Pyrene

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas225.5 ± 2.5kJ/molReviewRoux, Temprado, et al., 2008There are sufficient literature values to make a qualified recommendation where the suggested value is in good agreement with values predicted using thermochemical cycles or from reliable estimates. In general, the evaluated uncertainty limits are on the order of (2 to 4) kJ/mol.; DRB
Δfgas225.7 ± 1.3kJ/molCcrSmith, Stewart, et al., 1980ALS
Δfgas214.9kJ/molN/AWestrum and Wong, 1967Value computed using ΔfHsolid° value of 114.7±0.4 kj/mol from Westrum and Wong, 1967 and ΔsubH° value of 100.2 kj/mol from Smith, Stewart, et al., 1980.; DRB
Δfgas214.9kJ/molN/ARichardson and Parks, 1939Value computed using ΔfHsolid° value of 114.7±3.6 kj/mol from Richardson and Parks, 1939 and ΔsubH° value of 100.2 kj/mol from Smith, Stewart, et al., 1980.; DRB

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
40.3050.Dorofeeva O.V., 1988These functions are also reproduced in the reference book [ Frenkel M., 1994]. Recommended entropy and heat capacity values are in close agreement with other statistically calculated values [ Smith N.K., 1980] at T=400-500 K. The disagreement increases up to 2 J/mol*K for T=200 and 600 K.; GT
62.82100.
94.01150.
129.90200.
185.37273.15
204.2 ± 1.0298.15
205.58300.
275.54400.
333.59500.
379.87600.
416.74700.
446.49800.
470.86900.
491.071000.
507.981100.
522.251200.
534.371300.
544.731400.
553.621500.

Phase change data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
CAL - James S. Chickos, William E. Acree, Jr., Joel F. Liebman, Students of Chem 202 (Introduction to the Literature of Chemistry), University of Missouri -- St. Louis
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Tfus424. ± 3.KAVGN/AAverage of 8 values; Individual data points
Quantity Value Units Method Reference Comment
Ttriple423.81KN/AWong and Westrum, 1971Crystal phase 1 phase; Uncertainty assigned by TRC = 0.01 K; TRC
Quantity Value Units Method Reference Comment
Δvap92.4 ± 1.1kJ/molCGCHanshaw, Nutt, et al., 2008AC
Δvap87.2 ± 1.3kJ/molGCTeodorescu, Barhala, et al., 2006Based on data from 423. to 493. K.; AC
Quantity Value Units Method Reference Comment
Δsub104.5kJ/molMESiddiqi, Siddiqui, et al., 2009Based on data from 341. to 418. K.; AC
Δsub100.3 ± 1.0kJ/molReviewRoux, Temprado, et al., 2008There are sufficient high-quality literature values to make a good evaluation with a high degree of confidence. In general, the evaluated uncertainty limits are on the order of (0.5 to 2.5) kJ/mol.; DRB
Δsub98.5 ± 1.0kJ/molDSCRojas and Orozco, 2003AC
Δsub100.2 ± 0.4kJ/molVSmith, Stewart, et al., 1980ALS
Δsub100.2kJ/molN/ASmith, Stewart, et al., 1980DRB

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
78.6398.GCHinckley, Bidleman, et al., 1990Based on data from 343. to 453. K.; AC
76.428.N/ASasse, Jose, et al., 1988Based on data from 413. to 467. K.; AC
73.528.AStephenson and Malanowski, 1987Based on data from 513. to 668. K. See also Tsypikina and Ya, 1955.; AC
76.4440.N/ASmith, Stewart, et al., 1980Based on data from 398. to 458. K.; AC

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
473.6 to 667.92.687131086.824-262.849Tsypkina, 1955Coefficents calculated by NIST from author's data.

Enthalpy of sublimation

ΔsubH (kJ/mol) Temperature (K) Method Reference Comment
103.3 ± 2.1380.MESiddiqi, Siddiqui, et al., 2009Based on data from 341. to 418. K.; AC
103.1 ± 6.5353.MEOja and Suuberg, 1998Based on data from 308. to 398. K.; AC
97.9383.GSNass, Lenoir, et al., 1995Based on data from 313. to 453. K.; AC
100.3 ± 0.3353.PGSasse, Jose, et al., 1988Based on data from 369. to 383. K.; AC
91.2 ± 0.5303.GSSonnefeld, Zoller, et al., 1983Based on data from 283. to 323. K.; AC
100.2 ± 0.4410.IPSmith, Stewart, et al., 1980Based on data from 398. to 423. K.; AC
100.8 ± 1.5348. to 419.MEMalaspina, Bardi, et al., 1974AC
100.5330.MEHoyer and Peperle, 1958Based on data from 298. to 363. K.; AC
94.140344.75VBradley and Cleasby, 1953ALS
100.1 ± 1.7351.MEInokuchi, Shiba, et al., 1952Based on data from 345. to 358. K.; AC

Enthalpy of fusion

ΔfusH (kJ/mol) Temperature (K) Method Reference Comment
16.7422.4DSCRojas and Orozco, 2003Based on data from 403. to 433. K.; AC
17.36423.8N/ADomalski and Hearing, 1996AC

Entropy of fusion

ΔfusS (J/mol*K) Temperature (K) Reference Comment
2.39120.8Domalski and Hearing, 1996CAL
40.97423.8

Enthalpy of phase transition

ΔHtrs (kJ/mol) Temperature (K) Initial Phase Final Phase Reference Comment
0.289120.8crystaline, IIcrystaline, IWong and Westrum, 1971, 2DH
17.364423.81crystaline, IliquidWong and Westrum, 1971, 2DH

Entropy of phase transition

ΔStrs (J/mol*K) Temperature (K) Initial Phase Final Phase Reference Comment
2.30120.8crystaline, IIcrystaline, IWong and Westrum, 1971, 2DH
40.97423.81crystaline, IliquidWong and Westrum, 1971, 2DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Michael M. Meot-Ner (Mautner) and Sharon G. Lias

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C16H10+ + Pyrene = (C16H10+ • Pyrene)

By formula: C16H10+ + C16H10 = (C16H10+ • C16H10)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr79.9kJ/molPHPMSMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated
Quantity Value Units Method Reference Comment
Δr120.J/mol*KN/AMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
34.390.PHPMSMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated

C16H11+ + Pyrene = (C16H11+ • Pyrene)

By formula: C16H11+ + C16H10 = (C16H11+ • C16H10)

Quantity Value Units Method Reference Comment
Δr69.0kJ/molPHPMSMeot-Ner (Mautner), 1980gas phase
Quantity Value Units Method Reference Comment
Δr120.J/mol*KPHPMSMeot-Ner (Mautner), 1980gas phase

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
MM - Michael M. Meot-Ner (Mautner)
LL - Sharon G. Lias and Joel F. Liebman
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
B - John E. Bartmess

View reactions leading to C16H10+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)7.426 ± 0.001eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)869.2kJ/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity840.1kJ/molN/AHunter and Lias, 1998HL

Electron affinity determinations

EA (eV) Method Reference Comment
0.406 ± 0.010LPESAndo, Kokubo, et al., 2004B
0.39002ECDWentworth and Becker, 1962B
0.500 ± 0.030ECDLyons, Morris, et al., 1968B
0.5910 ± 0.0080ECDBecker and Chen, 1966B

Proton affinity at 298K

Proton affinity (kJ/mol) Reference Comment
867.8Aue, Guidoni, et al., 2000Experimental literature data re-evaluated by the authors using ab initio protonation entropies; MM

Gas basicity at 298K

Gas basicity (review) (kJ/mol) Reference Comment
841.8Aue, Guidoni, et al., 2000Experimental literature data re-evaluated by the authors using ab initio protonation entropies; MM

Ionization energy determinations

IE (eV) Method Reference Comment
7.4256 ± 0.0006LSHager and Wallace, 1988LL
7.4PEClar, Robertson, et al., 1981LLK
7.50 ± 0.05EQMautner(Meot-Ner), 1980LLK
7.41PEClar and Schmidt, 1979LLK
7.45 ± 0.01PEDewar and Goodman, 1972LLK
7.7 ± 0.3EIWacks, 1964RDSH
7.70CTSKuroda, 1964RDSH
7.31CTSFinch, 1964RDSH
7.72CTSBriegleb, 1964RDSH
7.48CTSKinoshita, 1962RDSH
7.45CTSBriegleb, Czekalla, et al., 1961RDSH
7.55CTSBirks and Stifkin, 1961RDSH
7.53CTSBriegleb and Czekalla, 1959RDSH
7.58CTSMatsen, 1956RDSH
7.42PEAkiyama, Li, et al., 1979Vertical value; LLK
7.41PEClar and Schmidt, 1976Vertical value; LLK
7.41PEBoschi and Schmidt, 1972Vertical value; LLK

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compiled by: Coblentz Society, Inc.

Data compiled by: Timothy J. Johnson, Tanya L. Myers, Yin-Fong Su, Russell G. Tonkyn, Molly Rose K. Kelly-Gorham, and Tyler O. Danby

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin Japan AIST/NIMC Database- Spectrum MS-NW- 129
NIST MS number 227992

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


Gas Chromatography

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Kovats' RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillarySPB-5180.2103.Corbella, Rodríguez, et al., 199515. m/0.32 mm/0.25 μm, He
CapillaryCP Sil 5 CB240.2119.Hanai and Hong, 198930. m/0.25 mm/0.25 μm
PackedSE-30200.2101.Shlyakhov, Anvaer, et al., 1975 

Kovats' RI, polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryCP-Wax240.3183.Hanai and Hong, 198925. m/0.25 mm/0.22 μm

Van Den Dool and Kratz RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-52113.4Song, Lai, et al., 200330. m/0.25 mm/0.25 μm, He, 4. K/min; Tstart: 40. C; Tend: 310. C
CapillaryDB-52113.4Song, Lai, et al., 200330. m/0.25 mm/0.25 μm, He, 40. C @ 5. min, 4. K/min; Tend: 310. C
CapillaryDB-52082.6Song, Lai, et al., 200330. m/0.25 mm/0.25 μm, He, 2. K/min; Tstart: 40. C; Tend: 310. C
CapillaryDB-52113.4Song, Lai, et al., 200330. m/0.25 mm/0.25 μm, He, 4. K/min; Tstart: 40. C; Tend: 310. C
CapillaryDB-52132.5Song, Lai, et al., 200330. m/0.25 mm/0.25 μm, He, 6. K/min; Tstart: 40. C; Tend: 310. C
CapillaryOV-12080.4Zhang, Shen, et al., 200025. m/0.2 mm/0.33 μm, 5. K/min; Tstart: 100. C; Tend: 180. C
CapillaryOV-12126.4Zhang, Shen, et al., 200025. m/0.2 mm/0.33 μm, 5. K/min; Tstart: 100. C; Tend: 180. C
CapillaryOV-12095.8Gautzsch and Zinn, 19968. K/min; Tstart: 35. C; Tend: 300. C
CapillaryDB-52082.6Lai and Song, 199530. m/0.25 mm/0.25 μm, He, 2. K/min; Tstart: 40. C; Tend: 310. C
CapillaryDB-52113.4Lai and Song, 199530. m/0.25 mm/0.25 μm, He, 4. K/min; Tstart: 40. C; Tend: 310. C
CapillaryDB-52132.5Lai and Song, 199530. m/0.25 mm/0.25 μm, He, 6. K/min; Tstart: 40. C; Tend: 310. C
CapillaryDB-52113.4Lai and Song, 199530. m/0.25 mm/0.25 μm, He, 4. K/min; Tstart: 40. C; Tend: 310. C
CapillaryDB-52113.4Lai and Song, 199530. m/0.25 mm/0.25 μm, He, 40. C @ 5. min, 4. K/min; Tend: 310. C
CapillarySP-21002049.68Podmaniczky, Szepesy, et al., 1986H2, 4. K/min; Tstart: 170. C
CapillarySP-21002060.85Podmaniczky, Szepesy, et al., 1986H2, 6. K/min; Tstart: 170. C
CapillarySP-21002069.40Podmaniczky, Szepesy, et al., 1986H2, 2. K/min; Tstart: 170. C
CapillarySP-21002069.26Podmaniczky, Szepesy, et al., 1986H2, 4. K/min; Tstart: 170. C
CapillarySP-21002091.45Podmaniczky, Szepesy, et al., 1986H2, 6. K/min; Tstart: 170. C
CapillaryCP Sil 5 CB2073.47Podmaniczky, Szepesy, et al., 1986H2, 4. K/min; Tstart: 170. C
CapillarySE-522057.Beernaert, 1979He, 50. C @ 5. min, 6. K/min; Column length: 33.3 m; Column diameter: 0.50 mm; Tend: 320. C
CapillarySE-522041.Beernaert, 1979He, 50. C @ 5. min, 6. K/min; Column length: 16.6 m; Column diameter: 0.50 mm; Tend: 320. C
CapillarySE-522054.Beernaert, 1979He, 50. C @ 5. min, 6. K/min; Column length: 16.6 m; Column diameter: 0.50 mm; Tend: 320. C
CapillarySE-522055.Beernaert, 1979He, 50. C @ 5. min, 6. K/min; Column length: 16.6 m; Column diameter: 0.50 mm; Tend: 320. C
CapillarySE-522055.Beernaert, 1979He, 50. C @ 5. min, 6. K/min; Column length: 16.6 m; Column diameter: 0.50 mm; Tend: 320. C
CapillarySE-522055.Beernaert, 1979He, 50. C @ 5. min, 6. K/min; Column length: 16.6 m; Column diameter: 0.50 mm; Tend: 320. C
CapillarySE-522055.Beernaert, 1979He, 50. C @ 5. min, 6. K/min; Column length: 16.6 m; Column diameter: 0.50 mm; Tend: 320. C
CapillarySE-522070.Beernaert, 1979He, 50. C @ 5. min, 6. K/min; Column length: 16.6 m; Column diameter: 0.50 mm; Tend: 320. C
CapillarySE-522070.Beernaert, 1979He, 50. C @ 5. min, 6. K/min; Column length: 16.6 m; Column diameter: 0.50 mm; Tend: 320. C
CapillarySE-522070.Beernaert, 1979He, 50. C @ 5. min, 6. K/min; Column length: 16.6 m; Column diameter: 0.50 mm; Tend: 320. C
CapillarySE-522070.Beernaert, 1979He, 50. C @ 5. min, 6. K/min; Column length: 16.6 m; Column diameter: 0.50 mm; Tend: 320. C
CapillarySE-522078.Beernaert, 1979He, 50. C @ 5. min, 6. K/min; Column length: 16.6 m; Column diameter: 0.50 mm; Tend: 320. C
CapillarySE-522079.Beernaert, 1979He, 50. C @ 5. min, 6. K/min; Column length: 16.6 m; Column diameter: 0.50 mm; Tend: 320. C
CapillarySE-522080.Beernaert, 1979He, 50. C @ 5. min, 6. K/min; Column length: 16.6 m; Column diameter: 0.50 mm; Tend: 320. C
CapillarySE-522086.Beernaert, 1979He, 50. C @ 5. min, 6. K/min; Column length: 16.6 m; Column diameter: 0.50 mm; Tend: 320. C
CapillarySE-522086.Beernaert, 1979He, 50. C @ 5. min, 6. K/min; Column length: 16.6 m; Column diameter: 0.50 mm; Tend: 320. C
CapillarySE-522093.Beernaert, 1979He, 50. C @ 5. min, 6. K/min; Column length: 16.6 m; Column diameter: 0.50 mm; Tend: 320. C
CapillarySE-522063.99Lee, Vassilaros, et al., 197912. m/0.3 mm/0.34 μm, He, 2. K/min; Tstart: 50. C; Tend: 250. C
CapillarySE-522048.56Lee, Vassilaros, et al., 197912. m/0.28 mm/0.17 μm, He, 2. K/min; Tstart: 50. C; Tend: 250. C
CapillarySE-522070.Carugno and Rossi, 1967N2, 1.8 K/min; Column length: 65. m; Column diameter: 0.3 mm; Tstart: 100. C; Tend: 300. C
CapillarySE-522040.Cantuti, Cartoni, et al., 1965N2, 2.5 K/min; Column length: 50. m; Tstart: 100. C; Tend: 300. C

Van Den Dool and Kratz RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryHP-12069.7Dimitriou-Christidis, Harris, et al., 200330. m/0.25 mm/0.25 μm; Program: 60C => 7C/min => 225C => 15C/min => 300C(11.43min)
CapillaryHP-52120.64Dimitriou-Christidis, Harris, et al., 200330. m/0.25 mm/0.25 μm; Program: 60C => 7C/min => 225C => 15C/min => 300C(11.43min)
CapillaryDB-52136.Havenga and Rohwer, 199930. m/0.25 mm/0.25 μm, He; Program: 60 0C 7 0C/min -> 130 0C 5 0C/min -> 200 0C 6 0C/min -> 260 0C 20 0C/min -> 320 0C (4 min)
CapillaryOV-1012044.Yasuhara, Shiraishi, et al., 199715. m/0.25 mm/0.25 μm, He; Program: 50C(2min) => (20C/min) => 120C => (7C/min) => 310C(10min)
Capillary5 % Phenyl methyl siloxane2089.Yasuhara, Shiraishi, et al., 199725. m/0.31 mm/0.52 μm, He; Program: 50C(2min) => (20C/min) => 120C => (7C/min) => 310C(10min)
CapillaryMethyl Silicone2042.Oda, Ichikawa, et al., 1996Program: 50C (2min) => 20C/min => 160C => 5C/min => 210C => 10C/min => 300C
CapillaryMethyl Silicone2061.Oda, Ichikawa, et al., 1996Program: 50C (2min) => 20C/min => 160C => 5C/min => 210C => 10C/min => 300C

Normal alkane RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryHP-52103.Miao and Wu, 199930. m/0.32 mm/0.25 μm, 50. C @ 2. min, 5. K/min; Tend: 310. C
CapillaryHP-52104.Miao and Wu, 199930. m/0.32 mm/0.25 μm, 50. C @ 2. min, 5. K/min; Tend: 310. C
CapillaryHP-52109.Miao and Wu, 199930. m/0.32 mm/0.25 μm, 50. C @ 2. min, 5. K/min; Tend: 310. C
CapillaryHP-52109.Miao and Wu, 199930. m/0.32 mm/0.25 μm, 50. C @ 2. min, 5. K/min; Tend: 310. C
CapillaryHP-52112.Miao and Wu, 199930. m/0.32 mm/0.25 μm, 50. C @ 2. min, 5. K/min; Tend: 310. C
CapillaryHP-52114.Miao and Wu, 199930. m/0.32 mm/0.25 μm, 50. C @ 2. min, 5. K/min; Tend: 310. C
CapillaryHP-52134.Miao and Wu, 199930. m/0.32 mm/0.25 μm, 50. C @ 2. min, 5. K/min; Tend: 310. C
CapillaryHP-52135.Miao and Wu, 199930. m/0.32 mm/0.25 μm, 50. C @ 2. min, 5. K/min; Tend: 310. C
CapillaryUltra-12085.Elizalde-González, Hutfliess, et al., 199650. m/0.2 mm/0.33 μm, H2, 3. K/min, 300. C @ 35. min; Tstart: 60. C
CapillarySE-542096.Harland, Cumming, et al., 1986He, 50. C @ 2. min, 8. K/min, 250. C @ 12. min; Column length: 25. m; Column diameter: 0.32 mm
CapillaryDB-52103.Quilliam, Lant, et al., 198530. m/0.32 mm/0.1 μm, He, 10. K/min; Tstart: 60. C; Tend: 290. C

Normal alkane RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryHP-5MS2114.Vichi, Pizzale, et al., 200530. m/0.25 mm/0.25 μm; Program: 40C(3min) => 4C/min => 75C => 8C/min => 250C
CapillaryMethyl Silicone2077.Oda, Yasuhara, et al., 199825. m/0.25 mm/0.25 μm, He; Program: 50 0C (2 min) 20 0C/min -> 160 0C 5 0C/min -> 210 0C 10 0C/min -> 300 0C
CapillaryMethyl Silicone2046.Zenkevich, 1996Program: not specified
CapillaryOV-12061.Waggott and Davies, 1984Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified

Normal alkane RI, polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillarySupelcowax-103160.Vichi, Pizzale, et al., 200530. m/0.25 mm/0.25 μm; Program: 40C(3min) => 4C/min => 75C => 8C/min => 250C
CapillaryDB-Wax3135.Peng, Yang, et al., 1991Program: not specified

Lee's RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
PackedMethyl Silicone175.348.91Shlyakhov, 1984 
PackedMethyl Silicone200.348.12Shlyakhov, 1984 
PackedMethyl Silicone200.350.72Shlyakhov, 1984 
PackedMethyl Silicone235.351.42Shlyakhov, 1984 
PackedMethyl Silicone240.350.67Shlyakhov, 1984 
PackedMethyl Silicone260.351.74Shlyakhov, 1984 
PackedMethyl Silicone300.353.42Shlyakhov, 1984 

Lee's RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryPE-5351.6Jamoussi, Kanzari, et al., 200720. m/0.18 mm/0.18 μm, 50. C @ 1.5 min, 8. K/min; Tend: 345. C
CapillaryHP-5340.0Wang, Hou, et al., 200730. m/0.30 mm/0.25 μm, Helium, 50. C @ 5. min, 5. K/min, 200. C @ 15. min
CapillaryHP-5340.Shao, Wang, et al., 200630. m/0.3 mm/0.25 μm, He, 50. C @ 5. min, 5. K/min, 200. C @ 15. min
Capillary5 % Phenyl methyl siloxane351.22Skrbic and Onjia, 20062. K/min; Tstart: 50. C; Tend: 250. C
Capillary5 % Phenyl methyl siloxane352.80Skrbic and Onjia, 200680. C @ 2. min, 8. K/min, 300. C @ 10. min
CapillaryHP-5352.67Pedersen, Durant, et al., 200530. m/0.25 mm/0.25 μm, Helium, 50. C @ 1.5 min, 6. K/min, 310. C @ 10. min
CapillaryHP-5351.91Marynowski, Pieta, et al., 200460. m/0.25 mm/0.25 μm, He, 3. K/min; Tstart: 35. C; Tend: 300. C
CapillaryDB-5MS352.54Chen, Keeran, et al., 200230. m/0.25 mm/0.5 μm, 40. C @ 1. min, 10. K/min; Tend: 310. C
CapillaryDB-5MS352.72Chen, Keeran, et al., 200230. m/0.25 mm/0.5 μm, 40. C @ 1. min, 4. K/min; Tend: 310. C
CapillaryPTE-5352.85Wang, Jia, et al., 200030. m/0.25 mm/0.25 μm, 60. C @ 1.5 min, 8. K/min, 300. C @ 12.5 min
CapillaryHP-5352.13Miao and Wu, 199950. C @ 2. min, 5. K/min; Tend: 310. C
CapillaryHP-5352.18Miao and Wu, 199950. C @ 2. min, 5. K/min; Tend: 310. C
CapillaryHP-5352.27Miao and Wu, 199950. C @ 2. min, 5. K/min; Tend: 310. C
CapillaryHP-5352.29Miao and Wu, 199950. C @ 2. min, 5. K/min; Tend: 310. C
CapillaryHP-5352.36Miao and Wu, 199950. C @ 2. min, 5. K/min; Tend: 310. C
CapillaryHP-5352.41Miao and Wu, 199950. C @ 2. min, 5. K/min; Tend: 310. C
CapillaryHP-5352.65Miao and Wu, 199950. C @ 2. min, 5. K/min; Tend: 310. C
CapillaryHP-5352.65Miao and Wu, 199950. C @ 2. min, 5. K/min; Tend: 310. C
CapillaryHP-5352.33Piao, Chu, et al., 199930. m/0.25 mm/0.25 μm, 50. C @ 2. min, 4. K/min, 280. C @ 20. min
CapillaryHP-5352.37Piao, Chu, et al., 199930. m/0.25 mm/0.25 μm, 50. C @ 2. min, 4. K/min, 280. C @ 20. min
CapillaryDB-5346.6Durlak, Biswas, et al., 199830. m/0.25 mm/0.25 μm, 15. K/min; Tstart: 50. C; Tend: 300. C
CapillaryDB-5346.6Durlak, Biswas, et al., 199830. m/0.25 mm/0.25 μm, 15. K/min; Tstart: 50. C; Tend: 300. C
CapillarySE-52351.86Wang, Peng, et al., 19974. K/min; Column length: 30. m; Column diameter: 0.30 mm; Tstart: 40. C; Tend: 250. C
CapillarySE-54351.88Chen, 19964. K/min; Column length: 30. m; Column diameter: 0.25 mm; Tstart: 50. C; Tend: 300. C
CapillaryDB-5351.51Williams and Horne, 1995He, 60. C @ 2. min, 5. K/min; Column length: 25. m; Column diameter: 0.3 mm; Tend: 270. C
CapillarySE-52353.40Shaogang and Xiaobai, 199440. C @ 2. min, 4. K/min, 300. C @ 20. min; Column length: 30. m; Column diameter: 0.25 mm
CapillaryDB-5351.4Donnelly, Abdel-Hamid, et al., 199330. m/0.32 mm/0.25 μm, He, 40. C @ 3. min, 8. K/min, 285. C @ 29.5 min
CapillarySPB-5352.9Knobloch and Engewald, 199340. C @ 2. min, 4. K/min; Column length: 30. m; Column diameter: 0.25 mm; Tend: 300. C
CapillarySE-54352.52Guillén, Blanco, et al., 198920. m/0.22 mm/0.20 μm, He, 4. K/min; Tstart: 50. C; Tend: 300. C
CapillarySE-52351.63Hasegawa, Muragishi, et al., 19883. K/min; Column length: 25. m; Column diameter: 0.25 mm; Tstart: 130. C; Tend: 260. C
CapillaryDB-5351.87Sye, Lin, et al., 198830. m/0.32 mm/0.25 μm, 80. C @ 1. min, 3. K/min; Tend: 290. C
CapillaryDB-5351.91Wise, Benner, et al., 198830. m/0.25 mm/0.25 μm, 40. C @ 2. min, 4. K/min, 280. C @ 5. min
CapillarySE-52351.22Boenke and Ballschmiter, 1987Hydrogen, 3. K/min; Column length: 12. m; Tstart: 120. C; Tend: 285. C
CapillaryDB-5352.77Rostad and Pereira, 198630. m/0.26 mm/0.25 μm, He, 50. C @ 4. min, 6. K/min, 300. C @ 20. min
CapillaryDB-5361.6Quilliam, Lant, et al., 198530. m/0.32 mm/0.1 μm, He, 10. K/min; Tstart: 60. C; Tend: 290. C
CapillaryDB-5365.4Quilliam, Lant, et al., 198530. m/0.32 mm/0.1 μm, He, 10. K/min; Tstart: 60. C; Tend: 290. C
CapillaryDB-5352.09Tong, Centen, et al., 1985He, 4. K/min; Column length: 30. m; Column diameter: 0.25 mm; Tstart: 90. C; Tend: 325. C
PackedMethyl Silicone347.41Shlyakhov, 19842. K/min; Tstart: 100. C; Tend: 275. C
CapillaryDB-5352.163Tong, Shore, et al., 1984He, 80. C @ 1. min, 3. K/min, 300. C @ 10. min; Column length: 30. m; Column diameter: 0.32 mm
CapillarySE-52351.51Vassilaros, Kong, et al., 198220. m/0.30 mm/0.25 μm, H2, 40. C @ 2. min, 4. K/min; Tend: 265. C
CapillarySE-52351.22Lee, Vassilaros, et al., 197912. m/0.3 mm/0.34 μm, He, 2. K/min; Tstart: 50. C; Tend: 250. C

Lee's RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-5351.Fuentes, Font, et al., 2007Column length: 60. m; Program: not specified
CapillaryHP-5MS352.41Wang, Li, et al., 200730. m/0.25 mm/0.25 μm, He; Program: 60C(2min) => 6C/min => 258C => 2C/min => 300C(4min)
CapillaryHP-5MS351.91Wang, Li, et al., 2007, 230. m/0.25 mm/0.25 μm, He; Program: not specified
CapillaryHP-5MS352.41Wang, Li, et al., 2007, 230. m/0.25 mm/0.25 μm, He; Program: not specified
Capillary5 % Phenyl methyl siloxane348.10Skrbic and Onjia, 2006Program: 70 0C (2 min) 30 0C/min -> 150 0C 5 0C/min -> 200 0C 4 0C/min -> 310 0C (5 min)
CapillaryDB-5MS346.3Aracil, Font, et al., 2005Column length: 60. m; Column diameter: 0.25 mm; Program: not specified
CapillaryHP-5MS400.00Cheng, Liu, et al., 200530. m/0.30 mm/0.25 μm, He; Program: 50 0C (2 min) 8 0C/min -> 120 0C (3 min) 10 0C/min -> 230 0C
CapillaryLM-5348.28Ré-Poppi and Santiago-Silva, 200530. m/0.25 mm/0.25 μm, He; Program: 60C(2min) => 15C/min => 180C => 5C/min => 280C (10min)
CapillaryLM-5348.46Ré-Poppi and Santiago-Silva, 200530. m/0.25 mm/0.25 μm, He; Program: 60C(2min) => 15C/min => 180C => 5C/min => 280C (10min)
CapillaryUltra-1346.0Sremac, Skrbic, et al., 200550. m/0.32 mm/0.50 μm, Nitrogen; Program: 40-100 0C 3-15 0C/min -> 290 0C
CapillaryUltra-1348.1Sremac, Skrbic, et al., 200550. m/0.32 mm/0.50 μm, Nitrogen; Program: 40-100 0C 3-15 0C/min -> 290 0C
CapillaryUltra-1350.3Sremac, Skrbic, et al., 200550. m/0.32 mm/0.50 μm, Nitrogen; Program: 40-100 0C 3-15 0C/min -> 290 0C
CapillaryUltra-1351.2Sremac, Skrbic, et al., 200550. m/0.32 mm/0.50 μm, Nitrogen; Program: 40-100 0C 3-15 0C/min -> 290 0C
CapillaryDB-5352.8Lundstedt, Haglund, et al., 200330. m/0.25 mm/0.25 μm; Program: not specified
CapillaryLM-5348.43Ré-Poppi and Santiago-Silva, 200230. m/0.25 mm/0.25 μm, He; Program: 60C(2min) => 15C/min => 180C => 5C/min => 280C(5min)
CapillaryLM-5348.46Ré-Poppi and Santiago-Silva, 200230. m/0.25 mm/0.25 μm, He; Program: 60C(2min) => 15C/min => 180C => 5C/min => 280C(5min)
CapillaryHP-5350.71Reckendorf, 199725. m/0.2 mm/0.11 μm, He; Program: 106C(0.2min) => 40C/min => 120C => 3C/min => 310C(10min)
CapillarySE-52351.22Wang, Peng, et al., 1997Column length: 30. m; Column diameter: 0.30 mm; Program: not specified
CapillaryDB-5350.52Zamperlini, Silva, et al., 199730. m/0.25 mm/0.25 μm, He; Program: 90C (1min) => 10C/min => 120C => 4C/min => 310C (20min)
CapillaryDB-5350.79Zamperlini, Silva, et al., 199730. m/0.25 mm/0.25 μm, He; Program: 90C (1min) => 10C/min => 120C => 4C/min => 310C (20min)
CapillarySE-54351.22Chen, 1996Column length: 30. m; Column diameter: 0.25 mm; Program: not specified
CapillarySE-52351.51Shaogang and Xiaobai, 1994Column length: 30. m; Column diameter: 0.25 mm; Program: not specified
CapillaryCP Sil 8 CB351.47Bemgard, Colmsjo, et al., 1992Column length: 25. m; Column diameter: 0.32 mm; Program: 140C (2min) => (rapidly) => 200C(2min) => 5C/min => 370C
CapillaryXTI-5351.88Bemgard, Colmsjo, et al., 1992Column length: 15. m; Column diameter: 0.28 mm; Program: 140C (2min) => (rapidly) => 200C(2min) => 5C/min => 370C
CapillarySE-54350.83Guillen, Iglesias, et al., 1992Program: not specified
CapillaryDB-5353.2Paschke, Herbel, et al., 199230. m/0.25 mm/0.25 μm, He; Program: 60 0C (3 min) 10 0C/min -> 100 0C (3 min) 5 0C/min -> 300 0C
CapillarySE-54352.3Peterman and Delfino, 199015. m/0.25 mm/0.25 μm, He; Program: 125 0C (15 min) 1 0C/min -> 131 0C 4 0C/min -> 247 0C 8 0C/min -> 280 0C (15 min)
CapillaryDB-5348.09Takada, Onda, et al., 1990He; Program: 70C(2min) => 30C/min => 150C => 5C/min => 200C => 4C/min => 310C
CapillaryDB-5351.22Naikwadi, Charbonneau, et al., 1987Column length: 30. m; Column diameter: 0.32 mm; Program: not specified
CapillaryDB-5351.22Naikwadi, Charbonneau, et al., 1987Column length: 30. m; Column diameter: 0.32 mm; Program: not specified
CapillaryDB-5351.98Naikwadi, Charbonneau, et al., 1987Column length: 30. m; Column diameter: 0.32 mm; Program: not specified
CapillaryDB-5352.88Naikwadi, Charbonneau, et al., 1987Column length: 30. m; Column diameter: 0.32 mm; Program: not specified
CapillaryOV-101351.8Tucminen, Wickstrom, et al., 1986Program: not specified
CapillaryDB-5351.22Tong, Centen, et al., 1985He; Column length: 30. m; Column diameter: 0.25 mm; Program: not specified
CapillarySE-52347.32Shlyakhov, 1984Program: not specified
CapillarySE-52347.87Shlyakhov, 1984Program: not specified
CapillarySE-52348.49Shlyakhov, 1984Program: not specified
CapillarySE-52349.15Shlyakhov, 1984Program: not specified
CapillarySE-52350.66Shlyakhov, 1984Program: not specified
CapillarySE-52351.22Shlyakhov, 1984Program: not specified
CapillarySE-52352.30Shlyakhov, 1984Program: not specified
CapillarySE-52353.34Shlyakhov, 1984Program: not specified

References

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Roux, Temprado, et al., 2008
Roux, M.V.; Temprado, M.; Chickos, J.S.; Nagano, Y., Critically Evaluated Thermochemical Properties of Polycyclic Aromatic Hydrocarbons, J. Phys. Chem. Ref. Data, 2008, 37, 4, 1855-1996. [all data]

Smith, Stewart, et al., 1980
Smith, N.K.; Stewart, R.C., Jr.; Osborn, A.G.; Scott, D.W., Pyrene: vapor pressure, enthalpy of combustion, and chemical thermodynamic properties, J. Chem. Thermodyn., 1980, 12, 919-926. [all data]

Westrum and Wong, 1967
Westrum, E.F., Jr.; Wong, S., Strain energies and thermal properties of globular and polynuclear aromatic molecules, AEC Rept. Coo-1149-92, Contract AT(11-1)-1149, 1967, 1-7. [all data]

Richardson and Parks, 1939
Richardson, J.W.; Parks, G.S., Thermal data on organic compounds. XIX. Modern combustion data for some non-volatile compounds containing carbon, hydrogen and oxygen, J. Am. Chem. Soc., 1939, 61, 3543-3546. [all data]

Dorofeeva O.V., 1988
Dorofeeva O.V., Thermodynamic Properties of Polycyclic Aromatic Hydrocarbons in the Gaseous Phase. Institute for High Temperatures, USSR Academy of Sciences, Preprint No.1-238 (in Russian), Moscow, 1988. [all data]

Frenkel M., 1994
Frenkel M., Thermodynamics of Organic Compounds in the Gas State, Vol. I, II, Thermodynamics Research Center, College Station, Texas, 1994, 1994. [all data]

Smith N.K., 1980
Smith N.K., Jr., Pyrene: vapor pressure, enthalpy of combustion, and chemical thermodynamic properties, J. Chem. Thermodyn., 1980, 12, 919-926. [all data]

Wong and Westrum, 1971
Wong, W.-K.; Westrum, E.F., Thermodynamics of Polynuclear Aromatic Molecules. 1. Heat Capacities and Enthalpies of Fusion of Pyrene, Fluoranthene, and Triphenylene, J. Chem. Thermodyn., 1971, 3, 105-24. [all data]

Hanshaw, Nutt, et al., 2008
Hanshaw, William; Nutt, Marjorie; Chickos, James S., Hypothetical Thermodynamic Properties. Subcooled Vaporization Enthalpies and Vapor Pressures of Polyaromatic Hydrocarbons, J. Chem. Eng. Data, 2008, 53, 8, 1903-1913, https://doi.org/10.1021/je800300x . [all data]

Teodorescu, Barhala, et al., 2006
Teodorescu, Mariana; Barhala, Alexandru; Dragoescu, Dana, Isothermal (vapour+liquid) equilibria for the binary (cyclopentanone or cyclohexanone with 1,1,2,2-tetrachloroethane) systems at temperatures of (343.15, 353.15, and 363.15)K, The Journal of Chemical Thermodynamics, 2006, 38, 11, 1432-1437, https://doi.org/10.1016/j.jct.2006.01.010 . [all data]

Siddiqi, Siddiqui, et al., 2009
Siddiqi, M. Aslam; Siddiqui, Rehan A.; Atakan, Burak, Thermal Stability, Sublimation Pressures, and Diffusion Coefficients of Anthracene, Pyrene, and Some Metal β-Diketonates, J. Chem. Eng. Data, 2009, 54, 10, 2795-2802, https://doi.org/10.1021/je9001653 . [all data]

Rojas and Orozco, 2003
Rojas, Aarón; Orozco, Eulogio, Measurement of the enthalpies of vaporization and sublimation of solids aromatic hydrocarbons by differential scanning calorimetry, Thermochimica Acta, 2003, 405, 1, 93-107, https://doi.org/10.1016/S0040-6031(03)00139-4 . [all data]

Hinckley, Bidleman, et al., 1990
Hinckley, Daniel A.; Bidleman, Terry F.; Foreman, William T.; Tuschall, Jack R., Determination of vapor pressures for nonpolar and semipolar organic compounds from gas chromatograhic retention data, J. Chem. Eng. Data, 1990, 35, 3, 232-237, https://doi.org/10.1021/je00061a003 . [all data]

Sasse, Jose, et al., 1988
Sasse, Karim; Jose, Jacques; Merlin, Jean-Claude, A static apparatus for measurement of low vapor pressures. Experimental results on high molecular-weight hydrocarbons, Fluid Phase Equilibria, 1988, 42, 287-304, https://doi.org/10.1016/0378-3812(88)80065-7 . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Tsypikina and Ya, 1955
Tsypikina, O.; Ya, J., J. Appl. Chem. USSR, 1955, 28, 167. [all data]

Tsypkina, 1955
Tsypkina, O.Y., Study of Vacuum Pressure Influence on Efficiency of Separation of Some Polynuclear Compounds of Coal Tar Rectifications, Zh. Prikl. Khim. (Moscow), 1955, 28, 2, 185-192. [all data]

Oja and Suuberg, 1998
Oja, Vahur; Suuberg, Eric M., Vapor Pressures and Enthalpies of Sublimation of Polycyclic Aromatic Hydrocarbons and Their Derivatives, J. Chem. Eng. Data, 1998, 43, 3, 486-492, https://doi.org/10.1021/je970222l . [all data]

Nass, Lenoir, et al., 1995
Nass, Karen; Lenoir, Dieter; Kettrup, Antonius, Calculation of the Thermodynamic Properties of Polycyclic Aromatic Hydrocarbons by an Incremental Procedure, Angew. Chem. Int. Ed. Engl., 1995, 34, 16, 1735-1736, https://doi.org/10.1002/anie.199517351 . [all data]

Sonnefeld, Zoller, et al., 1983
Sonnefeld, W.J.; Zoller, W.H.; May, W.E., Dynamic coupled-column liquid-chromatographic determination of ambient-temperature vapor pressures of polynuclear aromatic hydrocarbons, Anal. Chem., 1983, 55, 2, 275-280, https://doi.org/10.1021/ac00253a022 . [all data]

Malaspina, Bardi, et al., 1974
Malaspina, L.; Bardi, G.; Gigli, R., Simultaneous determination by knudsen-effusion microcalorimetric technique of the vapor pressure and enthalpy of vaporization of pyrene and 1,3,5-triphenylbenzene, The Journal of Chemical Thermodynamics, 1974, 6, 11, 1053-1064, https://doi.org/10.1016/0021-9614(74)90067-6 . [all data]

Hoyer and Peperle, 1958
Hoyer, H.; Peperle, W., Z. Elektrochem., 1958, 62, 61. [all data]

Bradley and Cleasby, 1953
Bradley, R.S.; Cleasby, T.G., The vapour pressure and lattice energy of some aromatic ring compounds, J. Am. Chem. Soc., 1953, 1690-16. [all data]

Inokuchi, Shiba, et al., 1952
Inokuchi, Hiroo; Shiba, Sukekuni; Handa, Takashi; Akamatu, Hideo, Heats of Sublimation of Condensed Polynuclear Aromatic Hydrocarbons, Bull. Chem. Soc. Jpn., 1952, 25, 5, 299-302, https://doi.org/10.1246/bcsj.25.299 . [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Wong and Westrum, 1971, 2
Wong, W-K.; Westrum, E.F., Jr., Thermodynamics of polynuclear aromatic molecules. I. Heat capacities and enthalpies of fusion of pyrene, flouranthene, and triphenylene, J. Chem. Thermodynam., 1971, 3, 105-124. [all data]

Meot-Ner (Mautner), 1980
Meot-Ner (Mautner), M., Dimer Cations of Polycyclic Aromatics: Experimental Bonding Energies and Resonance Stabilization, J. Phys. Chem., 1980, 84, 21, 2724, https://doi.org/10.1021/j100458a012 . [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Ando, Kokubo, et al., 2004
Ando, N.; Kokubo, S.; Mitsui, M.; Nakajima, A., Photoelectron spectroscopy of pyrene cluster anions, (pyrene)(-)(n) (n=1-20), Chem. Phys. Lett., 2004, 389, 4-6, 279-283, https://doi.org/10.1016/j.cplett.2004.03.100 . [all data]

Wentworth and Becker, 1962
Wentworth, W.E.; Becker, R.S., Potential Method for the Determination of Electron Affinities of Molecules: Application to Some Aromatic Hydrocarbons., J. Am. Chem. Soc., 1962, 84, 22, 4263, https://doi.org/10.1021/ja00881a014 . [all data]

Lyons, Morris, et al., 1968
Lyons, L.E.; Morris, G.C.; Warren, L.J., Electron Affinities and the Electron Capture Method for Aromatic Hydrocarbons, J. Phys. Chem., 1968, 72, 10, 3677, https://doi.org/10.1021/j100856a056 . [all data]

Becker and Chen, 1966
Becker, R.S.; Chen, E., Extension of Electron Affinities and Ionization Potentials of Aromatic Hydrocarbons, J. Chem. Phys., 1966, 45, 7, 2403, https://doi.org/10.1063/1.1727954 . [all data]

Aue, Guidoni, et al., 2000
Aue, D.H.; Guidoni, M.; Betowski, L.D., Ab initio calculated gas-phase basicities of polynuclear aromatic hydrocarbons, Int. J. Mass Spectrom., 2000, 201, 283. [all data]

Hager and Wallace, 1988
Hager, J.W.; Wallace, S.C., Two-laser photoionization supersonic jet mass spectrometry of aromatic molecules, Anal. Chem., 1988, 60, 5. [all data]

Clar, Robertson, et al., 1981
Clar, E.; Robertson, J.M.; Schlogl, R.; Schmidt, W., Photoelectron spectra of polynuclear aromatics. 6. Application to structural elucidation: 'Circumanthracene', J. Am. Chem. Soc., 1981, 103, 1320. [all data]

Mautner(Meot-Ner), 1980
Mautner(Meot-Ner), M., Ion thermochemistry of low volatility compounds in the gas phase. 3. Polycyclic aromatics: Ionization energies, proton, and hydrogen affinities. Extrapolations to graphite, J. Phys. Chem., 1980, 84, 2716. [all data]

Clar and Schmidt, 1979
Clar, E.; Schmidt, W., Correlations between photoelectron and UV absorption spectra of polycyclic hydrocarbons. The pyrene series, Tetrahedron, 1979, 35, 1027. [all data]

Dewar and Goodman, 1972
Dewar, M.J.S.; Goodman, D.W., Photoelectron spectra of molecules. Part 5.--Polycyclic aromatic hydrocarbons, J. Chem. Soc. Faraday Trans. 2, 1972, 68, 1784. [all data]

Wacks, 1964
Wacks, M.E., Electron-impact studies of aromatic hydrocarbons. II. Naphthacene, naphthaphene, chrysene, triphenylene, and pyrene, J. Chem. Phys., 1964, 41, 1661. [all data]

Kuroda, 1964
Kuroda, H., Ionization potentials of polycyclic aromatic hydrocarbons, Nature, 1964, 201, 1214. [all data]

Finch, 1964
Finch, A.C.M., Charge-transfer spectra and the ionization energy of azulene, J. Chem. Soc., 1964, 2272. [all data]

Briegleb, 1964
Briegleb, G., Electron affinity of organic molecules, Angew. Chem. Intern. Ed., 1964, 3, 617. [all data]

Kinoshita, 1962
Kinoshita, M., The absorption spectra of the molecular complexes of aromatic compounds with p-bromanil, Bull. Chem. Soc. Japan, 1962, 35, 1609. [all data]

Briegleb, Czekalla, et al., 1961
Briegleb, G.; Czekalla, J.; Reuss, G., Mesomeriemomente und Elektronenuberfuhrungsbanden von Elektronen-donator-akzeptor-komplexen des Chloranils und Tetracyanathylens mit aromatischen Kohlenwasserstoffen, Z. Phys. Chem. (Neue Folge), 1961, 30, 333. [all data]

Birks and Stifkin, 1961
Birks, J.B.; Stifkin, M.A., π-Electronic excitation and ionization energies of condensed ring aromatic hydrocarbons, Nature, 1961, 191, 761. [all data]

Briegleb and Czekalla, 1959
Briegleb, G.; Czekalla, J., Die Bestimmung von lonisierungsenergien aus den Spektren von Elektronenubergangskomplexen, Z.Elektrochem., 1959, 63, 6. [all data]

Matsen, 1956
Matsen, F.A., Electron affinities, methyl affinities, and ionization energies of condensed ring aromatic hydrocarbons, J. Chem. Phys., 1956, 24, 602. [all data]

Akiyama, Li, et al., 1979
Akiyama, I.; Li, K.C.; LeBreton, P.R.; Fu, P.P.; Harvey, R.G., Ultraviolet photoelectron studies of polycyclic aromatic hydrocarbons. The ground-state electronic structure of aryloxiranes and metabolites of benzo[a]pyrene, J. Phys. Chem., 1979, 83, 2997. [all data]

Clar and Schmidt, 1976
Clar, E.; Schmidt, W., Correlations between photoelectron and phosphorescence spectra of polycyclic hydrocarbons, Tetrahedron, 1976, 32, 2563. [all data]

Boschi and Schmidt, 1972
Boschi, R.; Schmidt, W., Photoelectron spectra of polycyclic aromatic hydrocarbons. Pyrene and coronene, Tetrahedron Lett., 1972, 25, 2577. [all data]

Corbella, Rodríguez, et al., 1995
Corbella, R.; Rodríguez, M.A.; Sánchez, M.J.; Montelongo, F.G., Correlations between gas chromatographic retention data of polycyclic aromatic hydrocarbons and several molecular descriptors, Chromatographia, 1995, 40, 9/10, 532-538, https://doi.org/10.1007/BF02290264 . [all data]

Hanai and Hong, 1989
Hanai, T.; Hong, C., Structure-retention correlation in CGC, J. Hi. Res. Chromatogr., 1989, 12, 5, 327-332, https://doi.org/10.1002/jhrc.1240120517 . [all data]

Shlyakhov, Anvaer, et al., 1975
Shlyakhov, A.F.; Anvaer, B.I.; Zolotareva, O.V.; Romina, N.N.; Novikova, N.V.; Koreshkova, R.I., On the possibility of group indentification of hydrocarbons by gas chromatography from temperature coefficients of retention indices, Zh. Anal. Khim., 1975, 30, 788-792. [all data]

Song, Lai, et al., 2003
Song, C.; Lai, W.-C.; Madhusudan Reddy, K.; Wei, B., Chapter 7. Temperature-programmed retention indices for GC and GC-MS of hydrocarbon fuels and simulated distillation GC of heavy oils in Analytical advances for hydrocarbon research, Hsu,C.S., ed(s)., Kluwer Academic/Plenum Publishers, New York, 2003, 147-193. [all data]

Zhang, Shen, et al., 2000
Zhang, M.-J.; Shen, S.-D.; Chen, S.-Y.; Sun, Y.-H., Analysis of heavy oil fractions in high-temperature coal tar by capillary gas chromatography/fourier transform infrared spectrometry, Chin. J. Chromatogr., 2000, 18, 3, 241-246. [all data]

Gautzsch and Zinn, 1996
Gautzsch, R.; Zinn, P., Use of incremental models to estimate the retention indexes of aromatic compounds, Chromatographia, 1996, 43, 3/4, 163-176, https://doi.org/10.1007/BF02292946 . [all data]

Lai and Song, 1995
Lai, W.-C.; Song, C., Temperature-programmed retention indices for g.c. and g.c.-m.s. analysis of coal- and petroleum-derived liquid fuels, Fuel, 1995, 74, 10, 1436-1451, https://doi.org/10.1016/0016-2361(95)00108-H . [all data]

Podmaniczky, Szepesy, et al., 1986
Podmaniczky, L.; Szepesy, L.; Lakszner, K.; Schomburg, G., Determination of Retention Indices in LPTGC, Chromatographia, 1986, 21, 7, 387-391, https://doi.org/10.1007/BF02346137 . [all data]

Beernaert, 1979
Beernaert, H., Gas Chromatographic Analysis of Polyclylic Aromatic Hydrocarbons, J. Chromatogr., 1979, 173, 1, 109-118, https://doi.org/10.1016/S0021-9673(01)80450-7 . [all data]

Lee, Vassilaros, et al., 1979
Lee, M.L.; Vassilaros, D.L.; White, C.M.; Novotny, M., Retention Indices for Programmed-Temperature Capillary-Column Gas Chromatography of Polycyclic Aromatic Hydrocarbons, Anal. Chem., 1979, 51, 6, 768-773, https://doi.org/10.1021/ac50042a043 . [all data]

Carugno and Rossi, 1967
Carugno, N.; Rossi, S., Evaluation of polynuclear hydrocarbons in cigarette smoke by glass capillary columns, J. Gas Chromatogr., 1967, 5, 2, 103-106, https://doi.org/10.1093/chromsci/5.2.103 . [all data]

Cantuti, Cartoni, et al., 1965
Cantuti, V.; Cartoni, G.P.; Liberti, A.; Torri, A.G., Improved evaluation of polynuclear hydrocarbons in atmospheric dust by gas chromatography, J. Chromatogr., 1965, 17, 60-65, https://doi.org/10.1016/S0021-9673(00)99836-4 . [all data]

Dimitriou-Christidis, Harris, et al., 2003
Dimitriou-Christidis, P.; Harris, B.C.; McDonald, T.J.; Reese, E.; Autenrieth, R.L., Estimation of selected physicochemical properties for methylated naphthalene compounds, Chemosphere, 2003, 52, 5, 869-881, https://doi.org/10.1016/S0045-6535(03)00288-1 . [all data]

Havenga and Rohwer, 1999
Havenga, W.J.; Rohwer, E.R., Chemical Characterization and Screening of Hydrocarbon Pollution in Industrial Soils by Headspace Solid-Phase Microextraction, J. Chromatogr., 1999, 848, 1-2, 279-295, https://doi.org/10.1016/S0021-9673(99)00522-1 . [all data]

Yasuhara, Shiraishi, et al., 1997
Yasuhara, A.; Shiraishi, H.; Nishikawa, M.; Yamamoto, T.; Uehiro, T.; Nakasugi, O.; Okumura, T.; Kenmotsu, K.; Fukui, H.; Nagase, M.; Ono, Y.; Kawagoshi, Y.; Baba, K.; Noma, Y., Determination of organic components in leachates from hazardous waste disposal sites in Japan by gas chromatography-mass spectrometry, J. Chromatogr. A, 1997, 774, 1-2, 321-332, https://doi.org/10.1016/S0021-9673(97)00078-2 . [all data]

Oda, Ichikawa, et al., 1996
Oda, J.; Ichikawa, S.; Mori, T., Analysis of polycyclic aromatic hydrocarbons in airborne particulates by capillary GC/MS method with programmed temperature relative retention index, Bunseki Kagaku, 1996, 45, 9, 825-835, https://doi.org/10.2116/bunsekikagaku.45.825 . [all data]

Miao and Wu, 1999
Miao, X.; Wu, F., Study on retention behaviors of polycyclic aromatic hydrocarbons by gas chromatography in different operation models, J. Instrumental Anal., 1999, 15, 4, 288-292. [all data]

Elizalde-González, Hutfliess, et al., 1996
Elizalde-González, M.P.; Hutfliess, M.; Hedden, K., Retention index system, adsorption characteristics, and sructure correlations of polycyclic aromatic hydrocarbons in fuels, J. Hi. Res. Chromatogr., 1996, 19, 6, 345-352, https://doi.org/10.1002/jhrc.1240190608 . [all data]

Harland, Cumming, et al., 1986
Harland, B.J.; Cumming, R.I.; Gillings, E., The Kovats indexes of some organic micropollutants on an SE54 capillary column, EUR, I Org. Micropollut. Aquat. Environ., 1986, EUR 10388, 123-127. [all data]

Quilliam, Lant, et al., 1985
Quilliam, M.A.; Lant, M.S.; Kaiser-Farrell, C.; McCalla, D.R.; Sheldrake, C.P.; Kerr, A.A.; Lockington, J.N.; Gibson, E.S., Identification of polycyclic aromatic compounds in of poly-mutagenic emissions from steel casting, Biomed. Mass Spectrom., 1985, 12, 4, 143-150, https://doi.org/10.1002/bms.1200120402 . [all data]

Vichi, Pizzale, et al., 2005
Vichi, S.; Pizzale, L.; Conte, L.S.; Buxaderas, S.; L´opez-Tamames, E., Simultaneous determination of volatile and semi-volatile aromatic hydrocarbons in virgin olive oil by headspace solid-phase microextraction coupled to gas chromatography/mass spectrometry, J. Chromatogr. A, 2005, 1090, 1-2, 146-154, https://doi.org/10.1016/j.chroma.2005.07.007 . [all data]

Oda, Yasuhara, et al., 1998
Oda, J.; Yasuhara, A.; Matsunaga, K.; Saito, Y., Identification of polycyclic aromatic hydrocarbons of the particulate accumulated in the tunnel duct of freeway and generation of their oxygenated derivatives, Jpn. J. Toxicol. Environ. Health, 1998, 44, 5, 334-351, https://doi.org/10.1248/jhs1956.44.334 . [all data]

Zenkevich, 1996
Zenkevich, I.G., Informational Maitenance of Gas Chromatographic Identification of Organic Compounds in Ecoanalytical Investigations, Z. Anal. Chem., 1996, 51, 11, 1140-1148. [all data]

Waggott and Davies, 1984
Waggott, A.; Davies, I.W., Identification of organic pollutants using linear temperature programmed retention indices (LTPRIs) - Part II, 1984, retrieved from http://dwi.defra.gov.uk/research/completed-research/reports/dwi0383.pdf. [all data]

Peng, Yang, et al., 1991
Peng, C.T.; Yang, Z.C.; Ding, S.F., Prediction of rentention idexes. II. Structure-retention index relationship on polar columns, J. Chromatogr., 1991, 586, 1, 85-112, https://doi.org/10.1016/0021-9673(91)80028-F . [all data]

Shlyakhov, 1984
Shlyakhov, A.F., Gas chromatography in organic geochemistry, Nedra, Moscow, 1984, 221. [all data]

Jamoussi, Kanzari, et al., 2007
Jamoussi, B.; Kanzari, F.; Hassine, B.B.; Abderrabba, A., Using Bezier curves for the calculation of retention indices of polycyclic aromatic hydrocarbons in the so-called Lee's scale in temperature-programmed gas chromatography with mass spectrometry detection, J. Chromatogr. Sci., 2007, 45, 1, 22-27, https://doi.org/10.1093/chromsci/45.1.22 . [all data]

Wang, Hou, et al., 2007
Wang, G.; Hou, Z.; Sun, Y.; Liu, Y.; Xie, B.; Liu, S., Investigation of pyrolysis behavior of fenoxycarb using PY-GC-MS assisted with chemometric methods, Chem. Anal., 2007, 52, 141-156. [all data]

Shao, Wang, et al., 2006
Shao, X.; Wang, G.; Sun, Y.; Zhang, R.; Xie, K.; Liu, H., Determination and Characterization of the Pyrolysis Products of Isoprocarb by GC-MS, J. Chromatogr. Sci., 2006, 44, 3, 141-147, https://doi.org/10.1093/chromsci/44.3.141 . [all data]

Skrbic and Onjia, 2006
Skrbic, B.; Onjia, A., Prediction of Lee Retention Indices of Polycyclic Aromatic Hydrocarbons by Artificial Neural Networks, J. Chromatorg. A, 2006, 1108, 2, 279-284, https://doi.org/10.1016/j.chroma.2006.01.080 . [all data]

Pedersen, Durant, et al., 2005
Pedersen, D.U.; Durant, J.L.; Taghizadeh, K.; Hemond, H.F.; Lafleur, A.L.; Cass, G.R., Human cell mutagenes in respirable airborne particles from the Northeastern United States. 2. Quantification of mutagenes and other organic compounds., Environ. Sci. Technol., 2005, 39, 24, 9547-9560, https://doi.org/10.1021/es050886c . [all data]

Marynowski, Pieta, et al., 2004
Marynowski, L.; Pieta, M.; Janeczek, J., Composition and source of polycyclic aromatic compounds in deposited dust from selected sites around the Upper Silesia, Poland, Geol. Q., 2004, 48, 2, 169-180. [all data]

Chen, Keeran, et al., 2002
Chen, P.H.; Keeran, W.S.; Van Ausdale, W.A.; Schindler, D.R.; Roberts, D.W., Application of Lee retention indices to the confirmation of tentatively identified compounds from GC/MS analysis of environmental samples, Technical paper, Analytical Services Division, Environmental ScienceEngineering, Inc, PO Box 1703, Gainesville, FL 32602, 2002, 11. [all data]

Wang, Jia, et al., 2000
Wang, J.; Jia, C.R.; Wong, C.K.; Wong, P.K., Characterization of polycyclic aromatic hydrocarbons created in lubricating oils, Water Air Soil Poll., 2000, 120, 3/4, 381-396, https://doi.org/10.1023/A:1005251618062 . [all data]

Piao, Chu, et al., 1999
Piao, M.; Chu, S.; Zheng, M.; Xu, X., Characterization of the combustion products of polyethylene, Chemosphere, 1999, 39, 9, 1497-1512, https://doi.org/10.1016/S0045-6535(99)00054-5 . [all data]

Durlak, Biswas, et al., 1998
Durlak, S.K.; Biswas, P.; Shi, J.; Bernhard, M.J., Characterization of polycyclic aromatic hydrocarbon particulate and gaseous emissions from polystyrene combustion, Environ. Sci. Technol., 1998, 32, 15, 2301-2307, https://doi.org/10.1021/es9709031 . [all data]

Wang, Peng, et al., 1997
Wang, Y.; Peng, P.; Cui, S.; Zhang, Y., Identification of PAH in the Suzhou River bed sediments by GC/MS and PAH retention index system, J. Nanjing Norm. Univ. (Nat. Sci.), 1997, 20, 2, 47-68. [all data]

Chen, 1996
Chen, J., GC and GC/MS methods for the analysis of polycyclic aromatic hydrocarbon (PAH) in sediment of the grand canal of China, Toxicol. Environ. Chem., 1996, 54, 1-4, 69-73, https://doi.org/10.1080/02772249609358297 . [all data]

Williams and Horne, 1995
Williams, P.T.; Horne, P.A., Analysis of aromatic hydrocarbons in pyrolytic oil derived from biomass, J. Anal. Appl. Pyrolysis, 1995, 31, 15-37, https://doi.org/10.1016/0165-2370(94)00814-H . [all data]

Shaogang and Xiaobai, 1994
Shaogang, C.; Xiaobai, X., System for calculating the linear temperature-programmed retention indices of polycylic aromatic compounds, J. Hi. Res. Chromatogr., 1994, 17, 5, 339-342, https://doi.org/10.1002/jhrc.1240170511 . [all data]

Donnelly, Abdel-Hamid, et al., 1993
Donnelly, J.R.; Abdel-Hamid, M.S.; Jeter, J.L.; Gurka, D.F., Application of gas chromatographic retention properties to the identification of environmental contaminants, J. Chromatogr., 1993, 642, 1-2, 409-415, https://doi.org/10.1016/0021-9673(93)80106-I . [all data]

Knobloch and Engewald, 1993
Knobloch, T.; Engewald, W., Identification of some polar polycyclic compounds in emissions from brown-coal-fired residential stoves, J. Hi. Res. Chromatogr., 1993, 16, 4, 239-242, https://doi.org/10.1002/jhrc.1240160407 . [all data]

Guillén, Blanco, et al., 1989
Guillén, M.D.; Blanco, J.; Bermejo, J.; Blanco, C.G., Temperature programmed retention indices of some PAHs on Capillary columns coated with OV-1701 and SE-54, J. Hi. Res. Chromatogr., 1989, 12, 8, 552-554, https://doi.org/10.1002/jhrc.1240120816 . [all data]

Hasegawa, Muragishi, et al., 1988
Hasegawa, K.; Muragishi, T.; Usami, S., Component analysis of coal-derivated heavy oil. Analysis of carcinogenic components in neutral nonpolar fractions, Nippon Kagaku Kaishi, 1988, 3, 3, 311-320, https://doi.org/10.1246/nikkashi.1988.311 . [all data]

Sye, Lin, et al., 1988
Sye, W.-F.; Lin, C.-L.; Yen, D.-P.; Tsai, C.-S., Polycyclic aromatic-hydrocarbons formation from luel and additives combustion, J. Chinese Chem. Soc., 1988, 35, 1, 1-11. [all data]

Wise, Benner, et al., 1988
Wise, S.A.; Benner, B.A.; Byrd, G.D.; Chesler, S.N.; Rebbert, R.E.; Schantz, M.M., Determination of polycyclic aromatic hydrocarbons in a coal tar standard reference material, Anal. Chem., 1988, 60, 9, 887-894, https://doi.org/10.1021/ac00160a012 . [all data]

Boenke and Ballschmiter, 1987
Boenke, A.; Ballschmiter, K., Fused quinones as retention index marker in high resolution gas chromatography with electron-capture detection (HRGC/ECD) of oxidized aromatic compounds, Fresenius J. Anal. Chem., 1987, 327, 1, 44-45, https://doi.org/10.1007/BF00474554 . [all data]

Rostad and Pereira, 1986
Rostad, C.E.; Pereira, W.E., Kovats and Lee retention indices determined by gas chromatography/mass spectrometry for organic compounds of environmental interest, J. Hi. Res. Chromatogr. Chromatogr. Comm., 1986, 9, 6, 328-334, https://doi.org/10.1002/jhrc.1240090603 . [all data]

Tong, Centen, et al., 1985
Tong, H.Y.; Centen, J.D.; Karasek, F.W.; Jellum, E.; Helland, P., Identification of Trace Organic Compounds in Dimethyl Sulphoxide Solution Using High-Performance Liquid Chromatography and Gas Chromatography-Mass Spectrometry, J. Chromatogr., 1985, 324, 373-383, https://doi.org/10.1016/S0021-9673(01)81336-4 . [all data]

Tong, Shore, et al., 1984
Tong, H.Y.; Shore, D.L.; Karasek, F.W.; Helland, P.; Jellum, E., Identification of organic compounds obtained from incineration of municipal waste by high-performance liquid chromatographic fractionation and gas chromatography-mass spectrometry, J. Chromatogr., 1984, 285, 423-441, https://doi.org/10.1016/S0021-9673(01)87784-0 . [all data]

Vassilaros, Kong, et al., 1982
Vassilaros, D.L.; Kong, R.C.; Later, D.W.; Lee, M.L., Linear retention index system for polycyclic aromatic compounds. Critical evaluation and additional indices, J. Chromatogr., 1982, 252, 1-20, https://doi.org/10.1016/S0021-9673(01)88394-1 . [all data]

Fuentes, Font, et al., 2007
Fuentes, M.J.; Font, R.; Gomez-Rico, M.F.; Martin-Gullon, I., Pyrolysis and combustion of waste lubricant oil from diesel cars: Decomposition and pollutants, J. Anal. Appl. Pyrolysis, 2007, 79, 1-2, 215-226, https://doi.org/10.1016/j.jaap.2006.12.004 . [all data]

Wang, Li, et al., 2007
Wang, Z.; Li, K.; Lambert, P.; Yang, C., Identification, characterization and quantitation of pyrogenic polycylic aromatic hydrocarbons and other organic compounds in tire fire products, J. Chromatogr. A, 2007, 1139, 1, 14-26, https://doi.org/10.1016/j.chroma.2006.10.085 . [all data]

Wang, Li, et al., 2007, 2
Wang, Z.; Li, K.; Lambert, P.; Brown, C.E.; Yang, C.; Hollebone, B.P., Identification and characterization of polycyclic aromatic compounds in tire fire products and differentiation of pyrogenic PAHs from petrogenic PAHs in Proceedings of the 30th Arctic and Marine Oilspill (AMOP) Technical Seminar. Vol.1, 2007, 61-85. [all data]

Aracil, Font, et al., 2005
Aracil, I.; Font, R.; Conesa, J.A., Semivolatile and volatile compounds from the pyrolysis and combustion of polyvinyl chloride, J. Anal. Appl. Pyrolysis, 2005, 74, 1-2, 465-478, https://doi.org/10.1016/j.jaap.2004.09.008 . [all data]

Cheng, Liu, et al., 2005
Cheng, D.-X.; Liu, B.-X.; Sun, Y.-A.; Xie, B.; Zhang, H.-L., rapid analysis of pyrolysis products of cholesterol by GC-MS assited with boiling point - Lee retention index, journal of Instrumental Analysis - Fenxi ceshi xuebao, 2005, 24, 6, 85-88. [all data]

Ré-Poppi and Santiago-Silva, 2005
Ré-Poppi, N.; Santiago-Silva, M., Polycyclic aromatic hydrocarbons and other selected organic compounds in ambient air of Campo Grande City, Brazil, Atmos. Environ., 2005, 39, 16, 2839-2850, https://doi.org/10.1016/j.atmosenv.2004.10.006 . [all data]

Sremac, Skrbic, et al., 2005
Sremac, S.; Skrbic, B.; Onjia, A., Artificial neural network prediction of quantitative structure-retention relationships of polycyclic aromatic hydrocarbons in gas chromatography, J. Serb. Chem. Soc., 2005, 70, 11, 1291-1300, https://doi.org/10.2298/JSC0511291S . [all data]

Lundstedt, Haglund, et al., 2003
Lundstedt, S.; Haglund, P.; Öberg, L., Degradation and formation of polycyclic aromatic compounds during bioslurry treatment of an aged gasworks soil, Environ. Toxicol. Chem., 2003, 22, 7, 1413-1420, https://doi.org/10.1002/etc.5620220701 . [all data]

Ré-Poppi and Santiago-Silva, 2002
Ré-Poppi, N.; Santiago-Silva, M.R., Identification of polycyclic aromatic hydrocarbons and methoxylated phenols in wood smoke emitted during production of charcoal, Chromatographia, 2002, 55, 7/8, 475-481, https://doi.org/10.1007/BF02492280 . [all data]

Reckendorf, 1997
Reckendorf, R.M., Identification of phenyl-substituted polycyclic aromatic compounds in ring furnace gases using GC-MS and GC-AED, Chromatographia, 1997, 45, 1, 173-182, https://doi.org/10.1007/BF02505557 . [all data]

Zamperlini, Silva, et al., 1997
Zamperlini, G.C.M.; Silva, M.R.S.; Vilegas, W., Identification of polycyclic aromatic hydrocarbons in sugar cane soot by gas chromatography-mass spectrometry, Chromatographia, 1997, 46, 11/12, 655-663, https://doi.org/10.1007/BF02490527 . [all data]

Bemgard, Colmsjo, et al., 1992
Bemgard, A.; Colmsjo, A.; Lundmark, B.-O., Gas chromatographic analysis of high-molecular-weight polynuclear aromatic hydrocarbons. I. Molecular weight 328, J. Chromatogr., 1992, 595, 1-2, 247-258, https://doi.org/10.1016/0021-9673(92)85167-R . [all data]

Guillen, Iglesias, et al., 1992
Guillen, M.D.; Iglesias, M.J.; Dominguez, A.; Blanco, C.G., Polynuclear aromatic hydrocarbon retention indices on SE-54 stationary phase of the volatile components of a coal tar pitch. Relationships between chromatographic retention and thermal reactivity, J. Chromatogr., 1992, 591, 1-2, 287-295, https://doi.org/10.1016/0021-9673(92)80246-Q . [all data]

Paschke, Herbel, et al., 1992
Paschke, A.; Herbel, W.; Steinhart, H.; Franke, S.; Francke, W., Determination of mono- to tetracyclic aromatic hydrocarbons in lubricating oil, J. Hi. Res. Chromatogr., 1992, 15, 12, 827-833, https://doi.org/10.1002/jhrc.1240151211 . [all data]

Peterman and Delfino, 1990
Peterman, P.H.; Delfino, J.J., Identification of isopropylbiphenyl, alkyl diphenylmethanes, diisopropylnaphthalene, linear alkyl benzenes and other polychlorinated biphenyl replacement compounds in effluents, sediments and fish in the Fox River system, Wisconsin, Biomed. Environ. Mass Spectrom., 1990, 19, 12, 755-770, https://doi.org/10.1002/bms.1200191203 . [all data]

Takada, Onda, et al., 1990
Takada, H.; Onda, T.; Ogura, N., Determination of polycyclic aromatic hydrocarbons in urban street dusts and their source materials by capillary gas chromatography, Environ. Sci. Technol., 1990, 24, 8, 1179-1186, https://doi.org/10.1021/es00078a005 . [all data]

Naikwadi, Charbonneau, et al., 1987
Naikwadi, K.P.; Charbonneau, G.M.; Karasek, F.W.; Clement, R.E., Separation and Identification of Organic Compounds in Air Particulate Extracts by High-Performance Liquid Chromatography and Gas Chromatography-Mass Spectrometry, J. Chromatogr., 1987, 398, 227-237, https://doi.org/10.1016/S0021-9673(01)96508-2 . [all data]

Tucminen, Wickstrom, et al., 1986
Tucminen, A.; Wickstrom, K.; Pyysalo, H., Determination of Polycyclic Aromatic Compounds by GLC-Selected Ion Monitoring (SIM) Technique, J. Hi. Res. Chromatogr. Chromatogr. Comm., 1986, 9, 8, 469-471, https://doi.org/10.1002/jhrc.1240090813 . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References