calculated by NIST from author's data.
266.7 to 378.5.189431960.896-0.228Stull, 1947Coefficents calculated by NIST from author's data.

Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
MS - José A. Martinho Simões
B - John E. Bartmess

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

Iron pentacarbonyl (g) = C4FeO4 (g) + Carbon monoxide (g)

By formula: C5FeO5 (g) = C4FeO4 (g) + CO (g)

Quantity Value Units Method Reference Comment
Δr174. ± 13.kJ/molLPHPLewis, Golden, et al., 1984Please also see Smith and Laine, 1981. Temperature range: 670-780 K. The reaction enthalpy at 298 K relies on an activation energy of 167.4 kJ/mol and assumes a negligible activation barrier for product recombination. The enthalpy of formation relies on -723.9 ± 6.7 kJ/mol for the enthalpy of formation of Fe(CO)5(g). At least two other estimates of the activation energy for the Fe(CO)4(g) + CO(g) recombination have been reported: 7.1 kJ/mol Miller and Grant, 1985 and 16.7 kJ/mol Walsh, 1986. In Lewis, Golden, et al., 1984 authors have considered that the Fe(CO)4(g) fragment is in its singlet excited state. However, it has also been suggested that the fragment is formed in its triplet ground state Ray, Brandow, et al., 1988 Sunderlin, Wang, et al., 1992; MS
Δr232. ± 48.kJ/molN/AEngelking and Lineberger, 1979Please also see Compton and Stockdale, 1976. Method: LPS and collision with low energy electrons.; MS

HO- + Iron pentacarbonyl = (HO- • Iron pentacarbonyl)

By formula: HO- + C5FeO5 = (HO- • C5FeO5)

Quantity Value Units Method Reference Comment
Δr254. ± 14.kJ/molIMRESunderlin and Squires, 1993gas phase; HO- transfer equilibrium to SO2. Structure thought ot be (CO)4Fe-CO2H; B
Δr237. ± 17.kJ/molIMRBLane, Sallans, et al., 1985gas phase; B
Quantity Value Units Method Reference Comment
Δr196. ± 17.kJ/molIMRBLane, Sallans, et al., 1985gas phase; B

C9FeNiO9 (g) = Nickel tetracarbonyl (g) + Iron pentacarbonyl (g)

By formula: C9FeNiO9 (g) = C4NiO4 (g) + C5FeO5 (g)

Quantity Value Units Method Reference Comment
Δr37.7kJ/molEqGBaev and Fedulova, 1983Temperature range: 293-313 K; MS

Fluorine anion + Iron pentacarbonyl = (Fluorine anion • Iron pentacarbonyl)

By formula: F- + C5FeO5 = (F- • C5FeO5)

Quantity Value Units Method Reference Comment
Δr171. ± 8.4kJ/molIMRELane, Sallans, et al., 1985gas phase; B
Quantity Value Units Method Reference Comment
Δr144. ± 8.4kJ/molIMRELane, Sallans, et al., 1985gas phase; B

Chlorine anion + Iron pentacarbonyl = (Chlorine anion • Iron pentacarbonyl)

By formula: Cl- + C5FeO5 = (Cl- • C5FeO5)

Quantity Value Units Method Reference Comment
Δr58. ± 13.kJ/molIMRBLane, Sallans, et al., 1985gas phase; B
Quantity Value Units Method Reference Comment
Δr33. ± 13.kJ/molIMRBLane, Sallans, et al., 1985gas phase; B

C8H7O2- + Iron pentacarbonyl = (C8H7O2- • Iron pentacarbonyl)

By formula: C8H7O2- + C5FeO5 = (C8H7O2- • C5FeO5)

Quantity Value Units Method Reference Comment
Δr188. ± 25.kJ/molIMRBLane, Sallans, et al., 1985gas phase; B
Quantity Value Units Method Reference Comment
Δr149. ± 25.kJ/molIMRBLane, Sallans, et al., 1985gas phase; B

Hydrogen anion + Iron pentacarbonyl = (Hydrogen anion • Iron pentacarbonyl)

By formula: H- + C5FeO5 = (H- • C5FeO5)

Quantity Value Units Method Reference Comment
Δr235. ± 13.kJ/molIMRBLane, Sallans, et al., 1985gas phase; B

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias

Data compiled as indicated in comments:
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

Quantity Value Units Method Reference Comment
Proton affinity (review)833.0kJ/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity798.5kJ/molN/AHunter and Lias, 1998HL

Ionization energy determinations

IE (eV) Method Reference Comment
7.897 ± 0.025PIPECONorwood, Ali, et al., 1990LL
8.4 ± 0.2EIClements and Sale, 1976LLK
7.98 ± 0.01PIDistefano, 1970RDSH
8.00 ± 0.08PELloyd and Schlag, 1969RDSH
7.96 ± 0.02PILloyd and Schlag, 1969RDSH
7.95 ± 0.03PIVilesov and Kurbatov, 1961RDSH
8.6PEHarada, Ohno, et al., 1983Vertical value; LBLHLM
8.60PEHead, Nixon, et al., 1975Vertical value; LLK
8.6PEBaerends, Oudshoorn, et al., 1975Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
FeC+23.6 ± 0.3?EIBidinosti and McIntyre, 1967RDSH
CFeO+12.404COPIPECOFieber-Erdmann, Holub-Krappe, et al., 1995LL
CFeO+12.677 ± 0.0524COPIPECONorwood, Ali, et al., 1990LL
COFe+14.0 ± 0.24COEIClements and Sale, 1976LLK
FeCO+11.5 ± 0.14COPIDistefano, 1970RDSH
FeCO+13.764COEIJunk and Svec, 1968RDSH
FeCO+13.39 ± 0.074COEIBidinosti and McIntyre, 1967RDSH
FeCO+12.9 ± 0.14COEIFoffani, Pignataro, et al., 1965RDSH
FeCO+14.0 ± 0.24COEIWinters and Kiser, 1964RDSH
C2Fe+29.9 ± 0.5?EIConard and Sridhar, 1978LLK
C2FeO+20.2 ± 0.5?EIConard and Sridhar, 1978LLK
C2FeO2+10.883COPIPECOFieber-Erdmann, Holub-Krappe, et al., 1995LL
C2FeO2+10.876 ± 0.0483COPIPECONorwood, Ali, et al., 1990LL
C2FeO2+11.0 ± 0.23COEIClements and Sale, 1976LLK
FeC2O2+10.7 ± 0.13COPIDistefano, 1970RDSH
FeC2O2+11.123COEIJunk and Svec, 1968RDSH
FeC2O2+11.27 ± 0.053COEIBidinosti and McIntyre, 1967RDSH
FeC2O2+10.92 ± 0.043COEIFoffani, Pignataro, et al., 1965RDSH
FeC2O2+11.8 ± 0.23COEIWinters and Kiser, 1964RDSH
C3O2Fe+18.2 ± 0.5?EIConard and Sridhar, 1978LLK
C3FeO3+9.692COPIPECOFieber-Erdmann, Holub-Krappe, et al., 1995LL
C3FeO3+9.763 ± 0.0382COPIPECONorwood, Ali, et al., 1990LL
C3FeO3+10.1 ± 0.22COEIClements and Sale, 1976LLK
FeC3O3+9.9 ± 0.12COPIDistefano, 1970RDSH
FeC3O3+10.042COEIJunk and Svec, 1968RDSH
FeC3O3+10.01 ± 0.042COEIBidinosti and McIntyre, 1967RDSH
FeC3O3+9.89 ± 0.052COEIFoffani, Pignataro, et al., 1965RDSH
FeC3O3+10.3 ± 0.32COEIWinters and Kiser, 1964RDSH
C4FeO4+8.86COPIPECOFieber-Erdmann, Holub-Krappe, et al., 1995LL
C4FeO4+8.670 ± 0.030COPIPECONorwood, Ali, et al., 1990LL
C4FeO4+9.3 ± 0.2COEIClements and Sale, 1976LLK
FeC4O4+8.8 ± 0.1COPIDistefano, 1970RDSH
FeC4O4+9.10COEIPignataro and Lossing, 1968RDSH
Fe+14.595COPIPECOFieber-Erdmann, Holub-Krappe, et al., 1995LL
Fe+14.383 ± 0.0675COPIPECONorwood, Ali, et al., 1990LL
Fe+16.2 ± 0.25COEIClements and Sale, 1976LLK
Fe+14.2 ± 0.15COPIDistefano, 1970RDSH
Fe+15.995COEIJunk and Svec, 1968RDSH
Fe+15.3 ± 0.15COEIBidinosti and McIntyre, 1967RDSH
Fe+14.7 ± 0.15COEIFoffani, Pignataro, et al., 1965RDSH
Fe+16.1 ± 0.25COEIWinters and Kiser, 1964RDSH
FeO+22.5 ± 0.5?EIConard and Sridhar, 1978LLK

Ion clustering data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: John E. Bartmess

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

C8H7O2- + Iron pentacarbonyl = (C8H7O2- • Iron pentacarbonyl)

By formula: C8H7O2- + C5FeO5 = (C8H7O2- • C5FeO5)

Quantity Value Units Method Reference Comment
Δr188. ± 25.kJ/molIMRBLane, Sallans, et al., 1985gas phase
Quantity Value Units Method Reference Comment
Δr149. ± 25.kJ/molIMRBLane, Sallans, et al., 1985gas phase

Chlorine anion + Iron pentacarbonyl = (Chlorine anion • Iron pentacarbonyl)

By formula: Cl- + C5FeO5 = (Cl- • C5FeO5)

Quantity Value Units Method Reference Comment
Δr58. ± 13.kJ/molIMRBLane, Sallans, et al., 1985gas phase
Quantity Value Units Method Reference Comment
Δr33. ± 13.kJ/molIMRBLane, Sallans, et al., 1985gas phase

Fluorine anion + Iron pentacarbonyl = (Fluorine anion • Iron pentacarbonyl)

By formula: F- + C5FeO5 = (F- • C5FeO5)

Quantity Value Units Method Reference Comment
Δr171. ± 8.4kJ/molIMRELane, Sallans, et al., 1985gas phase
Quantity Value Units Method Reference Comment
Δr144. ± 8.4kJ/molIMRELane, Sallans, et al., 1985gas phase

Hydrogen anion + Iron pentacarbonyl = (Hydrogen anion • Iron pentacarbonyl)

By formula: H- + C5FeO5 = (H- • C5FeO5)

Quantity Value Units Method Reference Comment
Δr235. ± 13.kJ/molIMRBLane, Sallans, et al., 1985gas phase

HO- + Iron pentacarbonyl = (HO- • Iron pentacarbonyl)

By formula: HO- + C5FeO5 = (HO- • C5FeO5)

Quantity Value Units Method Reference Comment
Δr254. ± 14.kJ/molIMRESunderlin and Squires, 1993gas phase; HO- transfer equilibrium to SO2. Structure thought ot be (CO)4Fe-CO2H
Δr237. ± 17.kJ/molIMRBLane, Sallans, et al., 1985gas phase
Quantity Value Units Method Reference Comment
Δr196. ± 17.kJ/molIMRBLane, Sallans, et al., 1985gas phase

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Martinho Simões
Martinho Simões, J.A., Private communication (see http://webbook.nist.gov/chemistry/om/). [all data]

Cotton, Fischer, et al., 1959
Cotton, F.A.; Fischer, A.K.; Wilkinson, G., J. Am. Chem. Soc., 1959, 81, 800. [all data]

Pedley and Rylance, 1977
Pedley, J.B.; Rylance, J., Computer Analysed Thermochemical Data: Organic and Organometallic Compounds, University of Sussex, Brigton, 1977. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds in Academic Press, New York, 1970. [all data]

PCR Inc., 1990
PCR Inc., Research Chemicals Catalog 1990-1991, PCR Inc., Gainesville, FL, 1990, 1. [all data]

Leadbetter and Spice, 1959
Leadbetter, A.J.; Spice, J.E., Can. J. Chem., 1959, 37, 1923. [all data]

Leadbetter and Spice, 1959, 2
Leadbetter, A.J.; Spice, J.E., THE THIRD LAW ENTROPY AND STRUCTURE OF IRON PENTACARBONYL, Can. J. Chem., 1959, 37, 11, 1923-1929, https://doi.org/10.1139/v59-281 . [all data]

Gilbert and Sulzmann, 1974
Gilbert, A.G.; Sulzmann, K.G.P., The Vapor Pressure of Iron Pentacarbonyl, J. Electrochem. Soc., 1974, 121, 6, 832-637, https://doi.org/10.1149/1.2401930 . [all data]

Valerga, 1970
Valerga, Antone J., Entropy and Related Thermodynamic Properties of Tetramethylgermane, J. Chem. Phys., 1970, 52, 9, 4545, https://doi.org/10.1063/1.1673681 . [all data]

Stull, 1947
Stull, Daniel R., Vapor Pressure of Pure Substances. Organic and Inorganic Compounds, Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022 . [all data]

Gilbert and Sulzmann, 1974, 2
Gilbert, A.G.; Sulzmann, K.G.P., The Vapor Pressure of Iron Pentacarbonyl, J. Electrochem. Soc., 1974, 121, 6, 832-834, https://doi.org/10.1149/1.2401930 . [all data]

Lewis, Golden, et al., 1984
Lewis, K.E.; Golden, D.M.; Smith, G.P., Organometallic bond dissociation energies: Laser pyrolysis of Fe(CO)5, Cr(CO)6, Mo(CO)6, and W(CO)6, J. Am. Chem. Soc., 1984, 106, 3905. [all data]

Smith and Laine, 1981
Smith, G.P.; Laine, R.M., Organometallic bond dissociation energies. Laser pyrolysis of Fe(CO)5, J. Phys. Chem., 1981, 85, 1620. [all data]

Miller and Grant, 1985
Miller, M.E.; Grant, E.R., J. Am. Chem. Soc., 1985, 107, 3386. [all data]

Walsh, 1986
Walsh, R., NATO Advanced Workshop on the Design, Activation and Transformation of Organometallics into Common and Exotic Materials, Montpellier, France, 1986. [all data]

Ray, Brandow, et al., 1988
Ray, U.; Brandow, S.L.; Bandukwalla, G.; Venkataraman, B.K.; Zhang, Z.; Vernon, M., J. Chem. Phys., 1988, 89, 4092. [all data]

Sunderlin, Wang, et al., 1992
Sunderlin, L.S.; Wang, D.; Squires, R.R., Metal Carbonyl Bond Strengths in Fe(CO)n- and Ni(CO)n-, J. Am. Chem. Soc., 1992, 114, 8, 2788, https://doi.org/10.1021/ja00034a004 . [all data]

Engelking and Lineberger, 1979
Engelking, P.C.; Lineberger, W.C., Laser photoelectron spectrometry of the negative ions of iron and iron carbonyls. Electron affinity determination for the series Fe(CO)n,n=0,1,2,3,4, J. Am. Chem. Soc., 1979, 101, 5569. [all data]

Compton and Stockdale, 1976
Compton, R.N.; Stockdale, J.A.D., Formation of gas phase negative ions in Fe(CO)5 and Ni(CO)4, Int. J. Mass Spectrom. Ion Phys., 1976, 22, 47. [all data]

Sunderlin and Squires, 1993
Sunderlin, L.S.; Squires, R.R., Energetics and Mechanism of the Thermal Decarboxylation of (CO)4FeCOOH- in the Gas Phase, J. Am. Chem. Soc., 1993, 115, 1, 337, https://doi.org/10.1021/ja00054a048 . [all data]

Lane, Sallans, et al., 1985
Lane, K.R.; Sallans, L.; Squires, R.R., Anion affinities of transition metal carbonyls. A thermochemical correlation for iron tetracarbonyl acyl negative ions, J. Am. Chem. Soc., 1985, 107, 5369. [all data]

Baev and Fedulova, 1983
Baev, A.K.; Fedulova, L.G., Russ. J. Phys. Chem., 1983, 57, 1159. [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Norwood, Ali, et al., 1990
Norwood, K.; Ali, A.; Flesch, G.D.; Ng, C.Y., A photoelectron-photoion coincidence study of Fe(CO)5, J. Am. Chem. Soc., 1990, 112, 7502. [all data]

Clements and Sale, 1976
Clements, P.J.; Sale, F.R., A mass spectrometric study of nickel tetracarbonyl, iron pentacarbonyl and binary mixtures of these compounds, Metall. Trans. B:, 1976, 7, 171. [all data]

Distefano, 1970
Distefano, G., Photoionization study of Fe(CO)5 and Ni(CO)4, J. Res. NBS, 1970, 74A, 233. [all data]

Lloyd and Schlag, 1969
Lloyd, D.R.; Schlag, E.W., Photoionization studies of metal carbonyls. I. Ionization potentials and the bonding in group VI metal hexacarbonyls and in mononuclear carbonyls and nitrosyl carbonyls of iron, cobalt, and nickel, Inorg. Chem., 1969, 8, 2544. [all data]

Vilesov and Kurbatov, 1961
Vilesov, F.I.; Kurbatov, B.L., Photoionization of esters and metal carbonyis in the gaseous phase, Dokl. Akad. Nauk SSSR, 1961, 140, 1364, In original 792. [all data]

Harada, Ohno, et al., 1983
Harada, Y.; Ohno, K.; Mutoh, H., Penning ionization electron spectroscopy of CO and Fe(CO)5. Study of electronic structure of Fe(CO)5 from electron distribution of individual molecular orbitals, J. Chem. Phys., 1983, 79, 3251. [all data]

Head, Nixon, et al., 1975
Head, R.A.; Nixon, J.F.; Sharp, G.J.; Clark, R.J., Photoelectron spectroscopic study of metal trifluorophosphine and hydridotrifluorophosphine complexes, J. Chem. Soc. Dalton Trans., 1975, 2054. [all data]

Baerends, Oudshoorn, et al., 1975
Baerends, E.J.; Oudshoorn, Ch.; Oskam, A., Photoelectron spectra and Xα calculations of iron pentacarbonyl and ethyleneiron tetracarbonyl, J. Electron Spectrosc. Relat. Phenom., 1975, 6, 259. [all data]

Bidinosti and McIntyre, 1967
Bidinosti, D.R.; McIntyre, N.S., Electron-impact study of some binary metal carbonyls, Can. J. Chem., 1967, 45, 641. [all data]

Fieber-Erdmann, Holub-Krappe, et al., 1995
Fieber-Erdmann, M.; Holub-Krappe, E.; Broker, G.; Dujardin, G.; Ding, A., Fragmentation psectroscopy of photoionized Fe(CO)5: a molecular model for a heterogeneous cluster, Int. J. Mass Spectrom. Ion Processes, 1995, 149/150, 513. [all data]

Junk and Svec, 1968
Junk, G.A.; Svec, H.J., Energetics of the ionization and dissociation of Ni(CO)4, Fe(CO)5, Cr(CO)6, Mo(CO)6 and W(CO)6, Z. Naturforsch., 1968, 23b, 1. [all data]

Foffani, Pignataro, et al., 1965
Foffani, A.; Pignataro, S.; Cantone, B.; Grasso, F., Mass spectra of metal hexacarbonyls, Z. Physik. Chem. (Frankfurt), 1965, 45, 79. [all data]

Winters and Kiser, 1964
Winters, R.E.; Kiser, R.W., A mass spectrometric investigation of nickel tetracarbonyl and iron pentacarbonyl, Inorg. Chem., 1964, 3, 699. [all data]

Conard and Sridhar, 1978
Conard, B.R.; Sridhar, R., Appearance potentials of ion fragments of iron pentacarbonyl, Can. J. Chem., 1978, 56, 2607. [all data]

Pignataro and Lossing, 1968
Pignataro, S.; Lossing, F.P., Thermal decomposition of organometallic compounds in the ion source of a mass spectrometer, J. Organometal. Chem., 1968, 11, 571. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, References