Chromium hexacarbonyl


Reaction thermochemistry data

Go To: Top, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: José A. Martinho Simões

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

Chromium hexacarbonyl (solution) + Heptane (solution) = C12H16CrO5 (solution) + Carbon monoxide (solution)

By formula: C6CrO6 (solution) + C7H16 (solution) = C12H16CrO5 (solution) + CO (solution)

Quantity Value Units Method Reference Comment
Δr113. ± 3.kJ/molAVGN/AAverage of 13 values; Individual data points

Chromium hexacarbonyl (solution) = C5CrO5 (solution) + Carbon monoxide (solution)

By formula: C6CrO6 (solution) = C5CrO5 (solution) + CO (solution)

Quantity Value Units Method Reference Comment
Δr168.2 ± 2.5kJ/molKinSGraham and Angelici, 1967solvent: Decalin; The reaction enthalpy and entropy were identified with the enthalpy and entropy of activation for the reaction of Cr(CO)6(solution) with PBu3(solution).
Δr159.4kJ/molKinSWerner and Prinz, 1966solvent: n-Decane+cyclohexane mixture; The reaction enthalpy and entropy were identified with the enthalpy and entropy of activation for the reactions of Cr(CO)6(solution) with a phosphine and an amine. The results were quoted from Graham and Angelici, 1967.

Chromium hexacarbonyl (g) = C5CrO5 (g) + Carbon monoxide (g)

By formula: C6CrO6 (g) = C5CrO5 (g) + CO (g)

Quantity Value Units Method Reference Comment
Δr155. ± 21.kJ/molKinGFletcher and Rosenfeld, 1988 
Δr154. ± 13.kJ/molLPHPLewis, Golden, et al., 1984Temperature range: 740-820 K. The reaction enthalpy at 298 K relies on an activation energy of 147.7 kJ/mol and assumes a negligible activation barrier for product recombination.
Δr161.9kJ/molKinGPajaro, Calderazzo, et al., 1960Please also see Graham and Angelici, 1967. The reaction enthalpy and entropy were identified with the enthalpy and entropy of activation for the reaction of Cr(CO)6(g) with CO(g) Pajaro, Calderazzo, et al., 1960. The results were quoted from Graham and Angelici, 1967.

C10H5CrNO5 (solution) + Carbon monoxide (solution) = Chromium hexacarbonyl (solution) + 1,3-Diazine (solution)

By formula: C10H5CrNO5 (solution) + CO (solution) = C6CrO6 (solution) + C4H4N2 (solution)

Quantity Value Units Method Reference Comment
Δr-61.9kJ/molKinSWovkulich and Atwood, 1980solvent: Hexane; The data rely on the enthalpy and entropy of activation for the forward reaction, 106.3 ± 4.6 kJ/mol and 13.0±14.6 J/(mol K) Dennenberg and Darensbourg, 1972, and also on the enthalpy and entropy of activation for the Cr-CO dissociation in Cr(CO)6, 168.2 ± 2.5 kJ/mol and 94.6±6.3 J/(mol K) Graham and Angelici, 1967. The latter data were obtained in decalin

Chromium hexacarbonyl (cr) = 6Carbon monoxide (g) + chromium (cr)

By formula: C6CrO6 (cr) = 6CO (g) + Cr (cr)

Quantity Value Units Method Reference Comment
Δr266. ± 4.kJ/molTD-HFCAl-Takhin, Connor, et al., 1984 
Δr314.9 ± 0.9kJ/molTD-HZCPittam, Pilcher, et al., 1975Please also see Pedley and Rylance, 1977 and Tel'noi and Rabinovich, 1977.
Δr269.4 ± 4.7kJ/molTD-HFCConnor, Skinner, et al., 1972 

Pentane (solution) + Chromium hexacarbonyl (solution) = C10H12CrO5 (solution) + Carbon monoxide (solution)

By formula: C5H12 (solution) + C6CrO6 (solution) = C10H12CrO5 (solution) + CO (solution)

Quantity Value Units Method Reference Comment
Δr117. ± 11.kJ/molPACMorse, Parker, et al., 1989solvent: Pentane; The reaction enthalpy relies on 0.67 for the quantum yield of CO dissociation

C10H5CrNO5 (cr) + Carbon monoxide (g) = Chromium hexacarbonyl (g) + 1,3-Diazine (g)

By formula: C10H5CrNO5 (cr) + CO (g) = C6CrO6 (g) + C4H4N2 (g)

Quantity Value Units Method Reference Comment
Δr75. ± 6.kJ/molDSCDaamen, van der Poel, et al., 1979 

Chromium hexacarbonyl (g) = 3Carbon monoxide (g) + C3CrO3 (g)

By formula: C6CrO6 (g) = 3CO (g) + C3CrO3 (g)

Quantity Value Units Method Reference Comment
Δr393. ± 42.kJ/molMBPSVenkataraman, Hou, et al., 1990 

Gas phase ion energetics data

Go To: Top, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias

Data compiled as indicated in comments:
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

Quantity Value Units Method Reference Comment
Proton affinity (review)739.2kJ/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity714.6kJ/molN/AHunter and Lias, 1998HL

Ionization energy determinations

IE (eV) Method Reference Comment
8.2PECooper, Green, et al., 1987LBLHLM
8.24 ± 0.07PIPECODas, Nishimura, et al., 1985LBLHLM
8.1PEHubbard and Lichtenberger, 1982LBLHLM
8.42 ± 0.03EIMichels, Flesch, et al., 1980LLK
8.30 ± 0.05EIPaetzold and Abd-el-Mottaleb, 1975LLK
8.20EIMuller, Fenderl, et al., 1971LLK
8.2 ± 0.1EIFischer, Kreiter, et al., 1971LLK
8.142 ± 0.017PILloyd and Schlag, 1969RDSH
8.40PEHubbard and Lichtenberger, 1982Vertical value; LBLHLM
8.40PEEnglish, Plowman, et al., 1979Vertical value; LLK
8.41PEBlock and Fenske, 1977Vertical value; LLK
8.40PEHead, Nixon, et al., 1975Vertical value; LLK
8.40 ± 0.02PEHigginson, Lloyd, et al., 1973Vertical value; LLK
8.40PECaulton and Fenske, 1968Vertical value; Unpublished result of W.C. Price; RDSH

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
CrC+23.2 ± 0.3?EIBidinosti and McIntyre, 1967RDSH
CCrO+12.80 ± 0.105COPIPECODas, Nishimura, et al., 1985LBLHLM
CCrO+14.03 ± 0.045COEIMichels, Flesch, et al., 1980LLK
CrCO+14.125COEIJunk and Svec, 1968RDSH
CrCO+13.6 ± 0.25COEIBidinosti and McIntyre, 1967RDSH
CrCO+14.9 ± 0.25COEIWinters and Kiser, 1965RDSH
CrCO+13.3 ± 0.25COEIFoffani, Pignataro, et al., 1965RDSH
C2CrO2+11.44 ± 0.134COPIPECODas, Nishimura, et al., 1985LBLHLM
C2CrO2+12.51 ± 0.044COEIMichels, Flesch, et al., 1980LLK
CrC2O2+12.564COEIJunk and Svec, 1968RDSH
CrC2O2+11.9 ± 0.14COEIBidinosti and McIntyre, 1967RDSH
CrC2O2+13.1 ± 0.24COEIWinters and Kiser, 1965RDSH
CrC2O2+11.6 ± 0.24COEIFoffani, Pignataro, et al., 1965RDSH
C3CrO3+10.78 ± 0.143COPIPECODas, Nishimura, et al., 1985LBLHLM
C3CrO3+11.35 ± 0.033COEIMichels, Flesch, et al., 1980LLK
CrC3O3+~10.423COEIJunk and Svec, 1968RDSH
CrC3O3+11.1 ± 0.23COEIBidinosti and McIntyre, 1967RDSH
CrC3O3+10.62 ± 0.153COEIFoffani, Pignataro, et al., 1965RDSH
C4CrO4+9.95 ± 0.102COPIPECODas, Nishimura, et al., 1985LBLHLM
C4CrO4+10.45 ± 0.032COEIMichels, Flesch, et al., 1980LLK
CrC4O4+~9.522COEIJunk and Svec, 1968RDSH
CrC4O4+9.6 ± 0.12COEIBidinosti and McIntyre, 1967RDSH
CrC4O4+9.97 ± 0.042COEIFoffani, Pignataro, et al., 1965RDSH
C5CrO5+9.73 ± 0.24COPIPECODas, Nishimura, et al., 1985LBLHLM
C5CrO5+9.85 ± 0.03COEIMichels, Flesch, et al., 1980LLK
CrC5O5+~9.32COEIJunk and Svec, 1968RDSH
CrC5O5+9.0 ± 0.1COEIBidinosti and McIntyre, 1967RDSH
CrC5O5+9.17 ± 0.04COEIFoffani, Pignataro, et al., 1965RDSH
Cr+14.13 ± 0.116COPIPECODas, Nishimura, et al., 1985LBLHLM
Cr+15.36 ± 0.036COEIMichels, Flesch, et al., 1980LLK
Cr+17.076COEIJunk and Svec, 1968RDSH
Cr+15.1 ± 0.26COEIBidinosti and McIntyre, 1967RDSH
Cr+17.7 ± 0.36COEIWinters and Kiser, 1965RDSH
Cr+14.7 ± 0.16COEIFoffani, Pignataro, et al., 1965RDSH
CrO+23.5 ± 0.3?EIBidinosti and McIntyre, 1967RDSH

References

Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Graham and Angelici, 1967
Graham, J.R.; Angelici, R.J., Inorg. Chem., 1967, 6, 2082. [all data]

Werner and Prinz, 1966
Werner, H.; Prinz, R., Chem. Ber., 1966, 99, 3582. [all data]

Fletcher and Rosenfeld, 1988
Fletcher, R.T.; Rosenfeld, R.N., Recombination of Cr(CO)n with CO: Kinetics and Bond Dissociation Energies, J. Am. Chem. Soc., 1988, 110, 7, 2097, https://doi.org/10.1021/ja00215a014 . [all data]

Lewis, Golden, et al., 1984
Lewis, K.E.; Golden, D.M.; Smith, G.P., Organometallic bond dissociation energies: Laser pyrolysis of Fe(CO)5, Cr(CO)6, Mo(CO)6, and W(CO)6, J. Am. Chem. Soc., 1984, 106, 3905. [all data]

Pajaro, Calderazzo, et al., 1960
Pajaro, G.; Calderazzo, F.; Ercoli, R., Gazz. Chim. Ital., 1960, 90, 1486. [all data]

Wovkulich and Atwood, 1980
Wovkulich, M.J.; Atwood, J.D., J. Organometal. Chem., 1980, 184, 77. [all data]

Dennenberg and Darensbourg, 1972
Dennenberg, R.J.; Darensbourg, D.J., Inorg. Chem., 1972, 11, 72. [all data]

Al-Takhin, Connor, et al., 1984
Al-Takhin, G.; Connor, J.A.; Skinner, H.A.; Zaharani-Moettar, M.T., J. Organomet. Chem., 1984, 260, 189. [all data]

Pittam, Pilcher, et al., 1975
Pittam, D.A.; Pilcher, G.; Barnes, D.S.; Skinner, H.A.; Todd, D., J. Less-Common Met., 1975, 42, 217. [all data]

Pedley and Rylance, 1977
Pedley, J.B.; Rylance, J., Computer Analysed Thermochemical Data: Organic and Organometallic Compounds, University of Sussex, Brigton, 1977. [all data]

Tel'noi and Rabinovich, 1977
Tel'noi, V.I.; Rabinovich, I.B., Russ. Chem. Rev., 1977, 46, 689. [all data]

Connor, Skinner, et al., 1972
Connor, J.A.; Skinner, H.A.; Virmani, Y., Microcalorimetric studies. Thermal decomposition and iodination of metal carbonyls, J. Chem. Soc., Faraday Trans. 1, 1972, 68, 0, 1754, https://doi.org/10.1039/f19726801754 . [all data]

Morse, Parker, et al., 1989
Morse, J.M., Jr.; Parker, G.H.; Burkey, T.J., Organometallics, 1989, 8, 2471. [all data]

Daamen, van der Poel, et al., 1979
Daamen, H.; van der Poel, H.; Stufkens, D.J.; Oskam, A., Thermochim. Acta, 1979, 34, 69. [all data]

Venkataraman, Hou, et al., 1990
Venkataraman, B.; Hou, H.; Zhang, Z.; Chen, S.; Bandukwalla, G.; Vernon, M., J. Chem. Phys., 1990, 92, 5338. [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Cooper, Green, et al., 1987
Cooper, G.; Green, J.C.; Payne, M.; Dobson, B.R.; Hillier, I.H., Photoelectron spectroscopy with variable photon energy: A study of the metal hexacarbonyls, M(CO)6, Where M = CR, MO, and W., J. Am. Chem. Soc., 1987, 109, 3836. [all data]

Das, Nishimura, et al., 1985
Das, P.R.; Nishimura, T.; Meisels, G.G., Fragmentation of energy-selected hexacarbonylchromium ion, J. Phys. Chem., 1985, 89, 2808. [all data]

Hubbard and Lichtenberger, 1982
Hubbard, J.L.; Lichtenberger, D.L., Vibrational fine structure in the valence ionizations of transition-metal hexacarbonyls: New experimental indication of metal-to-carbonyl π bonding, J. Am. Chem. Soc., 1982, 104, 2132. [all data]

Michels, Flesch, et al., 1980
Michels, G.D.; Flesch, G.D.; Svec, H.J., Comparative mass spectrometry of the group 6B hexacarbonyls and pentacarbonyl thiocarbonyls, Inorg. Chem., 1980, 19, 479. [all data]

Paetzold and Abd-el-Mottaleb, 1975
Paetzold, R.; Abd-el-Mottaleb, S., Correlative studies of some spectroscopic and bonding parameters in octahedrally coordinated metal carbonyl complexes, J. Mol. Struct., 1975, 24, 357. [all data]

Muller, Fenderl, et al., 1971
Muller, J.; Fenderl, K.; Mertschenk, B., Die Donor-Akzeptor-Eigenschaften des Liganden Trifluorphosphin in Ubergangsmetallkomplexen, Chem. Ber., 1971, 104, 700. [all data]

Fischer, Kreiter, et al., 1971
Fischer, E.O.; Kreiter, C.G.; Kollmeier, H.J.; Muller, J.; Fischer, R.D., Ubergangsmetall- carben-komplexe. XXVII. Ringsubstituierte (methoxyphenylcarben)-pentacarbonylchrom(0)- komplexe, J. Organomet. Chem., 1971, 28, 237. [all data]

Lloyd and Schlag, 1969
Lloyd, D.R.; Schlag, E.W., Photoionization studies of metal carbonyls. I. Ionization potentials and the bonding in group VI metal hexacarbonyls and in mononuclear carbonyls and nitrosyl carbonyls of iron, cobalt, and nickel, Inorg. Chem., 1969, 8, 2544. [all data]

English, Plowman, et al., 1979
English, A.M.; Plowman, K.R.; Butler, I.S.; Diemann, E.; Muller, A., He(I) photoelectron spectra of pentacarbonyl(selenocarbonyl)chromium(0) related complexes, Inorg. Chim. Acta, 1979, 32, 113. [all data]

Block and Fenske, 1977
Block, T.F.; Fenske, R.F., A photoelectron spectroscopic study of some pentacarbonylchromium carbene complexes, J. Am. Chem. Soc., 1977, 99, 4321. [all data]

Head, Nixon, et al., 1975
Head, R.A.; Nixon, J.F.; Sharp, G.J.; Clark, R.J., Photoelectron spectroscopic study of metal trifluorophosphine and hydridotrifluorophosphine complexes, J. Chem. Soc. Dalton Trans., 1975, 2054. [all data]

Higginson, Lloyd, et al., 1973
Higginson, B.R.; Lloyd, D.R.; Burroughs, P.; Gibson, D.M.; Orchard, A.F., Photoelectron studies of metal carbonyls. Part 2. The valence region photoelectron spectra of the Group VIA hexacarbonyls, J. Chem. Soc. Faraday Trans. 2, 1973, 1659. [all data]

Caulton and Fenske, 1968
Caulton, K.G.; Fenske, R.F., Electronic structure and bonding in V(CO)6-, Cr(CO)6, and Mn(CO)6+, Inorg. Chem., 1968, 7, 1273. [all data]

Bidinosti and McIntyre, 1967
Bidinosti, D.R.; McIntyre, N.S., Electron-impact study of some binary metal carbonyls, Can. J. Chem., 1967, 45, 641. [all data]

Junk and Svec, 1968
Junk, G.A.; Svec, H.J., Energetics of the ionization and dissociation of Ni(CO)4, Fe(CO)5, Cr(CO)6, Mo(CO)6 and W(CO)6, Z. Naturforsch., 1968, 23b, 1. [all data]

Winters and Kiser, 1965
Winters, R.E.; Kiser, R.W., Mass spectrometric studies of chromium, molybdenum, and tungsten hexacarbonyls, Inorg. Chem., 1965, 4, 157. [all data]

Foffani, Pignataro, et al., 1965
Foffani, A.; Pignataro, S.; Cantone, B.; Grasso, F., Mass spectra of metal hexacarbonyls, Z. Physik. Chem. (Frankfurt), 1965, 45, 79. [all data]


Notes

Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, References