Lead oxide
- Formula: OPb
- Molecular weight: 223.2
- IUPAC Standard InChIKey: YEXPOXQUZXUXJW-UHFFFAOYSA-N
- CAS Registry Number: 1317-36-8
- Chemical structure:
This structure is also available as a 2d Mol file - Other names: lead monoxide
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Gas phase ion energetics data, IR Spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | 16.80 | kcal/mol | Review | Chase, 1998 | Data last reviewed in December, 1971 |
Quantity | Value | Units | Method | Reference | Comment |
S°gas,1 bar | 57.357 | cal/mol*K | Review | Chase, 1998 | Data last reviewed in December, 1971 |
Gas Phase Heat Capacity (Shomate Equation)
Cp° = A + B*t + C*t2 + D*t3 +
E/t2
H° − H°298.15= A*t + B*t2/2 +
C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 −
E/(2*t2) + G
Cp = heat capacity (cal/mol*K)
H° = standard enthalpy (kcal/mol)
S° = standard entropy (cal/mol*K)
t = temperature (K) / 1000.
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | 2500. to 6000. | 2500. to 6000. |
---|---|---|
A | 8.608210 | 8.608210 |
B | 0.490668 | 0.490668 |
C | -0.210134 | -0.210134 |
D | 0.038887 | 0.038887 |
E | -0.090183 | -0.090183 |
F | 13.91060 | 13.91060 |
G | 67.13031 | 67.13031 |
H | 16.80000 | 16.80000 |
Reference | Chase, 1998 | Chase, 1998 |
Comment | Data last reviewed in December, 1971 | Data last reviewed in December, 1971 |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, IR Spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | -48.339 | kcal/mol | Review | Chase, 1998 | Data last reviewed in December, 1971 |
Quantity | Value | Units | Method | Reference | Comment |
S°liquid,1 bar | 17.54 | cal/mol*K | Review | Chase, 1998 | Data last reviewed in December, 1971 |
Quantity | Value | Units | Method | Reference | Comment |
ΔfH°solid | -52.440 | kcal/mol | Review | Chase, 1998 | red phase; Data last reviewed in December, 1971 |
Liquid Phase Heat Capacity (Shomate Equation)
Cp° = A + B*t + C*t2 + D*t3 +
E/t2
H° − H°298.15= A*t + B*t2/2 +
C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 −
E/(2*t2) + G
Cp = heat capacity (cal/mol*K)
H° = standard enthalpy (kcal/mol)
S° = standard entropy (cal/mol*K)
t = temperature (K) / 1000.
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | 1159. to 2500. |
---|---|
A | 15.53590 |
B | -0.000795 |
C | 0.000411 |
D | -0.000071 |
E | -0.000073 |
F | -52.97101 |
G | 36.33819 |
H | -48.33870 |
Reference | Chase, 1998 |
Comment | Data last reviewed in December, 1971 |
Solid Phase Heat Capacity (Shomate Equation)
Cp° = A + B*t + C*t2 + D*t3 +
E/t2
H° − H°298.15= A*t + B*t2/2 +
C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 −
E/(2*t2) + G
Cp = heat capacity (cal/mol*K)
H° = standard enthalpy (kcal/mol)
S° = standard entropy (cal/mol*K)
t = temperature (K) / 1000.
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | 298. to 1159. | 298. to 762. | 762. to 1159. |
---|---|---|---|
A | 12.34500 | 1.784315 | 11.43963 |
B | 2.509221 | 42.92208 | 3.000670 |
C | -0.643847 | -55.81955 | -0.000433 |
D | 0.420395 | 26.10110 | 0.000099 |
E | -0.188269 | 0.055887 | 0.000048 |
F | -56.85961 | -54.25024 | -56.12237 |
G | 29.00060 | 7.778347 | 28.42017 |
H | -52.44011 | -52.44001 | -52.44001 |
Reference | Chase, 1998 | Chase, 1998 | Chase, 1998 |
Comment | red phase; Data last reviewed in December, 1971 | yellow phase; Data last reviewed in December, 1971 | yellow phase; Data last reviewed in December, 1971 |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, IR Spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
L - Sharon G. Lias
Data compiled as indicated in comments:
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
B - John E. Bartmess
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 9.1 ± 0.1 | eV | N/A | N/A | L |
Electron affinity determinations
EA (eV) | Method | Reference | Comment |
---|---|---|---|
0.7220 ± 0.0060 | LPES | Polak, Gilles, et al., 1993 | B |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
9.4 ± 0.3 | EI | Makarov and Zbezhneva, 1993 | LL |
9.5 ± 0.4 | EI | Semenikhin, Rykov, et al., 1983 | LBLHLM |
9.08 ± 0.10 | EI | Zmbov and Miletic, 1978 | LLK |
9.1 ± 0.5 | EI | Uy and Drowart, 1969 | RDSH |
9.0 ± 0.5 | EI | Drowart, Colin, et al., 1965 | RDSH |
Appearance energy determinations
Ion | AE (eV) | Other Products | Method | Reference | Comment |
---|---|---|---|---|---|
Pb+ | 11. ± 1. | O | EI | Uy and Drowart, 1969 | RDSH |
IR Spectrum
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Coblentz Society, Inc.
Condensed Phase Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Notice: Except where noted, spectra from this collection were measured on dispersive instruments, often in carefully selected solvents, and hence may differ in detail from measurements on FTIR instruments or in other chemical environments. More information on the manner in which spectra in this collection were collected can be found here.
Notice: Concentration information is not available for this spectrum and, therefore, molar absorptivity values cannot be derived.
Additional Data
View scan of original (hardcopy) spectrum.
View image of digitized spectrum (can be printed in landscape orientation).
View spectrum image in SVG format.
Download spectrum in JCAMP-DX format.
Owner | COBLENTZ SOCIETY Collection (C) 2018 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | DESOTO CHEMICAL COATINGS, INC. |
Source reference | COBLENTZ NO. 4712 |
Date | Not specified, most likely prior to 1970 |
Name(s) | LITHARGE |
State | SOLID (0.8 mg / 300 mg CsI DISC) |
Instrument | Not specified, most likely a grating spectrometer. |
Resolution | 4 |
Sampling procedure | TRANSMISSION |
Data processing | DIGITIZED BY NIST FROM HARD COPY (FROM TWO SEGMENTS) |
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Gas phase ion energetics data, IR Spectrum, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Chase, 1998
Chase, M.W., Jr.,
NIST-JANAF Themochemical Tables, Fourth Edition,
J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]
Polak, Gilles, et al., 1993
Polak, M.L.; Gilles, M.K.; Gunion, R.F.; Lineberger, W.C.,
Photoelectron Spectroscopy of PbO-,
Chem. Phys. Lett., 1993, 210, 1-3, 55, https://doi.org/10.1016/0009-2614(93)89099-4
. [all data]
Makarov and Zbezhneva, 1993
Makarov, A.V.; Zbezhneva, S.G.,
Use of high-temperature mass spectrometry for analysis of the vapour phase of some substances used in film deposition,
Vysokochist. Veshchestva, 1993, 1, 124. [all data]
Semenikhin, Rykov, et al., 1983
Semenikhin, V.I.; Rykov, A.N.; Sidorov, L.N.,
Mass spectrometric study of the evaporation of lead monoxide,
Russ. J. Phys. Chem., 1983, 47, 1008, In original 1663. [all data]
Zmbov and Miletic, 1978
Zmbov, K.F.; Miletic, M.,
Mass spectrometric determination of the dissociation energy of PbO2 and ionization potentials of PbO and PbO2 molecules,
Adv. Mass Spectrom., 1978, 7, 573. [all data]
Uy and Drowart, 1969
Uy, O.M.; Drowart, J.,
Mass spectrometric determination of the dissociation energies of the molecules BiO, BiS, BiSe and BiTe,
J. Chem. Soc. Faraday Trans., 1969, 65, 3221. [all data]
Drowart, Colin, et al., 1965
Drowart, J.; Colin, R.; Exsteen, G.,
Mass spectrometric study of the vaporization of lead monoxide. Dissociation energy of PbO,
J. Chem. Soc. Faraday Trans., 1965, 61, 1376. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Gas phase ion energetics data, IR Spectrum, References
- Symbols used in this document:
AE Appearance energy EA Electron affinity IE (evaluated) Recommended ionization energy S°gas,1 bar Entropy of gas at standard conditions (1 bar) S°liquid,1 bar Entropy of liquid at standard conditions (1 bar) ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔfH°solid Enthalpy of formation of solid at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.