caesium fluoride
- Formula: CsF
- Molecular weight: 151.9038551
- IUPAC Standard InChIKey: XJHCXCQVJFPJIK-UHFFFAOYSA-M
- CAS Registry Number: 13400-13-0
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Cesium fluoride
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Data at other public NIST sites:
- Options:
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Gas phase ion energetics data, Constants of diatomic molecules, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -85.201 | kcal/mol | Review | Chase, 1998 | Data last reviewed in June, 1998 |
Quantity | Value | Units | Method | Reference | Comment |
S°gas,1 bar | 58.129 | cal/mol*K | Review | Chase, 1998 | Data last reviewed in June, 1998 |
Gas Phase Heat Capacity (Shomate Equation)
Cp° = A + B*t + C*t2 + D*t3 +
E/t2
H° − H°298.15= A*t + B*t2/2 +
C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 −
E/(2*t2) + G
Cp = heat capacity (cal/mol*K)
H° = standard enthalpy (kcal/mol)
S° = standard entropy (cal/mol*K)
t = temperature (K) / 1000.
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | 3000. to 6000. |
---|---|
A | 8.917670 |
B | 0.156401 |
C | -0.005727 |
D | 0.000489 |
E | -0.035801 |
F | -87.98590 |
G | 68.67249 |
H | -85.20010 |
Reference | Chase, 1998 |
Comment | Data last reviewed in June, 1998 |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, Constants of diatomic molecules, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | -129.98 | kcal/mol | Review | Chase, 1998 | Data last reviewed in June, 1998 |
Quantity | Value | Units | Method | Reference | Comment |
S°liquid,1 bar | 21.53 | cal/mol*K | Review | Chase, 1998 | Data last reviewed in June, 1998 |
Quantity | Value | Units | Method | Reference | Comment |
ΔfH°solid | -132.57 | kcal/mol | Review | Chase, 1998 | Data last reviewed in June, 1998 |
Quantity | Value | Units | Method | Reference | Comment |
S°solid | 21.10 | cal/mol*K | Review | Chase, 1998 | Data last reviewed in June, 1998 |
Liquid Phase Heat Capacity (Shomate Equation)
Cp° = A + B*t + C*t2 + D*t3 +
E/t2
H° − H°298.15= A*t + B*t2/2 +
C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 −
E/(2*t2) + G
Cp = heat capacity (cal/mol*K)
H° = standard enthalpy (kcal/mol)
S° = standard entropy (cal/mol*K)
t = temperature (K) / 1000.
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | 976. to 3000. |
---|---|
A | 17.70010 |
B | -1.802910×10-10 |
C | 1.007711×10-10 |
D | -1.750781×10-11 |
E | -5.463490×10-12 |
F | -135.2600 |
G | 42.95411 |
H | -129.9830 |
Reference | Chase, 1998 |
Comment | Data last reviewed in June, 1998 |
Solid Phase Heat Capacity (Shomate Equation)
Cp° = A + B*t + C*t2 + D*t3 +
E/t2
H° − H°298.15= A*t + B*t2/2 +
C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 −
E/(2*t2) + G
Cp = heat capacity (cal/mol*K)
H° = standard enthalpy (kcal/mol)
S° = standard entropy (cal/mol*K)
t = temperature (K) / 1000.
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | 298. to 976. |
---|---|
A | 10.81200 |
B | 5.405450 |
C | -1.324360 |
D | 0.483918 |
E | 0.009104 |
F | -135.9930 |
G | 32.67880 |
H | -132.5700 |
Reference | Chase, 1998 |
Comment | Data last reviewed in June, 1998 |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Constants of diatomic molecules, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
L - Sharon G. Lias
Data compiled as indicated in comments:
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 8.8 ± 0.1 | eV | N/A | N/A | L |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
9.0 | PE | Benson, Novak, et al., 1987 | LBLHLM |
9.0 ± 0.2 | PE | Smith and Pong, 1975 | LLK |
8.80 ± 0.10 | PE | Berkowitz, Dehmer, et al., 1973 | LLK |
9.68 ± 0.05 | PE | Timoshenko and Akopyan, 1974 | Vertical value; LLK |
9.7 | PE | Goodman, Allen, et al., 1974 | Vertical value; LLK |
Appearance energy determinations
Ion | AE (eV) | Other Products | Method | Reference | Comment |
---|---|---|---|---|---|
Cs+ | 8.8 ± 0.1 | F | PI | Berkowitz, 1969 | RDSH |
Constants of diatomic molecules
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Klaus P. Huber and Gerhard H. Herzberg
Data collected through November, 1976
Symbol | Meaning |
---|---|
State | electronic state and / or symmetry symbol |
Te | minimum electronic energy (cm-1) |
ωe | vibrational constant – first term (cm-1) |
ωexe | vibrational constant – second term (cm-1) |
ωeye | vibrational constant – third term (cm-1) |
Be | rotational constant in equilibrium position (cm-1) |
αe | rotational constant – first term (cm-1) |
γe | rotation-vibration interaction constant (cm-1) |
De | centrifugal distortion constant (cm-1) |
βe | rotational constant – first term, centrifugal force (cm-1) |
re | internuclear distance (Å) |
Trans. | observed transition(s) corresponding to electronic state |
ν00 | position of 0-0 band (units noted in table) |
State | Te | ωe | ωexe | ωeye | Be | αe | γe | De | βe | re | Trans. | ν00 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Several autoionizing states 1 at and above 12.1 eV Berkowitz, 1969, also observed in the electron energy loss spectra of Geiger and Pfeiffer, 1968. | ||||||||||||
↳Geiger and Pfeiffer, 1968; Berkowitz, 1969 | ||||||||||||
Continuous absorption with maximum at 47700 cm-1, preceded by diffuse absorption bands (fluctuation b.) in the region 43700 - 36900 cm-1. See note d of CsBr. | ||||||||||||
↳Barrow and Caunt, 1953 | ||||||||||||
X 1Σ+ | 0 | 352.56 2 | 1.615 2 | 0.18436969 | 0.00117652 3 | 2.0168E-07 4 | 3.1E-10 | 2.345351 5 | ||||
↳Baikov and Vasilevskii, 1967 | ||||||||||||
Microwave sp. | ||||||||||||
↳Honig, Stitch, et al., 1953; Veazey and Gordy, 1965; Honerjager and Tischer, 1973; Honerjager and Tischer, 1974 | ||||||||||||
Mol. beam el. reson. 6 | ||||||||||||
↳Trischka, 1948; Trischka, 1956; Graff and Runolfsson, 1965; English and Zorn, 1967; Hebert, Lovas, et al., 1968; Bennewitz, Haerten, et al., 1971 | ||||||||||||
Mol beam magn. reson. | ||||||||||||
↳Mehran, Brooks, et al., 1966 |
Notes
1 | Interpretation analogous to CsBr (see note c of CsBr). |
2 | Derived from the rotational constants Honerjager and Tischer, 1974; good agreement with infrared results Baikov and Vasilevskii, 1967. See also Ritchie and Lew, 1964. |
3 | αv= +1.18E-6(v+1/2)2 + 1.77E-8(v+1/2)3 Honerjager and Tischer, 1974. |
4 | Also higher order constants Honerjager and Tischer, 1974. |
5 | IR sp. |
6 | μel = [7.8478+0.07026(v+1/2) + 0.000195(v+1/2)2] D Hebert, Lovas, et al., 1968, Bennewitz, Haerten, et al., 1971; eqQ(133Cs) = +[1245.2-16.2(v+1/2)+0.3l(v+1/2)2] kHz English and Zorn, 1967, Bennewitz, Haerten, et al., 1971; gJ(v=0) = (-)0.06420 μN, for v ≠ 0 see Graff and Runolfsson, 1965, Honerjager and Tischer, 1973; see also Mehran, Brooks, et al., 1966. |
7 | Thermochemical value Brewer and Brackett, 1961; see also Bulewicz, Phillips, et al., 1961, Scheer and Fine, 1962, Stull and Prophet, 1971. |
8 | Adiabatic ionization potential from the photoelectron spectrum Berkowitz, Dehmer, et al., 1973; vertical I.P. at 9.60 eV. |
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Gas phase ion energetics data, Constants of diatomic molecules, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Chase, 1998
Chase, M.W., Jr.,
NIST-JANAF Themochemical Tables, Fourth Edition,
J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]
Benson, Novak, et al., 1987
Benson, J.M.; Novak, I.; Potts, A.W.,
Photoelectron spectroscopy of the caesium halides using synchrotron radiation,
J. Phys. B:, 1987, 20, 6257. [all data]
Smith and Pong, 1975
Smith, J.A.; Pong, W.,
Ultraviolet photoelectron spectra of cesium halides,
Phys. Rev. B:, 1975, 12, 5931. [all data]
Berkowitz, Dehmer, et al., 1973
Berkowitz, J.; Dehmer, J.L.; Walker, T.E.H.,
PES of high-temperature vapors. IV. The cesium halides. Effect of spin-orbit interaction on the photoelectron and mass spectra of the alkali halides,
J. Chem. Phys., 1973, 59, 3645. [all data]
Timoshenko and Akopyan, 1974
Timoshenko, M.M.; Akopyan, M.E.,
Photoelectron spectra of cesium halides,
High Energy Chem., 1974, 8, 175, In original 211. [all data]
Goodman, Allen, et al., 1974
Goodman, T.D.; Allen, J.D., Jr.; Cusachs, L.C.; Schweitzer, G.K.,
The photoelectron spectra of gaseous alkali halides,
J. Electron Spectrosc. Relat. Phenom., 1974, 3, 289. [all data]
Berkowitz, 1969
Berkowitz, J.,
Photoionization of high-temperature vapors. V. Cesium halides; chemical shift of autoionization,
J. Chem. Phys., 1969, 50, 3503. [all data]
Geiger and Pfeiffer, 1968
Geiger, J.; Pfeiffer, H.-C.,
Untersuchung der Anregung innerer Elektronen von Alkalihalogenidmolekulen im Energieverlustspektrum von 25 keV-Elektronen,
Z. Phys., 1968, 208, 105. [all data]
Barrow and Caunt, 1953
Barrow, R.F.; Caunt, A.D.,
The ultra-violet absorption spectra of some gaseous alkali-metal halides and the dissociation energy of fluorine,
Proc. R. Soc. London A, 1953, 219, 120. [all data]
Baikov and Vasilevskii, 1967
Baikov, V.I.; Vasilevskii, K.P.,
Infrared spectra of sodium, potassium, rubidium, and cesium fluoride vapors,
Opt. Spectrosc. Engl. Transl., 1967, 22, 198, In original 364. [all data]
Honig, Stitch, et al., 1953
Honig, A.; Stitch, M.L.; Mandel, M.,
Microwave spectra of CsF, CsCl, and CsBr,
Phys. Rev., 1953, 92, 901. [all data]
Veazey and Gordy, 1965
Veazey, S.E.; Gordy, W.,
Millimeter-wave molecular-beam spectroscopy: alkali fluorides,
Phys. Rev. A: Gen. Phys., 1965, 138, 1303. [all data]
Honerjager and Tischer, 1973
Honerjager, R.; Tischer, R.,
Hochtemperatur-Mikrowellenspektrometer fur Zeeman-Effekt-Messungen an diamagnetischen Molekeln. gJ - Faktor von TlF, CsF, CsCl, CsBr, CsI und Anistropie der magnetischen suszeptibilitat von TlF, CsF und CsCl,
Z. Naturforsch. A, 1973, 28, 458. [all data]
Honerjager and Tischer, 1974
Honerjager, R.; Tischer, R.,
Mikrowellenrotationsspektren der Molekeln CsF, CsCl, CsBr und CsI,
Z. Naturforsch. A, 1974, 29, 819. [all data]
Trischka, 1948
Trischka, J.W.,
Nuclear quadrupole interaction in CsF,
Phys. Rev., 1948, 74, 7, 718-727. [all data]
Trischka, 1956
Trischka, J.,
Electric dipole moments of the lower vibrational states of molecular CsF and CsCl,
J. Chem. Phys., 1956, 25, 784. [all data]
Graff and Runolfsson, 1965
Graff, G.; Runolfsson, O.,
Gleichzeitige Messung von Hyperfeinstruktur, Starkeffekt und Zeemaneffekt des 133Cs19F mit einer molekulstrahl-resonanzapparatur,
Z. Phys., 1965, 187, 140. [all data]
English and Zorn, 1967
English, T.C.; Zorn, J.C.,
Molecular beam measurement of the hyperfine structure of 133Cs19F,
J. Chem. Phys., 1967, 47, 3896. [all data]
Hebert, Lovas, et al., 1968
Hebert, A.J.; Lovas, F.J.; Melendres, C.A.; Hollowell, C.D.; Story, T.L., Jr.; Street, K., Jr.,
Dipole moments of some alkali halide molecules by the molecular beam electric resonance method,
J. Chem. Phys., 1968, 48, 2824. [all data]
Bennewitz, Haerten, et al., 1971
Bennewitz, H.G.; Haerten, R.; Klais, O.; Muller, G.,
Molecular-beam measurement of the electric dipole moment and the quadrupole coupling constant of CsF in vibrational states up to v = 8,
Chem. Phys. Lett., 1971, 9, 19. [all data]
Mehran, Brooks, et al., 1966
Mehran, F.; Brooks, R.A.; Ramsey, N.F.,
Rotational magnetic moments of alkali-halide molecules,
Phys. Rev., 1966, 141, 93. [all data]
Ritchie and Lew, 1964
Ritchie, R.K.; Lew, H.,
Infrared spectra of NaF and KF,
Can. J. Phys., 1964, 42, 43. [all data]
Brewer and Brackett, 1961
Brewer, L.; Brackett, E.,
The dissociation energies of gaseous alkali halides,
Chem. Rev., 1961, 61, 425. [all data]
Bulewicz, Phillips, et al., 1961
Bulewicz, E.M.; Phillips, L.F.; Sugden, T.M.,
Determination of dissociation constants and heats of formation of simple molecules by flame photometry. Part 8. Stabilities of the gaseous diatomic halides of certain metals,
Trans. Faraday Soc., 1961, 57, 921. [all data]
Scheer and Fine, 1962
Scheer, M.D.; Fine, J.,
Entropies, heats of sublimation, and dissociation energies of the cesium halides,
J. Chem. Phys., 1962, 36, 1647. [all data]
Stull and Prophet, 1971
Stull, D.R.; Prophet, H.,
JANAF Thermochemical Tables. Second Edition, Office of SRD (NSRDS-NBS 37), Washington, D.C., 1971, 0. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Gas phase ion energetics data, Constants of diatomic molecules, References
- Symbols used in this document:
AE Appearance energy IE (evaluated) Recommended ionization energy S°gas,1 bar Entropy of gas at standard conditions (1 bar) S°liquid,1 bar Entropy of liquid at standard conditions (1 bar) S°solid Entropy of solid at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔfH°solid Enthalpy of formation of solid at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.