Carbon dioxide

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Reaction thermochemistry data

Go To: Top, Gas phase ion energetics data, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Reactions 1 to 50

Oxygen cation + Carbon dioxide = (Oxygen cation • Carbon dioxide)

By formula: O2+ + CO2 = (O2+ • CO2)

Quantity Value Units Method Reference Comment
Δr9.8 ± 0.9kcal/molAVGN/AAverage of 4 out of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Δr17.5cal/mol*KPHPMSHiraoka, Nakajima, et al., 1988gas phase; M
Δr18.9cal/mol*KDTIllies, 1988gas phase; ΔrH(0 K)=9.80 kcal/mol; M
Δr20.7cal/mol*KN/ADotan, Davidson, et al., 1978gas phase; switching reaction(O2+)O2, Entropy change calculated or estimated; Conway and Janik, 1970; M
Δr20.cal/mol*KN/AMeot-Ner (Mautner) and Field, 1977gas phase; Entropy change calculated or estimated, DG>, ΔrH>; M
Quantity Value Units Method Reference Comment
Δr4.4kcal/molDTRakshit and Warneck, 1981gas phase; M
Δr4.3kcal/molFADotan, Davidson, et al., 1978gas phase; switching reaction(O2+)O2, Entropy change calculated or estimated; Conway and Janik, 1970; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
9.4600.PHPMSMeot-Ner (Mautner) and Field, 1977gas phase; Entropy change calculated or estimated, DG>, ΔrH>; M

CO2+ + Carbon dioxide = (CO2+ • Carbon dioxide)

By formula: CO2+ + CO2 = (CO2+ • CO2)

Quantity Value Units Method Reference Comment
Δr16. ± 1.kcal/molAVGN/AAverage of 7 out of 10 values; Individual data points
Quantity Value Units Method Reference Comment
Δr19.1cal/mol*KPHPMSHiraoka, Nakajima, et al., 1988gas phase; M
Δr18.6cal/mol*KDTIllies, 1988gas phase; ΔrH(0 K)=15.9 kcal/mol; M
Δr19.5cal/mol*KDTVan Koppen, Kemper, et al., 1983gas phase; M
Δr22.8cal/mol*KPHPMSHeadley, Mason, et al., 1982gas phase; M
Δr21.1cal/mol*KPHPMSMeot-Ner (Mautner) and Field, 1977gas phase; M

O- + Carbon dioxide = (O- • Carbon dioxide)

By formula: O- + CO2 = (O- • CO2)

Quantity Value Units Method Reference Comment
Δr48. ± 10.kcal/molAVGN/AAverage of 8 out of 9 values; Individual data points
Quantity Value Units Method Reference Comment
Δr48.0 ± 5.0kcal/molIMREAdams and Bohme, 1970gas phase; O3- + CO2 <=> CO3- + O2; B

Iodide + Carbon dioxide = (Iodide • Carbon dioxide)

By formula: I- + CO2 = (I- • CO2)

Quantity Value Units Method Reference Comment
Δr3.7 ± 1.8kcal/molN/APiani, Becucci, et al., 2008gas phase; Stated electron affinity is the Vertical Detachment Energy; B
Δr4.0 ± 2.0kcal/molPDisArnold, Bradforth, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B
Δr4.7 ± 2.0kcal/molTDAsHiraoka, Mizuse, et al., 1987gas phase; B,M
Δr3.20kcal/molN/AGomez, Taylor, et al., 2002gas phase; EA=Vertical Detachment Energy. Affinity is stepwise difference in EAs.; B
Δr5.60 ± 0.10kcal/molTDAsKeesee, Lee, et al., 1980gas phase; B,M
Quantity Value Units Method Reference Comment
Δr13.4cal/mol*KPHPMSHiraoka, Mizuse, et al., 1987gas phase; M
Δr18.2cal/mol*KHPMSKeesee, Lee, et al., 1980gas phase; M
Quantity Value Units Method Reference Comment
Δr0.7 ± 2.0kcal/molTDAsHiraoka, Mizuse, et al., 1987gas phase; B
Δr0.80 ± 0.10kcal/molTDAsBanic and Iribarne, 1985gas phase; B,M
Δr0.40 ± 0.10kcal/molTDAsKeesee, Lee, et al., 1980gas phase; B

Oxygen anion + Carbon dioxide = (Oxygen anion • Carbon dioxide)

By formula: O2- + CO2 = (O2- • CO2)

Quantity Value Units Method Reference Comment
Δr19.00 ± 0.20kcal/molTDAsHiraoka and Yamabe, 1992gas phase; B,M
Δr17.7 ± 1.8kcal/molIMREPack and Phelps, 1966gas phase; Corrected with more recent EA(O2) = 0.45 eV; B,M
Δr25.4 ± 4.6kcal/molPDisVestal and Mauclaire, 1977gas phase; B
Quantity Value Units Method Reference Comment
Δr24.2cal/mol*KPHPMSHiraoka and Yamabe, 1992gas phase; M
Δr21.cal/mol*KDTPack and Phelps, 1966gas phase; M
Quantity Value Units Method Reference Comment
Δr11.7 ± 2.0kcal/molTDAsHiraoka and Yamabe, 1992gas phase; B
Δr12.2 ± 1.2kcal/molIMREPack and Phelps, 1966gas phase; Corrected with more recent EA(O2) = 0.45 eV; B
Δr10.0kcal/molFAAdams and Bohme, 1970gas phase; switching reaction(O2-)O2; Conway and Nesbit, 1968; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
12.9296.FAFehsenfeld and Ferguson, 1974gas phase; switching reaction(O2-)H2O; Arshadi and Kebarle, 1970; M

Fluorine anion + Carbon dioxide = (Fluorine anion • Carbon dioxide)

By formula: F- + CO2 = (F- • CO2)

Quantity Value Units Method Reference Comment
Δr32.07kcal/molN/AArnold, Bradforth, et al., 1995, 2gas phase; B
Δr32.3 ± 2.0kcal/molTDAsHiraoka, Mizuse, et al., 1987gas phase; B,M
Δr31.7 ± 2.0kcal/molIMRELarson and McMahon, 1985gas phase; B,M
Δr33.0 ± 3.0kcal/molIMREMcMahon and Northcott, 1978gas phase; B
Quantity Value Units Method Reference Comment
Δr26.7cal/mol*KPHPMSHiraoka, Mizuse, et al., 1987gas phase; M
Δr24.cal/mol*KN/ALarson and McMahon, 1985gas phase; switching reaction,Thermochemical ladder(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M
Quantity Value Units Method Reference Comment
Δr24.3 ± 2.0kcal/molTDAsHiraoka, Mizuse, et al., 1987gas phase; B
Δr24.5 ± 2.0kcal/molIMRELarson and McMahon, 1985gas phase; B,M
Δr11.6kcal/molFASpears and Ferguson, 1973gas phase; DG>; M

Chlorine anion + Carbon dioxide = (Chlorine anion • Carbon dioxide)

By formula: Cl- + CO2 = (Cl- • CO2)

Quantity Value Units Method Reference Comment
Δr6.80 ± 0.50kcal/molPDisArnold, Bradforth, et al., 1995, 2gas phase; Affinity: shift in apparent EA from lesser-solvated ion. Ignores any neutral-neutral bond.; B
Δr7.60kcal/molTDEqHiraoka, Shoda, et al., 1986gas phase; B,M
Δr8.00 ± 0.10kcal/molTDAsKeesee, Lee, et al., 1980gas phase; B,M
Quantity Value Units Method Reference Comment
Δr18.2cal/mol*KPHPMSHiraoka, Shoda, et al., 1986gas phase; M
Δr19.6cal/mol*KHPMSKeesee, Lee, et al., 1980gas phase; M
Quantity Value Units Method Reference Comment
Δr2.10kcal/molTDEqHiraoka, Shoda, et al., 1986gas phase; B
Δr2.10 ± 0.10kcal/molTDAsKeesee, Lee, et al., 1980gas phase; B

(Iodide • 2Carbon dioxide) + Carbon dioxide = (Iodide • 3Carbon dioxide)

By formula: (I- • 2CO2) + CO2 = (I- • 3CO2)

Quantity Value Units Method Reference Comment
Δr2.20kcal/molN/AGomez, Taylor, et al., 2002gas phase; EA=Vertical Detachment Energy. Affinity is stepwise difference in EAs.; B
Δr3.7 ± 2.0kcal/molPDisArnold, Bradforth, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B
Δr4.6 ± 1.0kcal/molTDAsHiraoka, Mizuse, et al., 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr18.4cal/mol*KPHPMSHiraoka, Mizuse, et al., 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr-0.6 ± 2.0kcal/molTDAsHiraoka, Mizuse, et al., 1987gas phase; B

(Iodide • 4Carbon dioxide) + Carbon dioxide = (Iodide • 5Carbon dioxide)

By formula: (I- • 4CO2) + CO2 = (I- • 5CO2)

Quantity Value Units Method Reference Comment
Δr1.70kcal/molN/AGomez, Taylor, et al., 2002gas phase; EA=Vertical Detachment Energy. Affinity is stepwise difference in EAs.; B
Δr3.1 ± 2.0kcal/molPDisArnold, Bradforth, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B
Δr4.3 ± 1.0kcal/molTDAsHiraoka, Mizuse, et al., 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr19.0cal/mol*KPHPMSHiraoka, Mizuse, et al., 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr-1.4 ± 2.0kcal/molTDAsHiraoka, Mizuse, et al., 1987gas phase; B

(Iodide • Carbon dioxide) + Carbon dioxide = (Iodide • 2Carbon dioxide)

By formula: (I- • CO2) + CO2 = (I- • 2CO2)

Quantity Value Units Method Reference Comment
Δr3.6 ± 2.0kcal/molPDisArnold, Bradforth, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B
Δr4.7 ± 1.0kcal/molTDAsHiraoka, Mizuse, et al., 1987gas phase; B,M
Δr2.60kcal/molN/AGomez, Taylor, et al., 2002gas phase; EA=Vertical Detachment Energy. Affinity is stepwise difference in EAs.; B
Quantity Value Units Method Reference Comment
Δr17.3cal/mol*KPHPMSHiraoka, Mizuse, et al., 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr0.7 ± 2.0kcal/molTDAsHiraoka, Mizuse, et al., 1987gas phase; B

(Iodide • 5Carbon dioxide) + Carbon dioxide = (Iodide • 6Carbon dioxide)

By formula: (I- • 5CO2) + CO2 = (I- • 6CO2)

Quantity Value Units Method Reference Comment
Δr3.0 ± 2.0kcal/molPDisArnold, Bradforth, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B
Δr1.80kcal/molN/AGomez, Taylor, et al., 2002gas phase; EA=Vertical Detachment Energy. Affinity is stepwise difference in EAs.; B
Δr4.2kcal/molPHPMSHiraoka, Mizuse, et al., 1987gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr19.cal/mol*KN/AHiraoka, Mizuse, et al., 1987gas phase; Entropy change calculated or estimated; M

(Sodium ion (1+) • Carbon dioxide) + Water = (Sodium ion (1+) • Water • Carbon dioxide)

By formula: (Na+ • CO2) + H2O = (Na+ • H2O • CO2)

Quantity Value Units Method Reference Comment
Δr20.7kcal/molHPMSPeterson, Mark, et al., 1984gas phase; From thermochemical cycle; Dzidic and Kebarle, 1970; M
Δr22.9kcal/molFAPerry, Rowe, et al., 1980gas phase; From thermochemical cycle(Na+) 2H2O; Dzidic and Kebarle, 1970, Peterson, Mark, et al., 1984; M
Quantity Value Units Method Reference Comment
Δr25.3cal/mol*KHPMSPeterson, Mark, et al., 1984gas phase; From thermochemical cycle; Dzidic and Kebarle, 1970; M
Δr25.6cal/mol*KFAPerry, Rowe, et al., 1980gas phase; From thermochemical cycle(Na+) 2H2O; Dzidic and Kebarle, 1970, Peterson, Mark, et al., 1984; M

CHO2+ + Carbon dioxide = (CHO2+ • Carbon dioxide)

By formula: CHO2+ + CO2 = (CHO2+ • CO2)

Quantity Value Units Method Reference Comment
Δr19.8kcal/molPHPMSSzulejko and McMahon, 1992gas phase; M
Δr18.0kcal/molPHPMSHiraoka, Shoda, et al., 1986gas phase; M
Δr19.1kcal/molPHPMSJennings, Headley, et al., 1982gas phase; M
Δr20.1kcal/molPHPMSMeot-Ner (Mautner) and Field, 1977gas phase; M
Quantity Value Units Method Reference Comment
Δr26.6cal/mol*KPHPMSSzulejko and McMahon, 1992gas phase; M
Δr22.2cal/mol*KPHPMSHiraoka, Shoda, et al., 1986gas phase; M
Δr27.1cal/mol*KPHPMSJennings, Headley, et al., 1982gas phase; M
Δr24.2cal/mol*KPHPMSMeot-Ner (Mautner) and Field, 1977gas phase; M

(Iodide • 3Carbon dioxide) + Carbon dioxide = (Iodide • 4Carbon dioxide)

By formula: (I- • 3CO2) + CO2 = (I- • 4CO2)

Quantity Value Units Method Reference Comment
Δr1.80kcal/molN/AGomez, Taylor, et al., 2002gas phase; EA=Vertical Detachment Energy. Affinity is stepwise difference in EAs.; B
Δr3.6 ± 2.0kcal/molPDisArnold, Bradforth, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B
Δr4.5 ± 1.0kcal/molTDAsHiraoka, Mizuse, et al., 1987gas phase; B
Quantity Value Units Method Reference Comment
Δr-1.0 ± 2.0kcal/molTDAsHiraoka, Mizuse, et al., 1987gas phase; B

Nitrogen oxide anion + Carbon dioxide = (Nitrogen oxide anion • Carbon dioxide)

By formula: NO2- + CO2 = (NO2- • CO2)

Quantity Value Units Method Reference Comment
Δr7.30 ± 0.20kcal/molTDAsHiraoka and Yamabe, 1992gas phase; B,M
Δr9.30 ± 0.10kcal/molTDAsKeesee, Lee, et al., 1980gas phase; B,M
Quantity Value Units Method Reference Comment
Δr17.2cal/mol*KPHPMSHiraoka and Yamabe, 1992gas phase; M
Δr24.2cal/mol*KHPMSKeesee, Lee, et al., 1980gas phase; M
Quantity Value Units Method Reference Comment
Δr2.1 ± 2.0kcal/molTDAsHiraoka and Yamabe, 1992gas phase; B
Δr2.00 ± 0.20kcal/molTDAsKeesee, Lee, et al., 1980gas phase; B

Nitric oxide anion + Carbon dioxide = (Nitric oxide anion • Carbon dioxide)

By formula: NO- + CO2 = (NO- • CO2)

Quantity Value Units Method Reference Comment
Δr8.5 ± 0.3kcal/molDTIllies, 1988gas phase; ΔrH(0 K)=8.60 kcal/mol; M
Δr7.7 ± 0.4kcal/molPHPMSHiraoka and Yamabe, 1991gas phase; M
Δr13.8kcal/molFADunkin, Fehsenfeld, et al., 1971gas phase; switching reaction(NO+)NO, ΔrH<; M
Quantity Value Units Method Reference Comment
Δr18.0cal/mol*KDTIllies, 1988gas phase; ΔrH(0 K)=8.60 kcal/mol; M
Δr13.7cal/mol*KPHPMSHiraoka and Yamabe, 1991gas phase; M

(Bromine anion • Carbon dioxide) + Carbon dioxide = (Bromine anion • 2Carbon dioxide)

By formula: (Br- • CO2) + CO2 = (Br- • 2CO2)

Quantity Value Units Method Reference Comment
Δr5.1 ± 2.0kcal/molPDisArnold, Bradforth, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B
Δr6.0 ± 1.0kcal/molTDAsHiraoka, Mizuse, et al., 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr19.0cal/mol*KPHPMSHiraoka, Mizuse, et al., 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr0.3 ± 2.0kcal/molTDAsHiraoka, Mizuse, et al., 1987gas phase; B

(CO2+ • Carbon dioxide) + Carbon dioxide = (CO2+ • 2Carbon dioxide)

By formula: (CO2+ • CO2) + CO2 = (CO2+ • 2CO2)

Quantity Value Units Method Reference Comment
Δr5.6 ± 0.3kcal/molPHPMSHiraoka, Nakajima, et al., 1988gas phase; M
Δr8.3kcal/molEICameron, Aitken, et al., 1994gas phase; M
Δr3.3kcal/molPILinn and Ng, 1981gas phase; M
Δr6.0kcal/molPHPMSMeot-Ner (Mautner) and Field, 1977gas phase; M
Quantity Value Units Method Reference Comment
Δr14.1cal/mol*KPHPMSHiraoka, Nakajima, et al., 1988gas phase; M
Δr24.0cal/mol*KPHPMSMeot-Ner (Mautner) and Field, 1977gas phase; M

Bromine anion + Carbon dioxide = (Bromine anion • Carbon dioxide)

By formula: Br- + CO2 = (Br- • CO2)

Quantity Value Units Method Reference Comment
Δr5.3 ± 2.0kcal/molPDisArnold, Bradforth, et al., 1995, 2gas phase; Affinity: shift in apparent EA from lesser-solvated ion. Ignores any neutral-neutral bond.; B
Δr6.7 ± 1.0kcal/molTDAsHiraoka, Mizuse, et al., 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr16.5cal/mol*KPHPMSHiraoka, Mizuse, et al., 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr1.8 ± 2.0kcal/molTDAsHiraoka, Mizuse, et al., 1987gas phase; B

(Chlorine anion • 2Carbon dioxide) + Carbon dioxide = (Chlorine anion • 3Carbon dioxide)

By formula: (Cl- • 2CO2) + CO2 = (Cl- • 3CO2)

Quantity Value Units Method Reference Comment
Δr6.8 ± 1.0kcal/molTDAsHiraoka, Mizuse, et al., 1987gas phase; B
Δr6.80kcal/molTDAsHiraoka, Shoda, et al., 1986gas phase; B,M
Quantity Value Units Method Reference Comment
Δr22.4cal/mol*KPHPMSHiraoka, Shoda, et al., 1986gas phase; M
Quantity Value Units Method Reference Comment
Δr0.1 ± 2.0kcal/molTDAsHiraoka, Mizuse, et al., 1987gas phase; B
Δr0.10kcal/molTDAsHiraoka, Shoda, et al., 1986gas phase; B

(Chlorine anion • Carbon dioxide) + Carbon dioxide = (Chlorine anion • 2Carbon dioxide)

By formula: (Cl- • CO2) + CO2 = (Cl- • 2CO2)

Quantity Value Units Method Reference Comment
Δr7.2 ± 1.0kcal/molTDAsHiraoka, Mizuse, et al., 1987gas phase; B
Δr7.20kcal/molTDAsHiraoka, Shoda, et al., 1986gas phase; B,M
Quantity Value Units Method Reference Comment
Δr20.8cal/mol*KPHPMSHiraoka, Shoda, et al., 1986gas phase; M
Quantity Value Units Method Reference Comment
Δr-1.4 ± 2.0kcal/molTDAsHiraoka, Mizuse, et al., 1987gas phase; B
Δr1.00kcal/molTDAsHiraoka, Shoda, et al., 1986gas phase; B

Hydronium cation + Carbon dioxide = (Hydronium cation • Carbon dioxide)

By formula: H3O+ + CO2 = (H3O+ • CO2)

Quantity Value Units Method Reference Comment
Δr14.3kcal/molPHPMSSzulejko and McMahon, 1992gas phase; M
Δr15.3kcal/molPHPMSHiraoka, Shoda, et al., 1986gas phase; M
Δr14.4kcal/molPHPMSMeot-Ner (Mautner) and Field, 1977gas phase; M
Quantity Value Units Method Reference Comment
Δr21.2cal/mol*KPHPMSSzulejko and McMahon, 1992gas phase; M
Δr24.6cal/mol*KPHPMSHiraoka, Shoda, et al., 1986gas phase; M
Δr20.7cal/mol*KPHPMSMeot-Ner (Mautner) and Field, 1977gas phase; M

(Sodium ion (1+) • 2Water • Carbon dioxide) + Water = (Sodium ion (1+) • 3Water • Carbon dioxide)

By formula: (Na+ • 2H2O • CO2) + H2O = (Na+ • 3H2O • CO2)

Quantity Value Units Method Reference Comment
Δr12.4kcal/molHPMSPeterson, Mark, et al., 1984gas phase; From thermochemical cycle; Dzidic and Kebarle, 1970; M
Quantity Value Units Method Reference Comment
Δr23.cal/mol*KHPMSPeterson, Mark, et al., 1984gas phase; From thermochemical cycle; Dzidic and Kebarle, 1970; M
Quantity Value Units Method Reference Comment
Δr5.5kcal/molHPMSPeterson, Mark, et al., 1984gas phase; From thermochemical cycle; Dzidic and Kebarle, 1970; M

(Oxygen cation • Carbon dioxide) + Carbon dioxide = (Oxygen cation • 2Carbon dioxide)

By formula: (O2+ • CO2) + CO2 = (O2+ • 2CO2)

Quantity Value Units Method Reference Comment
Δr8.6 ± 0.5kcal/molPHPMSHiraoka, Nakajima, et al., 1988gas phase; M
Δr7.5kcal/molPHPMSMeot-Ner (Mautner) and Field, 1977gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr18.7cal/mol*KPHPMSHiraoka, Nakajima, et al., 1988gas phase; M
Δr15.cal/mol*KPHPMSMeot-Ner (Mautner) and Field, 1977gas phase; Entropy change is questionable; M

(Sodium ion (1+) • 3Water) + Carbon dioxide = (Sodium ion (1+) • Carbon dioxide • 3Water)

By formula: (Na+ • 3H2O) + CO2 = (Na+ • CO2 • 3H2O)

Quantity Value Units Method Reference Comment
Δr7.2kcal/molHPMSPeterson, Mark, et al., 1984gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr25.cal/mol*KN/APeterson, Mark, et al., 1984gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr-0.3kcal/molHPMSPeterson, Mark, et al., 1984gas phase; Entropy change calculated or estimated; M

(Sodium ion (1+) • 3Carbon dioxide) + Carbon dioxide = (Sodium ion (1+) • 4Carbon dioxide)

By formula: (Na+ • 3CO2) + CO2 = (Na+ • 4CO2)

Quantity Value Units Method Reference Comment
Δr8.4kcal/molHPMSPeterson, Mark, et al., 1984gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr25.cal/mol*KN/APeterson, Mark, et al., 1984gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
0.7310.HPMSPeterson, Mark, et al., 1984gas phase; Entropy change calculated or estimated; M

Sodium ion (1+) + Carbon dioxide = (Sodium ion (1+) • Carbon dioxide)

By formula: Na+ + CO2 = (Na+ • CO2)

Quantity Value Units Method Reference Comment
Δr15.9kcal/molHPMSPeterson, Mark, et al., 1984gas phase; M
Δr13.7kcal/molFAPerry, Rowe, et al., 1980gas phase; M
Quantity Value Units Method Reference Comment
Δr20.1cal/mol*KHPMSPeterson, Mark, et al., 1984gas phase; M
Δr19.8cal/mol*KFAPerry, Rowe, et al., 1980gas phase; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
6.6310.DTKeller and Beyer, 1971gas phase; low E/N; M

(Iodide • 6Carbon dioxide) + Carbon dioxide = (Iodide • 7Carbon dioxide)

By formula: (I- • 6CO2) + CO2 = (I- • 7CO2)

Quantity Value Units Method Reference Comment
Δr3.3 ± 2.0kcal/molPDisArnold, Bradforth, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B
Δr1.90kcal/molN/AGomez, Taylor, et al., 2002gas phase; EA=Vertical Detachment Energy. Affinity is stepwise difference in EAs.; B

(Iodide • 7Carbon dioxide) + Carbon dioxide = (Iodide • 8Carbon dioxide)

By formula: (I- • 7CO2) + CO2 = (I- • 8CO2)

Quantity Value Units Method Reference Comment
Δr3.1 ± 2.0kcal/molPDisArnold, Bradforth, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B
Δr1.90kcal/molN/AGomez, Taylor, et al., 2002gas phase; EA=Vertical Detachment Energy. Affinity is stepwise difference in EAs.; B

(Chlorine anion • 3Carbon dioxide) + Carbon dioxide = (Chlorine anion • 4Carbon dioxide)

By formula: (Cl- • 3CO2) + CO2 = (Cl- • 4CO2)

Quantity Value Units Method Reference Comment
Δr6.40kcal/molTDAsHiraoka, Shoda, et al., 1986gas phase; entropy estimated.; B,M
Quantity Value Units Method Reference Comment
Δr24.cal/mol*KN/AHiraoka, Shoda, et al., 1986gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr-0.80kcal/molTDAsHiraoka, Shoda, et al., 1986gas phase; entropy estimated.; B

CO3- + Carbon dioxide = C2O5-

By formula: CO3- + CO2 = C2O5-

Quantity Value Units Method Reference Comment
Δr5.90 ± 0.20kcal/molTDAsHiraoka and Yamabe, 1992gas phase; B
Δr7.10 ± 0.10kcal/molTDAsKeesee, Lee, et al., 1980gas phase; B
Quantity Value Units Method Reference Comment
Δr1.0 ± 2.0kcal/molTDAsHiraoka and Yamabe, 1992gas phase; B
Δr0.60 ± 0.20kcal/molTDAsKeesee, Lee, et al., 1980gas phase; B

HO- + Carbon dioxide = (HO- • Carbon dioxide)

By formula: HO- + CO2 = (HO- • CO2)

Quantity Value Units Method Reference Comment
Δr50.9 ± 2.5kcal/molCIDTSquires, 1992gas phase; Dissociative protonation threshold at nPrSH, 9 kcal> calc. CIDC(HOCO2-..HSH) = 7:1 HOCO2-; B
Δr87.60kcal/molEndoHierl and Paulson, 1984gas phase; Implies ΔHacid = 291.4, anion appears too stable - JEB; B

(CO2+ • 2Carbon dioxide) + Carbon dioxide = (CO2+ • 3Carbon dioxide)

By formula: (CO2+ • 2CO2) + CO2 = (CO2+ • 3CO2)

Quantity Value Units Method Reference Comment
Δr6.0kcal/molEICameron, Aitken, et al., 1994gas phase; M
Δr5.1 ± 0.3kcal/molPHPMSHiraoka, Nakajima, et al., 1988gas phase; M
Δr2.8kcal/molPILinn and Ng, 1981gas phase; M
Quantity Value Units Method Reference Comment
Δr19.1cal/mol*KPHPMSHiraoka, Nakajima, et al., 1988gas phase; M

(Sodium ion (1+) • Water • Carbon dioxide) + Water = (Sodium ion (1+) • 2Water • Carbon dioxide)

By formula: (Na+ • H2O • CO2) + H2O = (Na+ • 2H2O • CO2)

Quantity Value Units Method Reference Comment
Δr17.4kcal/molHPMSPeterson, Mark, et al., 1984gas phase; From thermochemical cycle; Dzidic and Kebarle, 1970; M
Quantity Value Units Method Reference Comment
Δr23.6cal/mol*KHPMSPeterson, Mark, et al., 1984gas phase; From thermochemical cycle; Dzidic and Kebarle, 1970; M

(Fluorine anion • 3Carbon dioxide) + Carbon dioxide = (Fluorine anion • 4Carbon dioxide)

By formula: (F- • 3CO2) + CO2 = (F- • 4CO2)

Quantity Value Units Method Reference Comment
Δr5.8 ± 1.0kcal/molTDAsHiraoka, Mizuse, et al., 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr20.3cal/mol*KPHPMSHiraoka, Mizuse, et al., 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr-0.2 ± 2.0kcal/molTDAsHiraoka, Mizuse, et al., 1987gas phase; B

(Fluorine anion • 4Carbon dioxide) + Carbon dioxide = (Fluorine anion • 5Carbon dioxide)

By formula: (F- • 4CO2) + CO2 = (F- • 5CO2)

Quantity Value Units Method Reference Comment
Δr5.6 ± 1.0kcal/molTDAsHiraoka, Mizuse, et al., 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr22.3cal/mol*KPHPMSHiraoka, Mizuse, et al., 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr-1.0 ± 2.0kcal/molTDAsHiraoka, Mizuse, et al., 1987gas phase; B

(Fluorine anion • 5Carbon dioxide) + Carbon dioxide = (Fluorine anion • 6Carbon dioxide)

By formula: (F- • 5CO2) + CO2 = (F- • 6CO2)

Quantity Value Units Method Reference Comment
Δr5.3 ± 1.0kcal/molTDAsHiraoka, Mizuse, et al., 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr22.5cal/mol*KPHPMSHiraoka, Mizuse, et al., 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr-1.4 ± 2.0kcal/molTDAsHiraoka, Mizuse, et al., 1987gas phase; B

C7O15- + 7Carbon dioxide = C8O17-

By formula: C7O15- + 7CO2 = C8O17-

Quantity Value Units Method Reference Comment
Δr4.5 ± 1.0kcal/molTDAsHiraoka and Yamabe, 1992gas phase; Estimated entropy; single temperature measurement; B
Quantity Value Units Method Reference Comment
Δr-2.1 ± 1.0kcal/molTDAsHiraoka and Yamabe, 1992gas phase; Estimated entropy; single temperature measurement; B

(Fluorine anion • 2Carbon dioxide) + Carbon dioxide = (Fluorine anion • 3Carbon dioxide)

By formula: (F- • 2CO2) + CO2 = (F- • 3CO2)

Quantity Value Units Method Reference Comment
Δr7.2 ± 1.0kcal/molTDAsHiraoka, Mizuse, et al., 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr22.6cal/mol*KPHPMSHiraoka, Mizuse, et al., 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr0.5 ± 2.0kcal/molTDAsHiraoka, Mizuse, et al., 1987gas phase; B

(Fluorine anion • Carbon dioxide) + Carbon dioxide = (Fluorine anion • 2Carbon dioxide)

By formula: (F- • CO2) + CO2 = (F- • 2CO2)

Quantity Value Units Method Reference Comment
Δr7.3 ± 1.0kcal/molTDAsHiraoka, Mizuse, et al., 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr18.2cal/mol*KPHPMSHiraoka, Mizuse, et al., 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr1.9 ± 2.0kcal/molTDAsHiraoka, Mizuse, et al., 1987gas phase; B

(Oxygen anion • 2Carbon dioxide) + Carbon dioxide = (Oxygen anion • 3Carbon dioxide)

By formula: (O2- • 2CO2) + CO2 = (O2- • 3CO2)

Quantity Value Units Method Reference Comment
Δr6.3 ± 1.0kcal/molTDAsHiraoka and Yamabe, 1992gas phase; B,M
Quantity Value Units Method Reference Comment
Δr23.0cal/mol*KPHPMSHiraoka and Yamabe, 1992gas phase; M
Quantity Value Units Method Reference Comment
Δr-0.6 ± 1.0kcal/molTDAsHiraoka and Yamabe, 1992gas phase; B

(Oxygen anion • 3Carbon dioxide) + Carbon dioxide = (Oxygen anion • 4Carbon dioxide)

By formula: (O2- • 3CO2) + CO2 = (O2- • 4CO2)

Quantity Value Units Method Reference Comment
Δr4.8 ± 1.0kcal/molTDAsHiraoka and Yamabe, 1992gas phase; B,M
Quantity Value Units Method Reference Comment
Δr18.7cal/mol*KPHPMSHiraoka and Yamabe, 1992gas phase; M
Quantity Value Units Method Reference Comment
Δr-0.8 ± 1.0kcal/molTDAsHiraoka and Yamabe, 1992gas phase; B

(Oxygen anion • 4Carbon dioxide) + Carbon dioxide = (Oxygen anion • 5Carbon dioxide)

By formula: (O2- • 4CO2) + CO2 = (O2- • 5CO2)

Quantity Value Units Method Reference Comment
Δr4.5 ± 1.0kcal/molTDAsHiraoka and Yamabe, 1992gas phase; B,M
Quantity Value Units Method Reference Comment
Δr18.4cal/mol*KPHPMSHiraoka and Yamabe, 1992gas phase; M
Quantity Value Units Method Reference Comment
Δr-1.1 ± 1.0kcal/molTDAsHiraoka and Yamabe, 1992gas phase; B

(Oxygen anion • 5Carbon dioxide) + Carbon dioxide = (Oxygen anion • 6Carbon dioxide)

By formula: (O2- • 5CO2) + CO2 = (O2- • 6CO2)

Quantity Value Units Method Reference Comment
Δr4.2 ± 1.0kcal/molTDAsHiraoka and Yamabe, 1992gas phase; B,M
Quantity Value Units Method Reference Comment
Δr19.0cal/mol*KPHPMSHiraoka and Yamabe, 1992gas phase; M
Quantity Value Units Method Reference Comment
Δr-1.5 ± 1.0kcal/molTDAsHiraoka and Yamabe, 1992gas phase; B

(Oxygen anion • 6Carbon dioxide) + Carbon dioxide = (Oxygen anion • 7Carbon dioxide)

By formula: (O2- • 6CO2) + CO2 = (O2- • 7CO2)

Quantity Value Units Method Reference Comment
Δr4.0 ± 1.0kcal/molTDAsHiraoka and Yamabe, 1992gas phase; B,M
Quantity Value Units Method Reference Comment
Δr19.3cal/mol*KPHPMSHiraoka and Yamabe, 1992gas phase; M
Quantity Value Units Method Reference Comment
Δr-1.8 ± 1.0kcal/molTDAsHiraoka and Yamabe, 1992gas phase; B

(Oxygen anion • Carbon dioxide) + Carbon dioxide = (Oxygen anion • 2Carbon dioxide)

By formula: (O2- • CO2) + CO2 = (O2- • 2CO2)

Quantity Value Units Method Reference Comment
Δr6.60 ± 0.20kcal/molTDAsHiraoka and Yamabe, 1992gas phase; B,M
Quantity Value Units Method Reference Comment
Δr18.2cal/mol*KPHPMSHiraoka and Yamabe, 1992gas phase; M
Quantity Value Units Method Reference Comment
Δr1.1 ± 1.0kcal/molTDAsHiraoka and Yamabe, 1992gas phase; B

(Nitrogen oxide anion • 2Carbon dioxide) + Carbon dioxide = (Nitrogen oxide anion • 3Carbon dioxide)

By formula: (NO2- • 2CO2) + CO2 = (NO2- • 3CO2)

Quantity Value Units Method Reference Comment
Δr6.3 ± 1.0kcal/molTDAsHiraoka and Yamabe, 1992gas phase; B,M
Quantity Value Units Method Reference Comment
Δr23.3cal/mol*KPHPMSHiraoka and Yamabe, 1992gas phase; M
Quantity Value Units Method Reference Comment
Δr-0.7 ± 1.0kcal/molTDAsHiraoka and Yamabe, 1992gas phase; B

(Nitrogen oxide anion • 3Carbon dioxide) + Carbon dioxide = (Nitrogen oxide anion • 4Carbon dioxide)

By formula: (NO2- • 3CO2) + CO2 = (NO2- • 4CO2)

Quantity Value Units Method Reference Comment
Δr6.0 ± 1.0kcal/molTDAsHiraoka and Yamabe, 1992gas phase; B,M
Quantity Value Units Method Reference Comment
Δr25.9cal/mol*KPHPMSHiraoka and Yamabe, 1992gas phase; M
Quantity Value Units Method Reference Comment
Δr-1.7 ± 1.0kcal/molTDAsHiraoka and Yamabe, 1992gas phase; B

(Nitrogen oxide anion • 4Carbon dioxide) + Carbon dioxide = (Nitrogen oxide anion • 5Carbon dioxide)

By formula: (NO2- • 4CO2) + CO2 = (NO2- • 5CO2)

Quantity Value Units Method Reference Comment
Δr5.2 ± 1.0kcal/molTDAsHiraoka and Yamabe, 1992gas phase; B,M
Quantity Value Units Method Reference Comment
Δr23.3cal/mol*KPHPMSHiraoka and Yamabe, 1992gas phase; M
Quantity Value Units Method Reference Comment
Δr-1.8 ± 1.0kcal/molTDAsHiraoka and Yamabe, 1992gas phase; B

(Nitrogen oxide anion • 5Carbon dioxide) + Carbon dioxide = (Nitrogen oxide anion • 6Carbon dioxide)

By formula: (NO2- • 5CO2) + CO2 = (NO2- • 6CO2)

Quantity Value Units Method Reference Comment
Δr4.9 ± 1.0kcal/molTDAsHiraoka and Yamabe, 1992gas phase; B,M
Quantity Value Units Method Reference Comment
Δr23.1cal/mol*KPHPMSHiraoka and Yamabe, 1992gas phase; M
Quantity Value Units Method Reference Comment
Δr-2.0 ± 1.0kcal/molTDAsHiraoka and Yamabe, 1992gas phase; B

Gas phase ion energetics data

Go To: Top, Reaction thermochemistry data, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
LL - Sharon G. Lias and Joel F. Liebman
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
B - John E. Bartmess

Quantity Value Units Method Reference Comment
IE (evaluated)13.777 ± 0.001eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)129.2kcal/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity123.3kcal/molN/AHunter and Lias, 1998HL

Electron affinity determinations

EA (eV) Method Reference Comment
-0.599986EIAEKnapp, Echt, et al., 1986Unbound but in -0.3 eV well, from (CO2)n; B
-1.60 ± 0.10NBIECompton, Reinhardt, et al., 1975B

Ionization energy determinations

IE (eV) Method Reference Comment
13.778 ± 0.002PEWang, Reutt, et al., 1988LL
13.78PEKimura, Katsumata, et al., 1981LLK
13.776 ± 0.002PEPotts and Fattahallah, 1980LLK
13. ± 1.PIHitchcock, Brion, et al., 1980LLK
13.89 ± 0.03EISahini, Constantin, et al., 1978LLK
13.79 ± 0.05EIMark and Hille, 1978LLK
13.77PIJones and Taylor, 1978LLK
13.777 ± 0.002PEFrey, Gotchev, et al., 1977LLK
13.83 ± 0.05EIBussieres and Marmet, 1977LLK
13.788PEKronebusch and Berkowitz, 1976LLK
13.776 ± 0.002TEBatten, Taylor, et al., 1976LLK
13.774 ± 0.003PIParr and Taylor, 1974LLK
13.9 ± 0.2EISemenov, Volkov, et al., 1973LLK
13.776 ± 0.008PIParr and Taylor, 1973LLK
13.78PENatalis, 1973LLK
13.773 ± 0.002PIMcCulloh, 1973LLK
13.80 ± 0.01PEFrost, Lee, et al., 1973LLK
13.788 ± 0.005PEBrundle and Turner, 1969RDSH
13.78 ± 0.01PEEland and Danby, 1968RDSH
13.77PESpohr and Puttkamer, 1967RDSH
13.75 ± 0.05EICarette, 1967RDSH
13.767 ± 0.003PINakata, Watanabe, et al., 1965RDSH
13.77 ± 0.03STanaka, Jursa, et al., 1960RDSH
13.773PEEland and Berkowitz, 1977Vertical value; LLK
13.78PEBenoit and Harrison, 1977Vertical value; LLK
13.78PESchweig and Thiel, 1974Vertical value; LLK
13.79PEPotts and Williams, 1974Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
C+25. ± 2.O2PIHitchcock, Brion, et al., 1980LLK
C+22.7 ± 0.2O2EIBussieres and Marmet, 1977LLK
C+27.8 ± 0.12OEIBussieres and Marmet, 1977LLK
C+24.6 ± 1.0O2EICrowe and McConkey, 1974LLK
C+28.4 ± 0.62OEICuthbert, Farren, et al., 1968RDSH
C+14.2 ± 0.52OEICuthbert, Farren, et al., 1968RDSH
C+23.2 ± 0.5O2EICuthbert, Farren, et al., 1968RDSH
CO+19. ± 2.OPIHitchcock, Brion, et al., 1980LLK
CO+19.466OPEEland and Berkowitz, 1977, 2LLK
CO+19.42 ± 0.075OEIBussieres and Marmet, 1977LLK
CO+19.466OPEKronebusch and Berkowitz, 1976LLK
CO+20.9 ± 1.0OEICrowe and McConkey, 1974LLK
CO+29.0OPISamson and Gardner, 1973LLK
O+19. ± 1.COPIHitchcock, Brion, et al., 1980LLK
O+19.071COPEEland and Berkowitz, 1977, 2LLK
O+19.05 ± 0.05COEIBussieres and Marmet, 1977LLK
O+19.067COPEKronebusch and Berkowitz, 1976LLK
O+19.393 ± 0.008?PIParr and Taylor, 1974LLK
O+22.6 ± 1.0COEICrowe and McConkey, 1974LLK
O+19.10 ± 0.01COPIDibeler and Walker, 1967RDSH

Gas Chromatography

Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Kovats' RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
PackedSqualane27.154.Hively and Hinton, 1968He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm
PackedSqualane49.153.Hively and Hinton, 1968He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm
PackedSqualane67.152.Hively and Hinton, 1968He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm
PackedSqualane86.152.Hively and Hinton, 1968He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm

References

Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, Gas Chromatography, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Hiraoka, Nakajima, et al., 1988
Hiraoka, K.; Nakajima, G.; Shoda, S., Determination of the Stabilities of CO2+(CO2)n and O2+(CO2)n Clusters with n = 1 - 6, Chem. Phys. Lett., 1988, 146, 6, 535, https://doi.org/10.1016/0009-2614(88)87495-5 . [all data]

Illies, 1988
Illies, A.J., Thermochemistry of the Gas - Phase Ion - Molecule Clustering of CO2+CO2, SO2+CO2, N2O+N2O, O2+CO2, NO+CO2 and NO+N2O: Description of a New Hybrid Drift Tube/Ion Source with Coaxial Electron Beam and Ion Exit Apertures, J. Phys. Chem., 1988, 92, 10, 2889, https://doi.org/10.1021/j100321a037 . [all data]

Dotan, Davidson, et al., 1978
Dotan, I.; Davidson, J.A.; Fehsenfeld, F.C.; Albritton, D.L., Reactions of O2+.O2 with CO2, O3 and CH4 and O2+.O3 with H2O and CH4 and their Role in Stratospheric Ion Chemistry, J. Geophys. Res., 1978, 83, C8, 4036, https://doi.org/10.1029/JC083iC08p04036 . [all data]

Conway and Janik, 1970
Conway, D.C.; Janik, G.S., Determination of the Bond Energies for the Series O2 - O2+ through O2 - O10+, J. Chem. Phys., 1970, 53, 5, 1859, https://doi.org/10.1063/1.1674262 . [all data]

Meot-Ner (Mautner) and Field, 1977
Meot-Ner (Mautner), M.; Field, F.H., Proton Affinity and Ion - Molecule Clustering in CO2 and CS2. Applications in Martian Ionospheric Chemistry, J. Chem. Phys., 1977, 66, 10, 4527, https://doi.org/10.1063/1.433706 . [all data]

Rakshit and Warneck, 1981
Rakshit, A.B.; Warneck, P., Formation and Reactions of O2+.CO2, O2+.H2O and O2+(CO2)2 Ions, Int. J. Mass Spectrom Ion Phys., 1981, 40, 2, 135, https://doi.org/10.1016/0020-7381(81)80037-X . [all data]

Van Koppen, Kemper, et al., 1983
Van Koppen, P.A.M.; Kemper, P.R.; Illies, A.J.; Bowers, M.T., An Improved High - Pressure, Temperature - Variable Ion Source with Coaxial Electron Beam/Ion Exit Slit, Int. J. Mass Spectrom. Ion Proc., 1983, 54, 3, 263, https://doi.org/10.1016/0168-1176(83)80015-9 . [all data]

Headley, Mason, et al., 1982
Headley, J.V.; Mason, R.S.; Jennings, K.R., Kinetics, Equilibria and Diffusion of Ions Produced in N2, CO and CO2, Studied as a Function of Temperature using a High - Pressure Pulsed Mass Spectrometer, J. Chem. Soc., 1982, 78, 933. [all data]

Adams and Bohme, 1970
Adams, N.G.; Bohme, D., Flowing Afterglow Studies of Formation and Reactions of Cluster Ions of O2+, O2-, and O-, J. Chem. Phys., 1970, 52, 6, 3133, https://doi.org/10.1063/1.1673449 . [all data]

Piani, Becucci, et al., 2008
Piani, G.; Becucci, M.; Bowen, M.S.; Oakman, J.; Hu, Q.; Continetti, R.E., Photodetachment and dissociation dynamics of microsolvated iodide clusters, Phys. Scripta, 2008, 78, 5, 058110, https://doi.org/10.1088/0031-8949/78/05/058110 . [all data]

Arnold, Bradforth, et al., 1995
Arnold, D.W.; Bradforth, S.E.; Kim, E.H.; Neumark, D.M., Study of I-(CO2)n, Br-(CO2)n, and I-(N2O)n clusters by anion photoelectron spectroscopy, J. Chem. Phys., 1995, 102, 9, 3510, https://doi.org/10.1063/1.468576 . [all data]

Hiraoka, Mizuse, et al., 1987
Hiraoka, K.; Mizuse, S.; Yamabe, S., Stability and Structure of Cluster Ions: Halide Ions with CO2, J. Chem. Phys., 1987, 87, 6, 3647, https://doi.org/10.1063/1.452962 . [all data]

Gomez, Taylor, et al., 2002
Gomez, H.; Taylor, T.R.; Neumark, D.M., Anion photoelectron spectroscopy of I-2(-)(CO2)(n)(n=1-8) clusters, J. Chem. Phys., 2002, 116, 14, 6111-6117, https://doi.org/10.1063/1.1458246 . [all data]

Keesee, Lee, et al., 1980
Keesee, R.G.; Lee, N.; Castleman, A.W., Jr., Properties of clusters in the gas phase: V. Complexes of neutral molecules onto negative ions, J. Chem. Phys., 1980, 73, 2195. [all data]

Banic and Iribarne, 1985
Banic, C.M.; Iribarne, J.V., Equilibrium Constants for Clustering of Neutral Molecules about Gaseous Ions, J. Chem. Phys., 1985, 83, 12, 6432, https://doi.org/10.1063/1.449543 . [all data]

Hiraoka and Yamabe, 1992
Hiraoka, K.; Yamabe, S., Formation of the Chelate Bonds in the Cluster O2(-)(CO2)n, CO3(-)(CO2)n, and NO2(-)(CO2)n, J. Chem. Phys., 1992, 97, 1, 643, https://doi.org/10.1063/1.463560 . [all data]

Pack and Phelps, 1966
Pack, J.L.; Phelps, A.V., Electron Attachment and Detachment . II. Mixtures of O2 and CO2 and of O2 and H2O, J. Chem. Phys., 1966, 45, 11, 4316, https://doi.org/10.1063/1.1727491 . [all data]

Vestal and Mauclaire, 1977
Vestal, M.L.; Mauclaire, G.H., Photodissociaton of negative ions formed in CO2 and CO2/O2 Mixtures, J. Chem. Phys., 1977, 67, 3758. [all data]

Conway and Nesbit, 1968
Conway, D.C.; Nesbit, L.E., Stability of O4-, J. Chem. Phys., 1968, 48, 1, 509, https://doi.org/10.1063/1.1667956 . [all data]

Fehsenfeld and Ferguson, 1974
Fehsenfeld, F.C.; Ferguson, E.E., Laboratory studies of negative ion reactions with atmospheric trace constituents, J. Chem. Phys., 1974, 61, 3181. [all data]

Arshadi and Kebarle, 1970
Arshadi, M.; Kebarle, P., Hydration of OH- and O2- in the Gas Phase. Comparative Solvation of OH- by Water and the Hydrogen Halides. Effect of Acidity, J. Phys. Chem., 1970, 74, 7, 1483, https://doi.org/10.1021/j100702a015 . [all data]

Arnold, Bradforth, et al., 1995, 2
Arnold, D.W.; Bradforth, S.E.; Kim, E.H.; Neumark, D.M., Study of halogen carbon dioxide clusters and the fluoroformyloxyl radical by photodetachment of X(-)(CO2) (X=I,Cl,Br) and FCO2-, J. Chem. Phys., 1995, 102, 9, 3493, https://doi.org/10.1063/1.468575 . [all data]

Larson and McMahon, 1985
Larson, J.W.; McMahon, T.B., Fluoride and chloride affinities of the main group oxides, fluorides, oxofluorides, and alkyls. Quantitative scales of lewis acidities from ICR halide exchange equilibria, J. Am. Chem. Soc., 1985, 107, 766. [all data]

McMahon and Northcott, 1978
McMahon, T.B.; Northcott, C.J., The Fluoroformate Ion FCO2-: An ICR study of the gas phase lewis acidity of carbon dioxide and related isoelectronic species, Can. J. Chem., 1978, 56, 1068. [all data]

Arshadi, Yamdagni, et al., 1970
Arshadi, M.; Yamdagni, R.; Kebarle, P., Hydration of Halide Negative Ions in the Gas Phase. II. Comparison of Hydration Energies for the Alkali Positive and Halide Negative Ions, J. Phys. Chem., 1970, 74, 7, 1475, https://doi.org/10.1021/j100702a014 . [all data]

Spears and Ferguson, 1973
Spears, K.G.; Ferguson, E.E., Termolecular and Saturated Termolecular Kinetics for Li+ and F-, J. Chem. Phys., 1973, 59, 8, 4174, https://doi.org/10.1063/1.1680610 . [all data]

Hiraoka, Shoda, et al., 1986
Hiraoka, K.; Shoda, T.; Morise, K.; Yamabe, S.; Kawai, E.; Hirao, K., Stability and structure of cluster ions in the gas phase: Carbon dioxide with Cl-, H3O+, HCO2+ and HCO+, J. Chem. Phys., 1986, 84, 2091. [all data]

Peterson, Mark, et al., 1984
Peterson, K.I.; Mark, T.D.; Keesee, R.G.; Castleman, A.W., Thermochemical Properties of Gas - Phase Mixed Clusters: H2O/CO2 with Na+, J. Phys. Chem., 1984, 88, 13, 2880, https://doi.org/10.1021/j150657a042 . [all data]

Dzidic and Kebarle, 1970
Dzidic, I.; Kebarle, P., Hydration of the Alkali Ions in the Gas Phase. Enthalpies and Entropies of Reactions M+(H2O)n-1 + H2O = M+(H2O)n, J. Phys. Chem., 1970, 74, 7, 1466, https://doi.org/10.1021/j100702a013 . [all data]

Perry, Rowe, et al., 1980
Perry, R.A.; Rowe, B.R.; Viggiano, A.A.; Albritton, D.L.; Ferguson, E.E.; Fehsenfeld, F.C., Laboratory Measurements of Stratospheric Sodium Ion Measurements, Geophys. Res. Lett., 1980, 7, 9, 693, https://doi.org/10.1029/GL007i009p00693 . [all data]

Szulejko and McMahon, 1992
Szulejko, J.; McMahon, T.B., personal communication, 1992. [all data]

Jennings, Headley, et al., 1982
Jennings, K.R.; Headley, J.V.; Mason, R.S., The Temperature Dependence of Ion - Molecule Association Reactions, Int. J. Mass. Spectrom. Ion Phys, 1982, 45, 315. [all data]

Hiraoka and Yamabe, 1991
Hiraoka, K.; Yamabe, S., Cluster Ions: Gas Phase Stabilities of NO+(O2)n and NO+(CO2)n with n = 1 - 5, J. Chem. Phys., 1991, 95, 9, 6800, https://doi.org/10.1063/1.461518 . [all data]

Dunkin, Fehsenfeld, et al., 1971
Dunkin, D.B.; Fehsenfeld, F.C.; Schelmetekopf, A.L.; Ferguson, E.E., Three-Body Association Reactions of NO+ with O2, N2, and CO2, J. Chem. Phys., 1971, 54, 9, 3817, https://doi.org/10.1063/1.1675432 . [all data]

Cameron, Aitken, et al., 1994
Cameron, B.R.; Aitken, C.G.; Harland, P.W., Appearence Energies of Small Cluster Ions and their Fragments, J. Chem. Soc. Faraday Trans., 1994, 90, 7, 935, https://doi.org/10.1039/ft9949000935 . [all data]

Linn and Ng, 1981
Linn, S.H.; Ng, C.Y., Photoionization Study of CO2, N2O Dimers and Clusters, J. Chem. Phys., 1981, 75, 10, 4921, https://doi.org/10.1063/1.441931 . [all data]

Keller and Beyer, 1971
Keller, G.E.; Beyer, R.A., CO2 and O2 Clustering to Sodium Ions, J. Geophys. Res., 1971, 74, 1, 289, https://doi.org/10.1029/JA076i001p00289 . [all data]

Squires, 1992
Squires, R.R., Gas Phase Thermochemical Properties of the Bicarbonate and Bisulfate Ions, Int. J. Mass Spectrom. Ion Proc., 1992, 117, 565, https://doi.org/10.1016/0168-1176(92)80114-G . [all data]

Hierl and Paulson, 1984
Hierl, P.M.; Paulson, J.F., Translational energy dependence of cross sections for reactions of OH- (H2O)n with CO2 and SO2, J. Chem. Phys., 1984, 80, 4890. [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Knapp, Echt, et al., 1986
Knapp, A.; Echt, O.; Kreisle, D.; Mark, T.D.; Recknagel, E., Formation of Long-Lived CO2-, N2O- and their Dimer Anions, by Electron Attachment to van der Walls Clusters, Chem. Phys. Lett., 1986, 126, 3-4, 225, https://doi.org/10.1016/S0009-2614(86)80074-4 . [all data]

Compton, Reinhardt, et al., 1975
Compton, R.N.; Reinhardt, P.W.; Cooper, C.D., Collisional ionization of Na, K, and Cs by CO2, COS, and CS2: Molecular electron affinities, J. Chem. Phys., 1975, 63, 3821. [all data]

Wang, Reutt, et al., 1988
Wang, L.; Reutt, J.E.; Lee, Y.T.; Shirley, D.A., High resolution UV photoelectron spectroscopy of CO2, COS, and CS2 using supersonic molecular beams, J. Electron Spectrosc. Relat. Phenom., 1988, 47, 167. [all data]

Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S., Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]

Potts and Fattahallah, 1980
Potts, A.W.; Fattahallah, G.H., High-resolution ultraviolet photoelectron spectroscopy of CO2, COS and CS2, J. Phys. B:, 1980, 13, 2545. [all data]

Hitchcock, Brion, et al., 1980
Hitchcock, A.P.; Brion, C.E.; Van der Wiel, M.J., Absolute oscillator strengths for valence-shell ionic photofragmentation of N2O and CO2(8-75 eV), Chem. Phys., 1980, 45, 461. [all data]

Sahini, Constantin, et al., 1978
Sahini, V.E.; Constantin, V.; Serban, I., Determination of ionization potentials using a MI-1305 mass spectrometer, Rev. Roum. Chim., 1978, 23, 479. [all data]

Mark and Hille, 1978
Mark, T.D.; Hille, E., Cross section for single and double ionization of carbon dioxide by electron impact threshold up to 180 eV, J. Chem. Phys., 1978, 69, 2492. [all data]

Jones and Taylor, 1978
Jones, G.G.; Taylor, J.W., A photoionization study of carbon dioxide dimers in a supersonic molecular beam, J. Chem. Phys., 1978, 68, 1768. [all data]

Frey, Gotchev, et al., 1977
Frey, R.; Gotchev, B.; Kalman, O.F.; Peatman, W.B.; Pollak, H.; Schlag, E.W., Photoionization resonance spectra of CO2+ and threshold electron-ion coincidence measurements of the fragmentation of CO2+, Chem. Phys., 1977, 21, 89. [all data]

Bussieres and Marmet, 1977
Bussieres, N.; Marmet, P., Ionization and dissociative ionization of CO2 by electron impact, Can. J. Phys., 1977, 55, 1889. [all data]

Kronebusch and Berkowitz, 1976
Kronebusch, P.L.; Berkowitz, J., Photodissociative ionization in the 21-41 eV region: O2, N2, CO, NO, CO2, H2O, NH3 and CH4, Int. J. Mass Spectrom. Ion Phys., 1976, 22, 283. [all data]

Batten, Taylor, et al., 1976
Batten, C.F.; Taylor, J.A.; Meisels, G.G., Photoionization processes at threshold. I. Threshold photoelectron and photoionization spectra of CO2, J. Chem. Phys., 1976, 65, 3316. [all data]

Parr and Taylor, 1974
Parr, G.R.; Taylor, J.W., Photoionization mass spectrometry. IV. Carbon dioxide, Int. J. Mass Spectrom. Ion Phys., 1974, 14, 467. [all data]

Semenov, Volkov, et al., 1973
Semenov, G.A.; Volkov, A.D.; Franktseva, K.E., Mass-spectrometric study of sodium carbonate vaporization, Tr. Leningrad. Tekhnol. Inst. Tsellyul. Bum. Prom., 1973, 30, 153. [all data]

Parr and Taylor, 1973
Parr, G.R.; Taylor, J.W., A photoionization mass spectrometer utilizing a high intensity molecular beam sampling system and synchrotron radiation, Rev. Sci. Instrum., 1973, 44, 1578. [all data]

Natalis, 1973
Natalis, P., Contribution a la spectroscopie photoelectronique. Effets de l'autoionisation dans less spectres photoelectroniques de molecules diatomiques et triatomiques, Acad. R. Belg. Mem. Cl. Sci. Collect. 8, 1973, 41, 1. [all data]

McCulloh, 1973
McCulloh, K.E., Photoionization of carbon dioxide, J. Chem. Phys., 1973, 59, 4250. [all data]

Frost, Lee, et al., 1973
Frost, D.C.; Lee, S.T.; McDowell, C.A., Photoelectron spectra of OCSe, SCSe, and CSe2, J. Chem. Phys., 1973, 59, 5484. [all data]

Brundle and Turner, 1969
Brundle, C.R.; Turner, D.W., Studies on the photoionisation of the linear triatomic molecules: N2O, COS, CS2 and CO2 using high-resolution photoelectron spectroscopy, Intern. J. Mass Spectrom. Ion Phys., 1969, 2, 195. [all data]

Eland and Danby, 1968
Eland, J.H.D.; Danby, C.J., Photoelectron spectra and ionic structure of carbon dioxide, carbon disulphide and sulphur dioxide, Intern. J. Mass Spectrom. Ion Phys., 1968, 1, 111. [all data]

Spohr and Puttkamer, 1967
Spohr, R.; Puttkamer, E.v., Energiemessung von Photoelektronen und Franck-Condon-Faktoren der Schwingungsubergange einiger Molekulionen, Z. Naturforsch., 1967, 22a, 705. [all data]

Carette, 1967
Carette, J.-D., Ionisation par impact electronique de CO2 et N2O, Can. J. Phys., 1967, 45, 2931. [all data]

Nakata, Watanabe, et al., 1965
Nakata, R.S.; Watanabe, K.; Matsunaga, F.M., Absorption and photoionization coefficients of CO2 in the region 580-1670 A, Sci. Light (Tokyo), 1965, 14, 54. [all data]

Tanaka, Jursa, et al., 1960
Tanaka, Y.; Jursa, A.S.; LeBlanc, F.J., Higher ionization potentials of linear triatomic molecules. I. CO2, J. Chem. Phys., 1960, 32, 1199. [all data]

Eland and Berkowitz, 1977
Eland, J.H.D.; Berkowitz, J., Photoionization mass spectrometry of HI and DI at high resolution, J. Chem. Phys., 1977, 67, 5034. [all data]

Benoit and Harrison, 1977
Benoit, F.M.; Harrison, A.G., Predictive value of proton affinity. Ionization energy correlations involving oxygenated molecules, J. Am. Chem. Soc., 1977, 99, 3980. [all data]

Schweig and Thiel, 1974
Schweig, A.; Thiel, W., Photoionization cross sections: He I- and He II-photoelectron spectra of homologous oxygen and sulphur compounds, Mol. Phys., 1974, 27, 265. [all data]

Potts and Williams, 1974
Potts, A.W.; Williams, T.A., The observation of "forbidden" transitions in He II photoelectron spectra, J. Electron Spectrosc. Relat. Phenom., 1974, 3, 3. [all data]

Crowe and McConkey, 1974
Crowe, A.; McConkey, J.W., Dissociative ionization by electron impact. III. O+, CO+ and C+ from CO2, J. Phys. B:, 1974, 7, 349. [all data]

Cuthbert, Farren, et al., 1968
Cuthbert, J.; Farren, J.; PrahalladaRao, B.S.; Preece, E.R., Sequential mass spectrometry. III. Ions and fragments from carbon dioxide anddisulphide, J. Phys. B:, 1968, 1, 62. [all data]

Eland and Berkowitz, 1977, 2
Eland, J.H.D.; Berkowitz, J., Formation and predissociation of CO2+(C2Σ+g), J. Chem. Phys., 1977, 67, 2782. [all data]

Samson and Gardner, 1973
Samson, J.A.R.; Gardner, J.L., Fluorescence excitation and photoelectron spectra of CO2 induced by vacuum ultraviolet radiation between 185 and 716 angstroms, J. Geophys. Res., 1973, 78, 3663. [all data]

Dibeler and Walker, 1967
Dibeler, V.H.; Walker, J.A., Mass spectrometric study of the photoionization of small polyatomic molecules, Advan. Mass Spectrom., 1967, 4, 767. [all data]

Hively and Hinton, 1968
Hively, R.A.; Hinton, R.E., Variation of the retention index with temperature on squalane substrates, J. Gas Chromatogr., 1968, 6, 4, 203-217, https://doi.org/10.1093/chromsci/6.4.203 . [all data]


Notes

Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, Gas Chromatography, References