Pyrene
- Formula: C16H10
- Molecular weight: 202.2506
- IUPAC Standard InChIKey: BBEAQIROQSPTKN-UHFFFAOYSA-N
- CAS Registry Number: 129-00-0
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: β-Pyrene; Benzo[def]phenanthrene; Pyren; Coal tar pitch volatiles:pyrene
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Phase change data
Go To: Top, Gas phase ion energetics data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
CAL - James S. Chickos, William E. Acree, Jr., Joel F. Liebman, Students of Chem 202 (Introduction to the Literature of Chemistry), University of Missouri -- St. Louis
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tfus | 424. ± 3. | K | AVG | N/A | Average of 8 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Ttriple | 423.81 | K | N/A | Wong and Westrum, 1971 | Crystal phase 1 phase; Uncertainty assigned by TRC = 0.01 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 22.1 ± 0.26 | kcal/mol | CGC | Hanshaw, Nutt, et al., 2008 | AC |
ΔvapH° | 20.8 ± 0.31 | kcal/mol | GC | Teodorescu, Barhala, et al., 2006 | Based on data from 423. to 493. K.; AC |
Quantity | Value | Units | Method | Reference | Comment |
ΔsubH° | 24.98 | kcal/mol | ME | Siddiqi, Siddiqui, et al., 2009 | Based on data from 341. to 418. K.; AC |
ΔsubH° | 23.97 ± 0.24 | kcal/mol | Review | Roux, Temprado, et al., 2008 | There are sufficient high-quality literature values to make a good evaluation with a high degree of confidence. In general, the evaluated uncertainty limits are on the order of (0.5 to 2.5) kJ/mol.; DRB |
ΔsubH° | 23.5 ± 0.24 | kcal/mol | DSC | Rojas and Orozco, 2003 | AC |
ΔsubH° | 23.95 ± 0.1 | kcal/mol | V | Smith, Stewart, et al., 1980 | ALS |
ΔsubH° | 23.95 | kcal/mol | N/A | Smith, Stewart, et al., 1980 | DRB |
Enthalpy of vaporization
ΔvapH (kcal/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
18.8 | 398. | GC | Hinckley, Bidleman, et al., 1990 | Based on data from 343. to 453. K.; AC |
18. | 428. | N/A | Sasse, Jose, et al., 1988 | Based on data from 413. to 467. K.; AC |
17. | 528. | A | Stephenson and Malanowski, 1987 | Based on data from 513. to 668. K. See also Tsypikina and Ya, 1955.; AC |
18.3 | 440. | N/A | Smith, Stewart, et al., 1980 | Based on data from 398. to 458. K.; AC |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (atm)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
473.6 to 667.9 | 2.68142 | 1086.824 | -262.849 | Tsypkina, 1955 | Coefficents calculated by NIST from author's data. |
Enthalpy of sublimation
ΔsubH (kcal/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
24.69 ± 0.50 | 380. | ME | Siddiqi, Siddiqui, et al., 2009 | Based on data from 341. to 418. K.; AC |
24.6 ± 1.6 | 353. | ME | Oja and Suuberg, 1998 | Based on data from 308. to 398. K.; AC |
23.4 | 383. | GS | Nass, Lenoir, et al., 1995 | Based on data from 313. to 453. K.; AC |
23.97 ± 0.07 | 353. | PG | Sasse, Jose, et al., 1988 | Based on data from 369. to 383. K.; AC |
21.8 ± 0.1 | 303. | GS | Sonnefeld, Zoller, et al., 1983 | Based on data from 283. to 323. K.; AC |
23.95 ± 0.1 | 410. | IP | Smith, Stewart, et al., 1980 | Based on data from 398. to 423. K.; AC |
24.09 ± 0.36 | 348. to 419. | ME | Malaspina, Bardi, et al., 1974 | AC |
24.02 | 330. | ME | Hoyer and Peperle, 1958 | Based on data from 298. to 363. K.; AC |
22.500 | 344.75 | V | Bradley and Cleasby, 1953 | ALS |
23.92 ± 0.41 | 351. | ME | Inokuchi, Shiba, et al., 1952 | Based on data from 345. to 358. K.; AC |
Enthalpy of fusion
ΔfusH (kcal/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
3.99 | 422.4 | DSC | Rojas and Orozco, 2003 | Based on data from 403. to 433. K.; AC |
4.149 | 423.8 | N/A | Domalski and Hearing, 1996 | AC |
Entropy of fusion
ΔfusS (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
0.571 | 120.8 | Domalski and Hearing, 1996 | CAL |
9.792 | 423.8 |
Enthalpy of phase transition
ΔHtrs (kcal/mol) | Temperature (K) | Initial Phase | Final Phase | Reference | Comment |
---|---|---|---|---|---|
0.0691 | 120.8 | crystaline, II | crystaline, I | Wong and Westrum, 1971, 2 | DH |
4.1501 | 423.81 | crystaline, I | liquid | Wong and Westrum, 1971, 2 | DH |
Entropy of phase transition
ΔStrs (cal/mol*K) | Temperature (K) | Initial Phase | Final Phase | Reference | Comment |
---|---|---|---|---|---|
0.550 | 120.8 | crystaline, II | crystaline, I | Wong and Westrum, 1971, 2 | DH |
9.792 | 423.81 | crystaline, I | liquid | Wong and Westrum, 1971, 2 | DH |
Gas phase ion energetics data
Go To: Top, Phase change data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias
Data compiled as indicated in comments:
MM - Michael M. Meot-Ner (Mautner)
LL - Sharon G. Lias and Joel F. Liebman
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
B - John E. Bartmess
View reactions leading to C16H10+ (ion structure unspecified)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 7.426 ± 0.001 | eV | N/A | N/A | L |
Quantity | Value | Units | Method | Reference | Comment |
Proton affinity (review) | 207.7 | kcal/mol | N/A | Hunter and Lias, 1998 | HL |
Quantity | Value | Units | Method | Reference | Comment |
Gas basicity | 200.8 | kcal/mol | N/A | Hunter and Lias, 1998 | HL |
Electron affinity determinations
EA (eV) | Method | Reference | Comment |
---|---|---|---|
0.406 ± 0.010 | LPES | Ando, Kokubo, et al., 2004 | B |
0.39002 | ECD | Wentworth and Becker, 1962 | B |
0.500 ± 0.030 | ECD | Lyons, Morris, et al., 1968 | B |
0.5910 ± 0.0080 | ECD | Becker and Chen, 1966 | B |
Proton affinity at 298K
Proton affinity (kcal/mol) | Reference | Comment |
---|---|---|
207.4 | Aue, Guidoni, et al., 2000 | Experimental literature data re-evaluated by the authors using ab initio protonation entropies; MM |
Gas basicity at 298K
Gas basicity (review) (kcal/mol) | Reference | Comment |
---|---|---|
201.2 | Aue, Guidoni, et al., 2000 | Experimental literature data re-evaluated by the authors using ab initio protonation entropies; MM |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
7.4256 ± 0.0006 | LS | Hager and Wallace, 1988 | LL |
7.4 | PE | Clar, Robertson, et al., 1981 | LLK |
7.50 ± 0.05 | EQ | Mautner(Meot-Ner), 1980 | LLK |
7.41 | PE | Clar and Schmidt, 1979 | LLK |
7.45 ± 0.01 | PE | Dewar and Goodman, 1972 | LLK |
7.7 ± 0.3 | EI | Wacks, 1964 | RDSH |
7.70 | CTS | Kuroda, 1964 | RDSH |
7.31 | CTS | Finch, 1964 | RDSH |
7.72 | CTS | Briegleb, 1964 | RDSH |
7.48 | CTS | Kinoshita, 1962 | RDSH |
7.45 | CTS | Briegleb, Czekalla, et al., 1961 | RDSH |
7.55 | CTS | Birks and Stifkin, 1961 | RDSH |
7.53 | CTS | Briegleb and Czekalla, 1959 | RDSH |
7.58 | CTS | Matsen, 1956 | RDSH |
7.42 | PE | Akiyama, Li, et al., 1979 | Vertical value; LLK |
7.41 | PE | Clar and Schmidt, 1976 | Vertical value; LLK |
7.41 | PE | Boschi and Schmidt, 1972 | Vertical value; LLK |
Mass spectrum (electron ionization)
Go To: Top, Phase change data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
Due to licensing restrictions, this spectrum cannot be downloaded.
Owner | NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | Japan AIST/NIMC Database- Spectrum MS-NW- 129 |
NIST MS number | 227992 |
References
Go To: Top, Phase change data, Gas phase ion energetics data, Mass spectrum (electron ionization), Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Wong and Westrum, 1971
Wong, W.-K.; Westrum, E.F.,
Thermodynamics of Polynuclear Aromatic Molecules. 1. Heat Capacities and Enthalpies of Fusion of Pyrene, Fluoranthene, and Triphenylene,
J. Chem. Thermodyn., 1971, 3, 105-24. [all data]
Hanshaw, Nutt, et al., 2008
Hanshaw, William; Nutt, Marjorie; Chickos, James S.,
Hypothetical Thermodynamic Properties. Subcooled Vaporization Enthalpies and Vapor Pressures of Polyaromatic Hydrocarbons,
J. Chem. Eng. Data, 2008, 53, 8, 1903-1913, https://doi.org/10.1021/je800300x
. [all data]
Teodorescu, Barhala, et al., 2006
Teodorescu, Mariana; Barhala, Alexandru; Dragoescu, Dana,
Isothermal (vapour+liquid) equilibria for the binary (cyclopentanone or cyclohexanone with 1,1,2,2-tetrachloroethane) systems at temperatures of (343.15, 353.15, and 363.15)K,
The Journal of Chemical Thermodynamics, 2006, 38, 11, 1432-1437, https://doi.org/10.1016/j.jct.2006.01.010
. [all data]
Siddiqi, Siddiqui, et al., 2009
Siddiqi, M. Aslam; Siddiqui, Rehan A.; Atakan, Burak,
Thermal Stability, Sublimation Pressures, and Diffusion Coefficients of Anthracene, Pyrene, and Some Metal β-Diketonates,
J. Chem. Eng. Data, 2009, 54, 10, 2795-2802, https://doi.org/10.1021/je9001653
. [all data]
Roux, Temprado, et al., 2008
Roux, M.V.; Temprado, M.; Chickos, J.S.; Nagano, Y.,
Critically Evaluated Thermochemical Properties of Polycyclic Aromatic Hydrocarbons,
J. Phys. Chem. Ref. Data, 2008, 37, 4, 1855-1996. [all data]
Rojas and Orozco, 2003
Rojas, Aarón; Orozco, Eulogio,
Measurement of the enthalpies of vaporization and sublimation of solids aromatic hydrocarbons by differential scanning calorimetry,
Thermochimica Acta, 2003, 405, 1, 93-107, https://doi.org/10.1016/S0040-6031(03)00139-4
. [all data]
Smith, Stewart, et al., 1980
Smith, N.K.; Stewart, R.C., Jr.; Osborn, A.G.; Scott, D.W.,
Pyrene: vapor pressure, enthalpy of combustion, and chemical thermodynamic properties,
J. Chem. Thermodyn., 1980, 12, 919-926. [all data]
Hinckley, Bidleman, et al., 1990
Hinckley, Daniel A.; Bidleman, Terry F.; Foreman, William T.; Tuschall, Jack R.,
Determination of vapor pressures for nonpolar and semipolar organic compounds from gas chromatograhic retention data,
J. Chem. Eng. Data, 1990, 35, 3, 232-237, https://doi.org/10.1021/je00061a003
. [all data]
Sasse, Jose, et al., 1988
Sasse, Karim; Jose, Jacques; Merlin, Jean-Claude,
A static apparatus for measurement of low vapor pressures. Experimental results on high molecular-weight hydrocarbons,
Fluid Phase Equilibria, 1988, 42, 287-304, https://doi.org/10.1016/0378-3812(88)80065-7
. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Tsypikina and Ya, 1955
Tsypikina, O.; Ya, J.,
J. Appl. Chem. USSR, 1955, 28, 167. [all data]
Tsypkina, 1955
Tsypkina, O.Y.,
Study of Vacuum Pressure Influence on Efficiency of Separation of Some Polynuclear Compounds of Coal Tar Rectifications,
Zh. Prikl. Khim. (Moscow), 1955, 28, 2, 185-192. [all data]
Oja and Suuberg, 1998
Oja, Vahur; Suuberg, Eric M.,
Vapor Pressures and Enthalpies of Sublimation of Polycyclic Aromatic Hydrocarbons and Their Derivatives,
J. Chem. Eng. Data, 1998, 43, 3, 486-492, https://doi.org/10.1021/je970222l
. [all data]
Nass, Lenoir, et al., 1995
Nass, Karen; Lenoir, Dieter; Kettrup, Antonius,
Calculation of the Thermodynamic Properties of Polycyclic Aromatic Hydrocarbons by an Incremental Procedure,
Angew. Chem. Int. Ed. Engl., 1995, 34, 16, 1735-1736, https://doi.org/10.1002/anie.199517351
. [all data]
Sonnefeld, Zoller, et al., 1983
Sonnefeld, W.J.; Zoller, W.H.; May, W.E.,
Dynamic coupled-column liquid-chromatographic determination of ambient-temperature vapor pressures of polynuclear aromatic hydrocarbons,
Anal. Chem., 1983, 55, 2, 275-280, https://doi.org/10.1021/ac00253a022
. [all data]
Malaspina, Bardi, et al., 1974
Malaspina, L.; Bardi, G.; Gigli, R.,
Simultaneous determination by knudsen-effusion microcalorimetric technique of the vapor pressure and enthalpy of vaporization of pyrene and 1,3,5-triphenylbenzene,
The Journal of Chemical Thermodynamics, 1974, 6, 11, 1053-1064, https://doi.org/10.1016/0021-9614(74)90067-6
. [all data]
Hoyer and Peperle, 1958
Hoyer, H.; Peperle, W.,
Z. Elektrochem., 1958, 62, 61. [all data]
Bradley and Cleasby, 1953
Bradley, R.S.; Cleasby, T.G.,
The vapour pressure and lattice energy of some aromatic ring compounds,
J. Am. Chem. Soc., 1953, 1690-16. [all data]
Inokuchi, Shiba, et al., 1952
Inokuchi, Hiroo; Shiba, Sukekuni; Handa, Takashi; Akamatu, Hideo,
Heats of Sublimation of Condensed Polynuclear Aromatic Hydrocarbons,
Bull. Chem. Soc. Jpn., 1952, 25, 5, 299-302, https://doi.org/10.1246/bcsj.25.299
. [all data]
Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D.,
Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III,
J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985
. [all data]
Wong and Westrum, 1971, 2
Wong, W-K.; Westrum, E.F., Jr.,
Thermodynamics of polynuclear aromatic molecules. I. Heat capacities and enthalpies of fusion of pyrene, flouranthene, and triphenylene,
J. Chem. Thermodynam., 1971, 3, 105-124. [all data]
Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G.,
Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update,
J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018
. [all data]
Ando, Kokubo, et al., 2004
Ando, N.; Kokubo, S.; Mitsui, M.; Nakajima, A.,
Photoelectron spectroscopy of pyrene cluster anions, (pyrene)(-)(n) (n=1-20),
Chem. Phys. Lett., 2004, 389, 4-6, 279-283, https://doi.org/10.1016/j.cplett.2004.03.100
. [all data]
Wentworth and Becker, 1962
Wentworth, W.E.; Becker, R.S.,
Potential Method for the Determination of Electron Affinities of Molecules: Application to Some Aromatic Hydrocarbons.,
J. Am. Chem. Soc., 1962, 84, 22, 4263, https://doi.org/10.1021/ja00881a014
. [all data]
Lyons, Morris, et al., 1968
Lyons, L.E.; Morris, G.C.; Warren, L.J.,
Electron Affinities and the Electron Capture Method for Aromatic Hydrocarbons,
J. Phys. Chem., 1968, 72, 10, 3677, https://doi.org/10.1021/j100856a056
. [all data]
Becker and Chen, 1966
Becker, R.S.; Chen, E.,
Extension of Electron Affinities and Ionization Potentials of Aromatic Hydrocarbons,
J. Chem. Phys., 1966, 45, 7, 2403, https://doi.org/10.1063/1.1727954
. [all data]
Aue, Guidoni, et al., 2000
Aue, D.H.; Guidoni, M.; Betowski, L.D.,
Ab initio calculated gas-phase basicities of polynuclear aromatic hydrocarbons,
Int. J. Mass Spectrom., 2000, 201, 283. [all data]
Hager and Wallace, 1988
Hager, J.W.; Wallace, S.C.,
Two-laser photoionization supersonic jet mass spectrometry of aromatic molecules,
Anal. Chem., 1988, 60, 5. [all data]
Clar, Robertson, et al., 1981
Clar, E.; Robertson, J.M.; Schlogl, R.; Schmidt, W.,
Photoelectron spectra of polynuclear aromatics. 6. Application to structural elucidation: 'Circumanthracene',
J. Am. Chem. Soc., 1981, 103, 1320. [all data]
Mautner(Meot-Ner), 1980
Mautner(Meot-Ner), M.,
Ion thermochemistry of low volatility compounds in the gas phase. 3. Polycyclic aromatics: Ionization energies, proton, and hydrogen affinities. Extrapolations to graphite,
J. Phys. Chem., 1980, 84, 2716. [all data]
Clar and Schmidt, 1979
Clar, E.; Schmidt, W.,
Correlations between photoelectron and UV absorption spectra of polycyclic hydrocarbons. The pyrene series,
Tetrahedron, 1979, 35, 1027. [all data]
Dewar and Goodman, 1972
Dewar, M.J.S.; Goodman, D.W.,
Photoelectron spectra of molecules. Part 5.--Polycyclic aromatic hydrocarbons,
J. Chem. Soc. Faraday Trans. 2, 1972, 68, 1784. [all data]
Wacks, 1964
Wacks, M.E.,
Electron-impact studies of aromatic hydrocarbons. II. Naphthacene, naphthaphene, chrysene, triphenylene, and pyrene,
J. Chem. Phys., 1964, 41, 1661. [all data]
Kuroda, 1964
Kuroda, H.,
Ionization potentials of polycyclic aromatic hydrocarbons,
Nature, 1964, 201, 1214. [all data]
Finch, 1964
Finch, A.C.M.,
Charge-transfer spectra and the ionization energy of azulene,
J. Chem. Soc., 1964, 2272. [all data]
Briegleb, 1964
Briegleb, G.,
Electron affinity of organic molecules,
Angew. Chem. Intern. Ed., 1964, 3, 617. [all data]
Kinoshita, 1962
Kinoshita, M.,
The absorption spectra of the molecular complexes of aromatic compounds with p-bromanil,
Bull. Chem. Soc. Japan, 1962, 35, 1609. [all data]
Briegleb, Czekalla, et al., 1961
Briegleb, G.; Czekalla, J.; Reuss, G.,
Mesomeriemomente und Elektronenuberfuhrungsbanden von Elektronen-donator-akzeptor-komplexen des Chloranils und Tetracyanathylens mit aromatischen Kohlenwasserstoffen,
Z. Phys. Chem. (Neue Folge), 1961, 30, 333. [all data]
Birks and Stifkin, 1961
Birks, J.B.; Stifkin, M.A.,
π-Electronic excitation and ionization energies of condensed ring aromatic hydrocarbons,
Nature, 1961, 191, 761. [all data]
Briegleb and Czekalla, 1959
Briegleb, G.; Czekalla, J.,
Die Bestimmung von lonisierungsenergien aus den Spektren von Elektronenubergangskomplexen,
Z.Elektrochem., 1959, 63, 6. [all data]
Matsen, 1956
Matsen, F.A.,
Electron affinities, methyl affinities, and ionization energies of condensed ring aromatic hydrocarbons,
J. Chem. Phys., 1956, 24, 602. [all data]
Akiyama, Li, et al., 1979
Akiyama, I.; Li, K.C.; LeBreton, P.R.; Fu, P.P.; Harvey, R.G.,
Ultraviolet photoelectron studies of polycyclic aromatic hydrocarbons. The ground-state electronic structure of aryloxiranes and metabolites of benzo[a]pyrene,
J. Phys. Chem., 1979, 83, 2997. [all data]
Clar and Schmidt, 1976
Clar, E.; Schmidt, W.,
Correlations between photoelectron and phosphorescence spectra of polycyclic hydrocarbons,
Tetrahedron, 1976, 32, 2563. [all data]
Boschi and Schmidt, 1972
Boschi, R.; Schmidt, W.,
Photoelectron spectra of polycyclic aromatic hydrocarbons. Pyrene and coronene,
Tetrahedron Lett., 1972, 25, 2577. [all data]
Notes
Go To: Top, Phase change data, Gas phase ion energetics data, Mass spectrum (electron ionization), References
- Symbols used in this document:
EA Electron affinity IE (evaluated) Recommended ionization energy Tfus Fusion (melting) point Ttriple Triple point temperature ΔHtrs Enthalpy of phase transition ΔStrs Entropy of phase transition ΔfusH Enthalpy of fusion ΔfusS Entropy of fusion ΔsubH Enthalpy of sublimation ΔsubH° Enthalpy of sublimation at standard conditions ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.