Borane
- Formula: BH3
- Molecular weight: 13.835
- IUPAC Standard InChIKey: UORVGPXVDQYIDP-UHFFFAOYSA-N
- CAS Registry Number: 13283-31-3
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Gas phase thermochemistry data
Go To: Top, Reaction thermochemistry data, Vibrational and/or electronic energy levels, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | 106.69 | kJ/mol | Review | Chase, 1998 | Data last reviewed in December, 1964 |
Quantity | Value | Units | Method | Reference | Comment |
S°gas,1 bar | 187.88 | J/mol*K | Review | Chase, 1998 | Data last reviewed in December, 1964 |
Gas Phase Heat Capacity (Shomate Equation)
Cp° = A + B*t + C*t2 + D*t3 +
E/t2
H° − H°298.15= A*t + B*t2/2 +
C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 −
E/(2*t2) + G
Cp = heat capacity (J/mol*K)
H° = standard enthalpy (kJ/mol)
S° = standard entropy (J/mol*K)
t = temperature (K) / 1000.
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | 298. to 1300. | 1300. to 6000. |
---|---|---|
A | 22.88661 | 68.71969 |
B | 33.51995 | 7.326644 |
C | 10.25691 | -1.379298 |
D | -8.515151 | 0.090359 |
E | 0.238611 | -18.52081 |
F | 99.10683 | 49.59044 |
G | 206.5461 | 226.5423 |
H | 106.6920 | 106.6920 |
Reference | Chase, 1998 | Chase, 1998 |
Comment | Data last reviewed in December, 1964 | Data last reviewed in December, 1964 |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Vibrational and/or electronic energy levels, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: John E. Bartmess
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
By formula: H- + H3B = (H- • H3B)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 310. ± 12. | kJ/mol | Endo | Workman and Squires, 1988 | gas phase; From Endo threshold for hydride transfer to CO2 |
ΔrH° | 322. ± 8.4 | kJ/mol | Ther | Krivtsov, Titova, et al., 1977 | gas phase; value altered from reference due to conversion from electron convention to ion convention |
ΔrH° | 341.4 | kJ/mol | Ther | Altschuller, 1955 | gas phase |
By formula: H4B- + H3B = (H4B- • H3B)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 165. ± 5.0 | kJ/mol | CIDT | Workman and Squires, 1988 | gas phase; CID threshold in Ar target |
By formula: CN- + H3B = (CN- • H3B)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 256. ± 8.8 | kJ/mol | Endo | Workman and Squires, 1988 | gas phase |
H2B- + =
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1723.0 | kJ/mol | N/A | Bartmess and Hinde, 2005 | gas phase |
Vibrational and/or electronic energy levels
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Marilyn E. Jacox
State: X
Vib. sym. |
No. | Approximate type of mode |
cm-1 | Med. | Method | References | |
---|---|---|---|---|---|---|---|
a2 | 2 | OPLA | 1147.50 | gas | DL IR | Kawaguchi, Butler, et al., 1987 Kawaguchi, 1994 | |
2 | OPLA | 1129.2 | Ar | IR | Kaldor and Porter, 1971 Tague and Andrews, 1994 | ||
e' | 3 | BH3 stretch | 2601.57 | gas | IR | Kawaguchi, 1992 | |
3 | BH3 stretch | 2587.3 | Ar | IR | Tague and Andrews, 1994 | ||
4 | Deformation | 1196.7 | gas | IR | Kawaguchi, 1994 | ||
Additional references: Jacox, 1994, page 124; Jacox, 1998, page 212
References
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Vibrational and/or electronic energy levels, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Chase, 1998
Chase, M.W., Jr.,
NIST-JANAF Themochemical Tables, Fourth Edition,
J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]
Workman and Squires, 1988
Workman, D.B.; Squires, R.R.,
Hydride Binding Energies of Boranes,
Inorg. Chem., 1988, 27, 11, 1846, https://doi.org/10.1021/ic00284a003
. [all data]
Krivtsov, Titova, et al., 1977
Krivtsov, N.V.; Titova, K.V.; Rosolovskii, V.Ya.,
Thermochemical study of complex borates,
Russ. J. Inorg. Chem., 1977, 22, 374. [all data]
Altschuller, 1955
Altschuller, A.P.,
Lattice Energies and Related Thermodynamic Properties of the Alkali Metal Borohydrides and of the Borohydride Ion,
J. Am. Chem. Soc., 1955, 77, 21, 5455, https://doi.org/10.1021/ja01626a001
. [all data]
Bartmess and Hinde, 2005
Bartmess, J.E.; Hinde, R.J.,
The Gas Phase Acidities of the Elemental Hydrides are Functions of Bond Lengths and Electronegativity,
Can. J. Chem., 2005, 83, 11, 2005-2012, https://doi.org/10.1139/v05-218
. [all data]
Kawaguchi, Butler, et al., 1987
Kawaguchi, K.; Butler, J.E.; Yamada, C.; Bauer, S.H.; Minowa, T.; Kanamori, H.; Hirota, E.,
Observation of the gas-phase infrared spectrum of BH3,
J. Chem. Phys., 1987, 87, 5, 2438, https://doi.org/10.1063/1.453135
. [all data]
Kawaguchi, 1994
Kawaguchi, K.,
Fourier transform infrared spectroscopy of the BH,
Can. J. Phys., 1994, 72, 11-12, 925, https://doi.org/10.1139/p94-122
. [all data]
Kaldor and Porter, 1971
Kaldor, A.; Porter, R.F.,
Infrared spectra of the pyrolysis products of borane carbonyl in an argon matrix,
J. Am. Chem. Soc., 1971, 93, 9, 2140, https://doi.org/10.1021/ja00738a008
. [all data]
Tague and Andrews, 1994
Tague, T.J., Jr.; Andrews, L.,
Reactions of Pulsed-Laser Evaporated Boron Atoms with Hydrogen. Infrared Spectra of Boron Hydride Intermediate Species in Solid Argon,
J. Am. Chem. Soc., 1994, 116, 11, 4970, https://doi.org/10.1021/ja00090a048
. [all data]
Kawaguchi, 1992
Kawaguchi, K.,
Fourier transform infrared spectroscopy of the BH3 ν3 band,
J. Chem. Phys., 1992, 96, 5, 3411, https://doi.org/10.1063/1.461942
. [all data]
Jacox, 1994
Jacox, M.E.,
Vibrational and electronic energy levels of polyatomic transient molecules, American Chemical Society, Washington, DC, 1994, 464. [all data]
Jacox, 1998
Jacox, M.E.,
Vibrational and electronic energy levels of polyatomic transient molecules: supplement A,
J. Phys. Chem. Ref. Data, 1998, 27, 2, 115-393, https://doi.org/10.1063/1.556017
. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Vibrational and/or electronic energy levels, References
- Symbols used in this document:
S°gas,1 bar Entropy of gas at standard conditions (1 bar) ΔfH°gas Enthalpy of formation of gas at standard conditions ΔrH° Enthalpy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.