Hydrogen cation
- Formula: H+
- Molecular weight: 1.00739
- IUPAC Standard InChIKey: GPRLSGONYQIRFK-UHFFFAOYSA-N
- CAS Registry Number: 12408-02-5
- Chemical structure:
This structure is also available as a 2d Mol file - Isotopologues:
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Gas phase thermochemistry data
- Reaction thermochemistry data: reactions 1 to 50, reactions 51 to 100, reactions 101 to 150, reactions 151 to 200, reactions 201 to 250, reactions 251 to 300, reactions 301 to 350, reactions 351 to 400, reactions 401 to 450, reactions 451 to 500, reactions 501 to 550, reactions 551 to 600, reactions 601 to 650, reactions 701 to 750, reactions 751 to 800, reactions 801 to 850, reactions 851 to 900, reactions 901 to 950, reactions 951 to 1000, reactions 1001 to 1050, reactions 1051 to 1100, reactions 1101 to 1150, reactions 1151 to 1200, reactions 1201 to 1250, reactions 1251 to 1300, reactions 1301 to 1350, reactions 1351 to 1375
- Gas phase ion energetics data
- Options:
Reaction thermochemistry data
Go To: Top, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: John E. Bartmess
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Reactions 651 to 700
C6H13O- + =
By formula: C6H13O- + H+ = C6H14O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1563. ± 8.4 | kJ/mol | CIDC | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1536. ± 8.8 | kJ/mol | H-TS | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy. |
C5H11O- + =
By formula: C5H11O- + H+ = C5H12O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1564. ± 8.4 | kJ/mol | CIDC | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1537. ± 8.8 | kJ/mol | H-TS | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy. |
C7H15O- + =
By formula: C7H15O- + H+ = C7H16O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1558. ± 8.4 | kJ/mol | CIDC | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1531. ± 8.8 | kJ/mol | H-TS | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy. |
C6H13O- + =
By formula: C6H13O- + H+ = C6H14O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1560. ± 8.4 | kJ/mol | CIDC | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1532. ± 8.8 | kJ/mol | H-TS | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy. |
C5H3F3NO2- + = C5H4F3NO2
By formula: C5H3F3NO2- + H+ = C5H4F3NO2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1387. ± 8.8 | kJ/mol | G+TS | Mishima, Matsuoka, et al., 2004 | gas phase; Calc: keto form of acid more stable. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1359. ± 8.4 | kJ/mol | IMRE | Mishima, Matsuoka, et al., 2004 | gas phase; Calc: keto form of acid more stable. |
C11H9N2O3- + = C11H10N2O3
By formula: C11H9N2O3- + H+ = C11H10N2O3
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1324. ± 8.8 | kJ/mol | G+TS | Mishima, Matsuoka, et al., 2004 | gas phase; Calc: enol form of acid more stable. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1293. ± 8.4 | kJ/mol | IMRE | Mishima, Matsuoka, et al., 2004 | gas phase; Calc: enol form of acid more stable. |
By formula: C10H6N3O- + H+ = C10H7N3O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1296. ± 8.8 | kJ/mol | G+TS | Mishima, Matsuoka, et al., 2004 | gas phase; Calc: keto form of acid more stable. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1268. ± 8.4 | kJ/mol | IMRE | Mishima, Matsuoka, et al., 2004 | gas phase; Calc: keto form of acid more stable. |
By formula: C13H11BrNO5- + H+ = C13H12BrNO5
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1365. ± 8.8 | kJ/mol | G+TS | Mishima, Matsuoka, et al., 2004 | gas phase; Calc: enol form of acid more stable. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1330. ± 8.4 | kJ/mol | IMRE | Mishima, Matsuoka, et al., 2004 | gas phase; Calc: enol form of acid more stable. |
C16H10NO3- + = C16H11NO3
By formula: C16H10NO3- + H+ = C16H11NO3
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1344. ± 8.8 | kJ/mol | G+TS | Mishima, Matsuoka, et al., 2004 | gas phase; Calc: enol form of acid more stable. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1311. ± 8.4 | kJ/mol | IMRE | Mishima, Matsuoka, et al., 2004 | gas phase; Calc: enol form of acid more stable. |
By formula: C20H24O4- + H+ = C20H25O4
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1465. ± 12. | kJ/mol | G+TS | Bourgoin-Voillard, Fournier, et al., 2012 | gas phase; See Bourgoin-Voillard, Zins, et al., 2009 for more |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1444. ± 10. | kJ/mol | CIDC | Bourgoin-Voillard, Fournier, et al., 2012 | gas phase; See Bourgoin-Voillard, Zins, et al., 2009 for more |
C6H13O- + =
By formula: C6H13O- + H+ = C6H14O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1561. ± 8.4 | kJ/mol | CIDC | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1533. ± 8.8 | kJ/mol | H-TS | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy. |
C5H5O2- + =
By formula: C5H5O2- + H+ = C5H6O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1395. ± 8.8 | kJ/mol | G+TS | Mishima, Matsuoka, et al., 2004 | gas phase; Calc: keto form of acid more stable. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1366. ± 8.4 | kJ/mol | IMRE | Mishima, Matsuoka, et al., 2004 | gas phase; Calc: keto form of acid more stable. |
C15H16NO3- + = C15H17NO3
By formula: C15H16NO3- + H+ = C15H17NO3
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1401. ± 8.8 | kJ/mol | G+TS | Mishima, Matsuoka, et al., 2004 | gas phase; Calc: enol form of acid more stable. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1364. ± 8.4 | kJ/mol | IMRE | Mishima, Matsuoka, et al., 2004 | gas phase; Calc: enol form of acid more stable. |
C8H7- + =
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1688. ± 13. | kJ/mol | G+TS | Hare, Emrick, et al., 1997 | gas phase; Comparable to ammonia; D exchange with ND3 |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1659. ± 13. | kJ/mol | IMRB | Hare, Emrick, et al., 1997 | gas phase; Comparable to ammonia; D exchange with ND3 |
C5H7O4- + =
By formula: C5H7O4- + H+ = C5H8O4
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1456. ± 8.8 | kJ/mol | G+TS | Mishima, Matsuoka, et al., 2004 | gas phase; Calc: keto form of acid more stable. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1428. ± 8.4 | kJ/mol | IMRE | Mishima, Matsuoka, et al., 2004 | gas phase; Calc: keto form of acid more stable. |
C9H5O2- + =
By formula: C9H5O2- + H+ = C9H6O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1400. ± 8.8 | kJ/mol | G+TS | Mishima, Matsuoka, et al., 2004 | gas phase; Calc: keto form of acid more stable. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1372. ± 8.4 | kJ/mol | IMRE | Mishima, Matsuoka, et al., 2004 | gas phase; Calc: keto form of acid more stable. |
C12H9- + =
By formula: C12H9- + H+ = C12H10
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1559. ± 10. | kJ/mol | TDEq | Meot-ner and Kafafi, 1988 | gas phase; acenaphthene: 1,8-(1,2-ethano)naphthalene |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1531. ± 8.4 | kJ/mol | TDEq | Meot-ner and Kafafi, 1988 | gas phase; acenaphthene: 1,8-(1,2-ethano)naphthalene |
By formula: C7H8N5- + H+ = C7H9N5
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1469. ± 17. | kJ/mol | G+TS | Sharma and Lee, 2002 | gas phase; between mMe-phenol and pCF3-aniline |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1439. ± 17. | kJ/mol | IMRB | Sharma and Lee, 2002 | gas phase; between mMe-phenol and pCF3-aniline |
By formula: C19H11- + H+ = C19H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1391. ± 8.8 | kJ/mol | G+TS | Taft and Bordwell, 1988 | gas phase; Acid HOF: 104.7 MMX; 123.4 AM1; 92 G3MP2B3 |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1359. ± 8.4 | kJ/mol | IMRE | Taft and Bordwell, 1988 | gas phase; Acid HOF: 104.7 MMX; 123.4 AM1; 92 G3MP2B3 |
C4H5- + =
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1670. ± 17. | kJ/mol | G+TS | Kass and Chou, 1988 | gas phase; Acidity between NH3, Me2NH, near nPrNH2. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1636. ± 17. | kJ/mol | IMRB | Kass and Chou, 1988 | gas phase; Acidity between NH3, Me2NH, near nPrNH2. |
C3H4NS- + =
By formula: C3H4NS- + H+ = C3H5NS
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1496. ± 10. | kJ/mol | G+TS | Born, Ingemann, et al., 1996 | gas phase; Acidity >CF3CH2OH, comparable to MeNO2 |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1464. ± 8.4 | kJ/mol | IMRB | Born, Ingemann, et al., 1996 | gas phase; Acidity >CF3CH2OH, comparable to MeNO2 |
CHClF- + =
By formula: CHClF- + H+ = CH2ClF
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1614.8 ± 4.0 | kJ/mol | G+TS | Poutsma, Paulino, et al., 1997 | gas phase; Relative to MeOH at ΔGacid=375.1 |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1576.1 ± 1.3 | kJ/mol | IMRE | Poutsma, Paulino, et al., 1997 | gas phase; Relative to MeOH at ΔGacid=375.1 |
C11H13O2- + =
By formula: C11H13O2- + H+ = C11H14O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1417. ± 8.8 | kJ/mol | G+TS | Decouzon, Ertl, et al., 1993 | gas phase; relative to benzoate at 333.0 kcal/mol |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1387. ± 8.4 | kJ/mol | IMRE | Decouzon, Ertl, et al., 1993 | gas phase; relative to benzoate at 333.0 kcal/mol |
C3H8N- + =
By formula: C3H8N- + H+ = C3H9N
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | >1699.6 ± 2.5 | kJ/mol | G+TS | MacKay and Bohme, 1978 | gas phase; Computations put dHacid ca. 412 kcal/mol |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | >1665.2 | kJ/mol | IMRB | MacKay and Bohme, 1978 | gas phase; Computations put dHacid ca. 412 kcal/mol |
By formula: C5H9O- + H+ = C5H10O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1504. ± 17. | kJ/mol | G+TS | Peerboom, Ingemann, et al., 1985 | gas phase; likely anion mixture of open and cyclized |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1474. ± 17. | kJ/mol | IMRB | Peerboom, Ingemann, et al., 1985 | gas phase; likely anion mixture of open and cyclized |
C9H9O2- + =
By formula: C9H9O2- + H+ = C9H10O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1419. ± 8.8 | kJ/mol | G+TS | Decouzon, Ertl, et al., 1993 | gas phase; relative to benzoate at 333.0 kcal/mol |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1390. ± 8.4 | kJ/mol | IMRE | Decouzon, Ertl, et al., 1993 | gas phase; relative to benzoate at 333.0 kcal/mol |
C9H9O2- + =
By formula: C9H9O2- + H+ = C9H10O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1422. ± 8.8 | kJ/mol | G+TS | Decouzon, Ertl, et al., 1993 | gas phase; relative to benzoate at 333.0 kcal/mol |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1393. ± 8.4 | kJ/mol | IMRE | Decouzon, Ertl, et al., 1993 | gas phase; relative to benzoate at 333.0 kcal/mol |
C9H9O2- + =
By formula: C9H9O2- + H+ = C9H10O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1420. ± 8.8 | kJ/mol | G+TS | Decouzon, Ertl, et al., 1993 | gas phase; relative to benzoate at 333.0 kcal/mol |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1391. ± 8.4 | kJ/mol | IMRE | Decouzon, Ertl, et al., 1993 | gas phase; relative to benzoate at 333.0 kcal/mol |
C9H9O2- + =
By formula: C9H9O2- + H+ = C9H10O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1416. ± 8.8 | kJ/mol | G+TS | Decouzon, Ertl, et al., 1993 | gas phase; relative to benzoate at 333.0 kcal/mol |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1387. ± 8.4 | kJ/mol | IMRE | Decouzon, Ertl, et al., 1993 | gas phase; relative to benzoate at 333.0 kcal/mol |
C10H11O2- + =
By formula: C10H11O2- + H+ = C10H12O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1418. ± 8.8 | kJ/mol | G+TS | Decouzon, Ertl, et al., 1993 | gas phase; relative to benzoate at 333.0 kcal/mol |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1389. ± 8.4 | kJ/mol | IMRE | Decouzon, Ertl, et al., 1993 | gas phase; relative to benzoate at 333.0 kcal/mol |
CH2F- + =
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1756. ± 19. | kJ/mol | EIAE | Rogers, Simpson, et al., 2010 | gas phase |
ΔrH° | 1711. ± 17. | kJ/mol | CIDT | Graul and Squires, 1990 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1676. ± 17. | kJ/mol | H-TS | Graul and Squires, 1990 | gas phase |
CH5Si- + =
By formula: CH5Si- + H+ = CH6Si
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1625. ± 17. | kJ/mol | G+TS | Damrauer, Kass, et al., 1988 | gas phase; Slightly less acidic then fluorobenzene |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1590. ± 17. | kJ/mol | IMRB | Damrauer, Kass, et al., 1988 | gas phase; Slightly less acidic then fluorobenzene |
By formula: C12H22N5O4S + H+ = C12H23N5O4S
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1390. ± 8.4 | kJ/mol | CIDC | Ren, Tan, et al., 2009 | gas phase; acid:H2N-(Ala)3-Cysteinamide) |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1360. ± 8.8 | kJ/mol | H-TS | Ren, Tan, et al., 2009 | gas phase; acid:H2N-(Ala)3-Cysteinamide) |
By formula: C15H27N6O5S + H+ = C15H28N6O5S
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1364. ± 8.4 | kJ/mol | CIDC | Ren, Tan, et al., 2009 | gas phase; acid:H2N-(Ala)4-Cysteinamide) |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1340. ± 8.8 | kJ/mol | H-TS | Ren, Tan, et al., 2009 | gas phase; acid:H2N-(Ala)4-Cysteinamide) |
By formula: C4F6NO2- + H+ = C4HF6NO2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1315. ± 9.2 | kJ/mol | G+TS | Koppel, Taft, et al., 1994 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1287. ± 8.4 | kJ/mol | IMRE | Leito, Raamat, et al., 2009 | gas phase |
ΔrG° | 1287. ± 8.4 | kJ/mol | IMRE | Koppel, Taft, et al., 1994 | gas phase |
C2H3D5O- + =
By formula: C2H3D5O- + H+ = C2H4D2O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1580. ± 9.2 | kJ/mol | G+TS | Dang, Motell, et al., 1993 | gas phase; Acidity 0.35±0.15 weaker than CH3CH2OH |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1553. ± 8.8 | kJ/mol | CIDC | Dang, Motell, et al., 1993 | gas phase; Acidity 0.35±0.15 weaker than CH3CH2OH |
C6H7N2O2- + =
By formula: C6H7N2O2- + H+ = C6H8N2O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1544. ± 8.4 | kJ/mol | IMRB | Lee, 2005 | gas phase |
ΔrH° | 1551. ± 13. | kJ/mol | G+TS | Gronert, Feng, et al., 2000 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1519. ± 13. | kJ/mol | IMRB | Gronert, Feng, et al., 2000 | gas phase |
C6HCl4- + =
By formula: C6HCl4- + H+ = C6H2Cl4
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1514. ± 8.8 | kJ/mol | G+TS | Schlosser, Marzi, et al., 2001 | gas phase; Acid: 1,2,4,5-tetrachlorobenzene. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1480. ± 8.4 | kJ/mol | IMRE | Schlosser, Marzi, et al., 2001 | gas phase; Acid: 1,2,4,5-tetrachlorobenzene. |
By formula: C12H22N5O4S + H+ = C12H23N5O4S
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1336. ± 13. | kJ/mol | CIDC | Ren, Tan, et al., 2009 | gas phase; acid:H2N-Cys-(Ala)2-CHMeCONH2 |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1323. ± 13. | kJ/mol | H-TS | Ren, Tan, et al., 2009 | gas phase; acid:H2N-Cys-(Ala)2-CHMeCONH2 |
By formula: C15H27N6O5S + H+ = C15H28N6O5S
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1336. ± 17. | kJ/mol | CIDC | Ren, Tan, et al., 2009 | gas phase; acid:H2N-Cys-(Ala)3-CHMeCONH2 |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1320. ± 17. | kJ/mol | H-TS | Ren, Tan, et al., 2009 | gas phase; acid:H2N-Cys-(Ala)3-CHMeCONH2 |
CHO- + =
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1650.7 ± 0.96 | kJ/mol | D-EA | Murray, Miller, et al., 1986 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1617.7 ± 1.7 | kJ/mol | H-TS | Murray, Miller, et al., 1986 | gas phase |
ΔrG° | 1648. ± 19. | kJ/mol | IMRB | Karpas and Klein, 1975 | gas phase |
C2H3O2- + =
By formula: C2H3O2- + H+ = C2H4O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1540. ± 13. | kJ/mol | G+TS | Grabowski and Cheng, 1989 | gas phase |
ΔrH° | 1539. ± 19. | kJ/mol | EIAE | Muftakhov, Vasil'ev, et al., 1999 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1511. ± 13. | kJ/mol | IMRB | Grabowski and Cheng, 1989 | gas phase |
C8H9O- + =
By formula: C8H9O- + H+ = C8H10O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1540. ± 10. | kJ/mol | G+TS | Abboud, Koppel, et al., 2013 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1513. ± 10. | kJ/mol | IMRE | Abboud, Koppel, et al., 2013 | gas phase |
ΔrG° | 1512. ± 12. | kJ/mol | CIDC | Graul, Schnute, et al., 1990 | gas phase |
C6H4F- + =
By formula: C6H4F- + H+ = C6H5F
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1671.9 ± 3.8 | kJ/mol | Bran | Wenthold and Squires, 1995 | gas phase; By HO- cleavage of substituted silanes |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1639. ± 4.2 | kJ/mol | H-TS | Wenthold and Squires, 1995 | gas phase; By HO- cleavage of substituted silanes |
C3H6NO2- + =
By formula: C3H6NO2- + H+ = C3H7NO2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1482. ± 9.6 | kJ/mol | G+TS | Decouzon, Exner, et al., 1990 | gas phase; Acid: N-methyl acetohydroxamic acid |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1451. ± 8.4 | kJ/mol | IMRE | Decouzon, Exner, et al., 1990 | gas phase; Acid: N-methyl acetohydroxamic acid |
C9H5F6O4S2- + =
By formula: C9H5F6O4S2- + H+ = C9H6F6O4S2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 1255. ± 8.4 | kJ/mol | IMRE | Leito, Raamat, et al., 2009 | gas phase |
ΔrG° | 1261. ± 8.4 | kJ/mol | IMRE | Koppel, Taft, et al., 1994 | gas phase; Per Leito, Raamat, et al., 2009, dGacid is likely too weak by up to 1.3 kcal/mol. |
C6H4F- + =
By formula: C6H4F- + H+ = C6H5F
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1654. ± 8.4 | kJ/mol | Bran | Wenthold and Squires, 1995 | gas phase; By HO- cleavage of substituted silanes |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1619. ± 8.8 | kJ/mol | H-TS | Wenthold and Squires, 1995 | gas phase; By HO- cleavage of substituted silanes |
C6H4Br- + =
By formula: C6H4Br- + H+ = C6H5Br
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1605. ± 8.8 | kJ/mol | Bran | Wenthold and Squires, 1995 | gas phase; By HO- cleavage of substituted silanes |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1570. ± 9.2 | kJ/mol | H-TS | Wenthold and Squires, 1995 | gas phase; By HO- cleavage of substituted silanes |
C6H4Br- + =
By formula: C6H4Br- + H+ = C6H5Br
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1643. ± 8.4 | kJ/mol | Bran | Wenthold and Squires, 1995 | gas phase; By HO- cleavage of substituted silanes |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1611. ± 8.8 | kJ/mol | H-TS | Wenthold and Squires, 1995 | gas phase; By HO- cleavage of substituted silanes |
C7H6Cl- + =
By formula: C7H6Cl- + H+ = C7H7Cl
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1659. ± 6.7 | kJ/mol | Bran | Wenthold and Squires, 1995 | gas phase; By HO- cleavage of substituted silanes |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1627. ± 7.1 | kJ/mol | H-TS | Wenthold and Squires, 1995 | gas phase; By HO- cleavage of substituted silanes |
References
Go To: Top, Reaction thermochemistry data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Haas and Harrison, 1993
Haas, M.J.; Harrison, A.G.,
The Fragmentation of Proton-Bound Cluster Ions and the Gas-Phase Acidities of Alcohols,
Int. J. Mass Spectrom. Ion Proc., 1993, 124, 2, 115, https://doi.org/10.1016/0168-1176(93)80003-W
. [all data]
Mishima, Matsuoka, et al., 2004
Mishima, M.; Matsuoka, M.; Lei, Y.X.; Rappoport, Z.,
Gas-phase acidities of disubstituted methanes and of enols of carboxamides substituted by electron-withdrawing groups,
J. Org. Chem., 2004, 69, 18, 5947-5965, https://doi.org/10.1021/jo040196b
. [all data]
Bourgoin-Voillard, Fournier, et al., 2012
Bourgoin-Voillard, S.; Fournier, F.; Afonso, C.; Zins, E.L.; Jacquot, Y.; Pepe, C.; Leclercq, G.; Tabet, J.C.,
Electronic Effects of 11 beta Substituted 17 beta-Estradiol Derivatives and Instrumental Effects on the Relative Gas Phase Acidity,
J. Am. Soc. Mass Spectrom., 2012, 23, 12, 2167-2177, https://doi.org/10.1007/s13361-012-0486-8
. [all data]
Bourgoin-Voillard, Zins, et al., 2009
Bourgoin-Voillard, S.; Zins, E.L.; Fournier, F.; Jacquot, Y.; Afonso, C.; Pepe, C.; Leclercq, G.; Tabet, J.C.,
Stereochemical Effects During [M-H](-) Dissociations of Epimeric 11-OH-17 beta-Estradiols and Distant Electronic Effects of Substituents at C-(11) Position on Gas Phase Acidity,
J. Am. Soc. Mass Spectrom., 2009, 20, 12, 2318-2333, https://doi.org/10.1016/j.jasms.2009.08.017
. [all data]
Hare, Emrick, et al., 1997
Hare, M.; Emrick, T.; Eaton, P.E.; Kass, S.R.,
Cubyl Anion Formation and an Experimental Determination of the Acidity and C-H Bond Dissociation Energy of Cubane,
J. Am. Chem. Soc., 1997, 119, 1, 237, https://doi.org/10.1021/ja9627858
. [all data]
Meot-ner and Kafafi, 1988
Meot-ner, M.; Kafafi, S.A.,
Carbon Acidities of Aromatic Compounds,
J. Am. Chem. Soc., 1988, 110, 19, 6297, https://doi.org/10.1021/ja00227a003
. [all data]
Sharma and Lee, 2002
Sharma, S.; Lee, J.K.,
Acidity of adenine and adenine derivatives and biological implications. A computational and experimental gas-phase study,
J. Org. Chem., 2002, 67, 24, 8360-8365, https://doi.org/10.1021/jo0204303
. [all data]
Taft and Bordwell, 1988
Taft, R.W.; Bordwell, F.G.,
Structural and Solvent Effects Evaluated from Acidities Measured in Dimethyl Sulfoxide and in the Gas Phase,
Acc. Chem. Res., 1988, 21, 12, 463, https://doi.org/10.1021/ar00156a005
. [all data]
Kass and Chou, 1988
Kass, S.R.; Chou, P.K.,
The Bicyclobutyl Anion: An Alkyl Carbanion,
J. Am. Chem. Soc., 1988, 110, 23, 7899, https://doi.org/10.1021/ja00231a063
. [all data]
Born, Ingemann, et al., 1996
Born, M.; Ingemann, S.; Nibbering, N.M.M.,
Experimental Determination of the Enthalpies of Formation of Formyl Cyanide and Thioformyl Cyanide in the Gas Phase,
J. Phys. Chem., 1996, 100, 44, 17662, https://doi.org/10.1021/jp9609141
. [all data]
Poutsma, Paulino, et al., 1997
Poutsma, J.C.; Paulino, J.A.; Squires, R.R.,
Absolute Heats of Formation of CHCl, CHF, and CClF. A Gas-Phase Experimental and G2 Theoretical Study.,
J. Phys. Chem. A, 1997, 101, 29, 5327, https://doi.org/10.1021/jp970778f
. [all data]
Decouzon, Ertl, et al., 1993
Decouzon, M.; Ertl, P.; Exner, O.; Gal, J.F.; Maria, P.C.,
Concepts of Sterically Hindered Resonance and Buttressing Effect - Gas-Phase Acidities of Methyl-Substituted Benzoic Acids and Basicities of,
J. Am. Chem. Soc., 1993, 115, 25, 12071, https://doi.org/10.1021/ja00078a052
. [all data]
MacKay and Bohme, 1978
MacKay, G.I.; Bohme, D.K.,
Proton-Transfer Reactions in Nitromethane at 297K,
Int. J. Mass Spectrom. Ion Phys., 1978, 26, 4, 327, https://doi.org/10.1016/0020-7381(78)80052-7
. [all data]
Peerboom, Ingemann, et al., 1985
Peerboom, R.; Ingemann, S.; Nibbering, N.M.M.,
Isomeric C5H9O- Ions Formed in the Gas-Phase Reactions of Anions with 2,2-Dimethylpropanal and 2,2-Dimethylcyclopropanol,
Recl. Trav. Chim. Pays-Bas, 1985, 104, 3, 74, https://doi.org/10.1002/recl.19851040305
. [all data]
Rogers, Simpson, et al., 2010
Rogers, N.J.; Simpson, M.J.; Tuckett, R.P.; Dunn, K.F.; Latimer, C.J.,
Vacuum-UV negative photoion spectroscopy of CH3F, CH3Cl and CH3Br,
Phys. Chem. Chem. Phys., 2010, 12, 36, 10971-10980, https://doi.org/10.1039/c0cp00234h
. [all data]
Graul and Squires, 1990
Graul, S.T.; Squires, R.R.,
Gas-Phase Acidities Derived from Threshold Energies for Activated Reactions,
J. Am. Chem. Soc., 1990, 112, 7, 2517, https://doi.org/10.1021/ja00163a007
. [all data]
Damrauer, Kass, et al., 1988
Damrauer, R.; Kass, S.R.; DePuy, C.H.,
Gas-Phase Acidities of Methylsilanes: C-H versus Si-H,
Organomet., 1988, 7, 3, 637, https://doi.org/10.1021/om00093a011
. [all data]
Ren, Tan, et al., 2009
Ren, J.H.; Tan, J.P.; Harper, R.T.,
Gas-Phase Acidities of Cysteine-Polyalanine Peptides I: A(3,4)CSH and HSCA(3,4),
J. Phys. Chem. A, 2009, 113, 41, 10903-10912, https://doi.org/10.1021/jp903594a
. [all data]
Koppel, Taft, et al., 1994
Koppel, I.A.; Taft, R.W.; Anvia, F.; Zhu, S.Z.; Hu, L.Q.; Sung, K.S.; Desmarteau, D.D.; Yagupolskii, L.M.,
The Gas-Phase Acidities of Very Strong Neutral Bronsted Acids,
J. Am. Chem. Soc., 1994, 116, 7, 3047, https://doi.org/10.1021/ja00086a038
. [all data]
Leito, Raamat, et al., 2009
Leito, I.; Raamat, E.; Kutt, A.; Saame, J.; Kipper, K.; Koppel, I.A.; Koppel, I.; Zhang, M.; Mishima, M.; Yagupolskii, L.M.; Garlyauskayte, R.Y.; Filatov, A.A.,
Revision of the Gas-Phase Acidity Scale below 300 kcal mol(-1),
J. Phys. Chem. A, 2009, 113, 29, 8421-8424, https://doi.org/10.1021/jp903780k
. [all data]
Dang, Motell, et al., 1993
Dang, T.T.; Motell, E.L.; Travers, M.J.; Clifford, E.P.; Ellison, G.B.; Depuy, C.H.; Bierbaum, V.M.,
Experimental and Computational Studies of Deuterated Ethanols - Gas-Phase Acidities, Electron Affinities and Bond Dissociation Energies,
Int. J. Mass Spectrom. Ion Proc., 1993, 123, 3, 171, https://doi.org/10.1016/0168-1176(93)87096-B
. [all data]
Lee, 2005
Lee, J.K.,
Insights into nucleic acid reactivity through gas-phase experimental and computational studies,
Int. J. Mass Spectrom., 2005, 240, 3, 261-272, https://doi.org/10.1016/j.ijms.2004.09.020
. [all data]
Gronert, Feng, et al., 2000
Gronert, S.; Feng, W.Y.; Chew, F.; Wu, W.M.,
The gas phase acid/base properties of 1,3,-dimethyluracil, 1-methyl-2-pyridone, and 1-methyl-4-pyridone: relevance to the mechanism of orotidine-5 '-monophosphate decarboxylase,
Int. J. Mass Spectrom., 2000, 196, 251-258, https://doi.org/10.1016/S1387-3806(99)00191-8
. [all data]
Schlosser, Marzi, et al., 2001
Schlosser, M.; Marzi, E.; Cottet, F.; Buker, H.H.; Nibbering, N.M.M.,
The acidity of chloro-substituted benzenes: A comparison of gas phase, ab initio, and kinetic data,
Chem. Eur. J., 2001, 7, 16, 3511-3516, https://doi.org/10.1002/1521-3765(20010817)7:16<3511::AID-CHEM3511>3.0.CO;2-U
. [all data]
Murray, Miller, et al., 1986
Murray, K.K.; Miller, T.M.; Leopold, D.G.; Lineberger, W.C.,
Laser photoelectron spectroscopy of the Formylf anion,
J. Chem. Phys., 1986, 84, 2520. [all data]
Karpas and Klein, 1975
Karpas, Z.; Klein, F.S.,
Negative ion-molecule reactions in a mixture of ammonia-formaldehyde - an ICR mass spectrometry study,
Int. J. Mass Spectrom. Ion Phys., 1975, 18, 65. [all data]
Grabowski and Cheng, 1989
Grabowski, J.J.; Cheng, X.,
Gas-Phase Formation of the Enolate Monoanion of Acetic Acid by Proton Abstraction,
J. Am. Chem. Soc., 1989, 111, 8, 3106, https://doi.org/10.1021/ja00190a078
. [all data]
Muftakhov, Vasil'ev, et al., 1999
Muftakhov, M.V.; Vasil'ev, Y.V.; Mazunov, V.A.,
Determination of electron affinity of carbonyl radicals by means of negative ion mass spectrometry,
Rapid Commun. Mass Spectrom., 1999, 13, 12, 1104-1108, https://doi.org/10.1002/(SICI)1097-0231(19990630)13:12<1104::AID-RCM619>3.0.CO;2-C
. [all data]
Abboud, Koppel, et al., 2013
Abboud, J.L.M.; Koppel, I.A.; Koppel, I.,
Additivity of substituent effects on the acidity of alcohols,
J. Phys. Org. Chem., 2013, 26, 6, 467-472, https://doi.org/10.1002/poc.3110
. [all data]
Graul, Schnute, et al., 1990
Graul, S.T.; Schnute, M.E.; Squires, R.R.,
Gas-Phase Acidities of Carboxylic Acids and Alcohols from Collision-Induced Dissociation of Dimer Cluster Ions,
Int. J. Mass Spectrom. Ion Proc., 1990, 96, 2, 181, https://doi.org/10.1016/0168-1176(90)87028-F
. [all data]
Wenthold and Squires, 1995
Wenthold, P.G.; Squires, R.R.,
Determination of the gas-phase acidities of halogen-substituted aromatic compounds using the silane-cleavage method,
J. Mass Spectrom., 1995, 30, 1, 17, https://doi.org/10.1002/jms.1190300105
. [all data]
Decouzon, Exner, et al., 1990
Decouzon, M.; Exner, O.; Gal, J.-F.; Maria, P.-C.,
The Gas-Phase Acidity and the Acidic Site of Acetohydroxamic Acid: an FT-ICR Study,
J. Org. Chem., 1990, 55, 13, 3980, https://doi.org/10.1021/jo00300a007
. [all data]
Notes
Go To: Top, Reaction thermochemistry data, References
- Symbols used in this document:
ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.