Acetylacetone
- Formula: C5H8O2
- Molecular weight: 100.1158
- IUPAC Standard InChIKey: YRKCREAYFQTBPV-UHFFFAOYSA-N
- CAS Registry Number: 123-54-6
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: 2,4-Pentanedione; Acetoacetone; Diacetylmethane; Pentane-2,4-dione; 2-Propanone, acetyl-; 2,4-Dioxopentane; 2,4-Pentadione; CH3COCH2COCH3; Acetone, acetyl-; ACAC; Pentanedione; Pentanedione-2,4; Acetyl 2-propanone; UN 2310; 2,4-Pentandione; Pentan-2,4-dione; NSC 5575
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, UV/Visible spectrum, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -91.87 ± 0.31 | kcal/mol | Ccb | Hacking and Pilcher, 1979 | Heat of enolization=-11.3±0.4 kJ/mol |
ΔfH°gas | -100.4 | kcal/mol | Ion | Conrath, Van de Sande, et al., 1974 | Mass spectrometery (enol) |
ΔfH°gas | -89.89 ± 0.48 | kcal/mol | Cm | Melia and Merrifield, 1969 | Thermochemical cycle |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, UV/Visible spectrum, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | -102.2 ± 0.26 | kcal/mol | Ccb | Hacking and Pilcher, 1979 | Heat of enolization=-11.3±0.4 kJ/mol |
ΔfH°liquid | -106.9 ± 1.9 | kcal/mol | Ccb | Vilcu and Perisanu, 1979 | |
ΔfH°liquid | -98.97 ± 0.48 | kcal/mol | Cm | Melia and Merrifield, 1969 | Thermochemical cycle |
ΔfH°liquid | -126.42 | kcal/mol | Ccb | Guinchant, 1918 | Author hf288_condensed[kcal/mol]=-131.2 kcal/mol |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -641.8 ± 0.2 | kcal/mol | Ccb | Hacking and Pilcher, 1979 | Heat of enolization=-11.3±0.4 kJ/mol; Corresponding ΔfHºliquid = -101.7 kcal/mol (simple calculation by NIST; no Washburn corrections) |
ΔcH°liquid | -637.4 ± 2.9 | kcal/mol | Ccb | Vilcu and Perisanu, 1979 | Corresponding ΔfHºliquid = -106.09 kcal/mol (simple calculation by NIST; no Washburn corrections) |
ΔcH°liquid | -642.20 ± 0.36 | kcal/mol | Ccb | Nicholson, 1957 | Corresponding ΔfHºliquid = -101.32 kcal/mol (simple calculation by NIST; no Washburn corrections) |
ΔcH°liquid | -617.09 | kcal/mol | Ccb | Guinchant, 1918 | Author hf288_condensed[kcal/mol]=-131.2 kcal/mol; Corresponding ΔfHºliquid = -126.43 kcal/mol (simple calculation by NIST; no Washburn corrections) |
Phase change data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, UV/Visible spectrum, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
AC - William E. Acree, Jr., James S. Chickos
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 411. ± 2. | K | AVG | N/A | Average of 9 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 249.95 | K | N/A | Timmermans, 1921 | Uncertainty assigned by TRC = 0.3 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Ttriple | 254.8 | K | N/A | Melia and Merrifield, 1969 | Uncertainty assigned by TRC = 0.2 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 9.986 | kcal/mol | N/A | Majer and Svoboda, 1985 | |
ΔvapH° | 10.3 ± 0.02 | kcal/mol | V | Hacking and Pilcher, 1979 | Heat of enolization=-11.3±0.4 kJ/mol; ALS |
ΔvapH° | 10.3 ± 0.24 | kcal/mol | C | Irving and Wads, 1970 | ALS |
Reduced pressure boiling point
Tboil (K) | Pressure (atm) | Reference | Comment |
---|---|---|---|
412.2 | 0.982 | Weast and Grasselli, 1989 | BS |
Enthalpy of vaporization
ΔvapH (kcal/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
9.42 | 347. | N/A | Melia and Merrifield, 2007 | Based on data from 297. to 398. K.; AC |
8.41 | 393. | A,I,EB | Stephenson and Malanowski, 1987 | Based on data from 378. to 411. K. See also Nakanishi and Toyama, 1972.; AC |
10.2 | 303. | A,EB | Stephenson and Malanowski, 1987 | Based on data from 288. to 378. K.; AC |
8.20 | 411.1 | N/A | Majer and Svoboda, 1985 | |
9.37 | 322. | EB | Raviprasad and Venkateswara Rao, 1985 | Based on data from 307. to 414. K.; AC |
9.70 | 304. | N/A | Inoue, Arai, et al., 1981 | Based on data from 295. to 313. K.; AC |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, IR Spectrum, UV/Visible spectrum, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
C5H7O2- + =
By formula: C5H7O2- + H+ = C5H8O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 343.8 ± 2.1 | kcal/mol | G+TS | Taft and Bordwell, 1988 | gas phase; at 330K: neutral enol/keto ratio should be 8:1 ( Strohmeier and Höhne, 1952); B |
ΔrH° | 343.7 ± 2.3 | kcal/mol | G+TS | Cumming and Kebarle, 1978 | gas phase; At 500K: neutral enol/keto ratio is 1.7:1, Folkendt, Weiss-Lopez, et al., 1989. ΔH=-4.7 kcal/mol, enol favored. Carbonyls anti in anion, via calc: Irikura, 1999; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 336.7 ± 2.0 | kcal/mol | IMRE | Taft and Bordwell, 1988 | gas phase; at 330K: neutral enol/keto ratio should be 8:1 ( Strohmeier and Höhne, 1952); B |
ΔrG° | 336.6 ± 2.0 | kcal/mol | IMRE | Cumming and Kebarle, 1978 | gas phase; At 500K: neutral enol/keto ratio is 1.7:1, Folkendt, Weiss-Lopez, et al., 1989. ΔH=-4.7 kcal/mol, enol favored. Carbonyls anti in anion, via calc: Irikura, 1999; B |
By formula: C5H8O2 = C5H8O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -1.9 ± 0.1 | kcal/mol | Kin | Schweig, Vermeer, et al., 1974 | liquid phase; Photoelectron spectroscopy; ALS |
ΔrH° | -2.4 ± 0.2 | kcal/mol | Eqk | Thompson and Allred, 1971 | liquid phase; solvent: Cyclohexane; NMR, UV; ALS |
ΔrH° | -2.8 ± 0.2 | kcal/mol | Eqk | Calmon, 1969 | liquid phase; ALS |
By formula: Cl- + C5H8O2 = (Cl- • C5H8O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 13.40 | kcal/mol | TDEq | French, Ikuta, et al., 1982 | gas phase; B |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
11.0 | 421. | PHPMS | French, Ikuta, et al., 1982 | gas phase; M |
By formula: I- + C5H8O2 = (I- • C5H8O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 15.1 ± 1.0 | kcal/mol | TDAs | Caldwell, Masucci, et al., 1989 | gas phase; B,M |
By formula: C5H8O2 = C6H10O3
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -4.66 ± 0.18 | kcal/mol | Eqk | Folkendt, Weiss-Lopez, et al., 1985 | gas phase; NMR; ALS |
By formula: C5H8O2 = C5H8O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 4.02 | kcal/mol | Eqk | Mines and Thompson, 1975 | gas phase; ALS |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, UV/Visible spectrum, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias
Data compiled as indicated in comments:
B - John E. Bartmess
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 8.85 ± 0.02 | eV | N/A | N/A | L |
Quantity | Value | Units | Method | Reference | Comment |
Proton affinity (review) | 208.8 | kcal/mol | N/A | Hunter and Lias, 1998 | HL |
Quantity | Value | Units | Method | Reference | Comment |
Gas basicity | 200.0 | kcal/mol | N/A | Hunter and Lias, 1998 | HL |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
8.85 ± 0.05 | PE | Houk, Davis, et al., 1973 | LLK |
8.82 ± 0.02 | PI | Shigorin, Filyugina, et al., 1967 | RDSH |
8.87 ± 0.03 | PI | Watanabe, Nakayama, et al., 1962 | RDSH |
9.63 ± 0.01 | PE | Hush, Livett, et al., 1987 | Vertical value; LBLHLM |
9.15 | PE | Cauletti, Furlani, et al., 1980 | Vertical value; LLK |
9.00 | PE | Schweig, Vermeer, et al., 1974, 2 | Vertical value; LLK |
9.18 ± 0.07 | PE | Evans, Hamnett, et al., 1972 | Vertical value; LLK |
Appearance energy determinations
Ion | AE (eV) | Other Products | Method | Reference | Comment |
---|---|---|---|---|---|
C4H5O2+ | 10.7 ± 0.1 | CH3 | EI | Reichert and Westmore, 1969 | RDSH |
C4H5O2+ | 10.24 | CH3 | PI | Shigorin, Filyugina, et al., 1967 | RDSH |
De-protonation reactions
C5H7O2- + =
By formula: C5H7O2- + H+ = C5H8O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 343.8 ± 2.1 | kcal/mol | G+TS | Taft and Bordwell, 1988 | gas phase; at 330K: neutral enol/keto ratio should be 8:1 ( Strohmeier and Höhne, 1952); B |
ΔrH° | 343.7 ± 2.3 | kcal/mol | G+TS | Cumming and Kebarle, 1978 | gas phase; At 500K: neutral enol/keto ratio is 1.7:1, Folkendt, Weiss-Lopez, et al., 1989. ΔH=-4.7 kcal/mol, enol favored. Carbonyls anti in anion, via calc: Irikura, 1999; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 336.7 ± 2.0 | kcal/mol | IMRE | Taft and Bordwell, 1988 | gas phase; at 330K: neutral enol/keto ratio should be 8:1 ( Strohmeier and Höhne, 1952); B |
ΔrG° | 336.6 ± 2.0 | kcal/mol | IMRE | Cumming and Kebarle, 1978 | gas phase; At 500K: neutral enol/keto ratio is 1.7:1, Folkendt, Weiss-Lopez, et al., 1989. ΔH=-4.7 kcal/mol, enol favored. Carbonyls anti in anion, via calc: Irikura, 1999; B |
IR Spectrum
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, UV/Visible spectrum, Gas Chromatography, References, Notes
Data compiled by: Coblentz Society, Inc.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
UV/Visible spectrum
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Victor Talrose, Eugeny B. Stern, Antonina A. Goncharova, Natalia A. Messineva, Natalia V. Trusova, Margarita V. Efimkina
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
View spectrum image in SVG format.
Download spectrum in JCAMP-DX format.
Source | Bernasconi and Kamararioti, 1986 |
---|---|
Owner | INEP CP RAS, NIST OSRD Collection (C) 2007 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
Origin | INSTITUTE OF ENERGY PROBLEMS OF CHEMICAL PHYSICS, RAS |
Source reference | RAS UV No. 3482 |
Instrument | Cary 219 |
Melting point | -23 |
Boiling point | 138 |
Gas Chromatography
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, UV/Visible spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Kovats' RI, non-polar column, isothermal
Column type | Active phase | Temperature (C) | I | Reference | Comment |
---|---|---|---|---|---|
Capillary | DB-5 | 130. | 786.6 | Mijin and Antonovic, 2004 | 60. m/0.321 mm/0.25 μm, N2 |
Capillary | DB-5 | 150. | 787.25 | Mijin and Antonovic, 2004 | 60. m/0.321 mm/0.25 μm, N2 |
Capillary | DB-5 | 170. | 763.43 | Mijin and Antonovic, 2004 | 60. m/0.321 mm/0.25 μm, N2 |
Capillary | DB-5 | 190. | 791. | Mijin and Antonovic, 2004 | 60. m/0.321 mm/0.25 μm, N2 |
Packed | SE-30 | 150. | 775. | Tiess, 1984 | Ar, Gas Chrom Q (80-100 mesh); Column length: 3. m |
Packed | Apiezon L | 120. | 754. | Bogoslovsky, Anvaer, et al., 1978 | Celite 545 |
Packed | Apiezon L | 160. | 771. | Bogoslovsky, Anvaer, et al., 1978 | Celite 545 |
Packed | SE-30 | 150. | 779. | Haken, Ho, et al., 1975 | Column length: 3.7 m |
Packed | Squalane | 180. | 771. | Vernon and Edwards, 1975 | N2, Celite; Column length: 1. m |
Van Den Dool and Kratz RI, non-polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | HP-5MS | 783. | Pino, Mesa, et al., 2005 | 30. m/0.25 mm/0.25 μm, He, 60. C @ 2. min, 4. K/min, 250. C @ 20. min |
Capillary | BP-5 | 787. | Whitfield and Mottram, 1999 | He, 60. C @ 5. min, 4. K/min; Column length: 50. m; Column diameter: 0.32 mm; Tend: 250. C |
Capillary | DB-5 | 782. | Madruga and Mottram, 1998 | 30. m/0.32 mm/1. μm, 60. C @ 5. min, 4. K/min, 250. C @ 20. min |
Capillary | HP-1 | 795. | Kuo and Ho, 1992 | 50. m/0.32 mm/1.05 μm, He, 2. K/min; Tstart: 40. C; Tend: 260. C |
Capillary | DB-1 | 756. | Zhang and Ho, 1991 | 60. m/0.25 mm/0.25 μm, He, 2. K/min, 220. C @ 10. min; Tstart: 40. C |
Capillary | DB-1 | 760. | Zhang and Ho, 1991, 2 | 60. m/0.25 mm/0.25 μm, He, 2. K/min, 220. C @ 10. min; Tstart: 40. C |
Capillary | DB-1 | 753. | Flath, Light, et al., 1990 | 50. C @ 0.1 min, 4. K/min; Column length: 60. m; Column diameter: 0.32 mm; Tend: 250. C |
Van Den Dool and Kratz RI, non-polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | DB-5 | 799. | Parker, Hassell, et al., 2000 | 50. m/0.32 mm/0.5 μm, He; Program: oC(5min) => 60C/min => 60C (5min) => 4C/min => 250C |
Van Den Dool and Kratz RI, polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | Supelcowax-10 | 1196. | Bianchi, Careri, et al., 2007 | 30. m/0.25 mm/0.25 μm, He; Program: 35C(8min) => 4C/min => 60C => 6C/min => 160C => 20C/min => 200C(1min) |
Normal alkane RI, non-polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | VF-5 MS | 778. | Leffingwell and Alford, 2011 | 60. m/0.32 mm/0.25 μm, Helium, 2. K/min, 260. C @ 28. min; Tstart: 30. C |
Capillary | VF-5 MS | 782. | Leffingwell and Alford, 2011 | 60. m/0.32 mm/0.25 μm, Helium, 2. K/min, 260. C @ 28. min; Tstart: 30. C |
Capillary | HP-5 MS | 783. | Radulovic, Blagojevic, et al., 2010 | 30. m/0.25 mm/0.25 μm, Helium, 5. K/min, 290. C @ 10. min; Tstart: 70. C |
Capillary | SPB-1 | 760. | Frerot, Velluz, et al., 2008 | 30. m/0.25 mm/1.0 μm, Helium, 60. C @ 5. min, 5. K/min; Tend: 250. C |
Capillary | DB-5 | 786. | Pino, Marbot, et al., 2003 | 30. m/0.25 mm/0.25 μm, H2, 60. C @ 10. min, 4. K/min, 280. C @ 40. min |
Normal alkane RI, non-polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | Squalane | 779. | Chen, 2008 | Program: not specified |
Capillary | SPB-1 | 764. | Flanagan, Streete, et al., 1997 | 60. m/0.53 mm/5. μm, He; Program: 40C(6min) => 5C/min => 80C => 10C/min => 200C |
Capillary | SPB-1 | 764. | Strete, Ruprah, et al., 1992 | 60. m/0.53 mm/5.0 μm, Helium; Program: 40 0C (6 min) 5 0C/min -> 80 0C 10 0C/min -> 200 0C |
Capillary | SPB-1 | 790. | Strete, Ruprah, et al., 1992 | 60. m/0.53 mm/5.0 μm, Helium; Program: not specified |
Capillary | Polydimethyl siloxanes | 775. | Schutz and Wollrab A., 1988 | Program: not specified |
Capillary | OV-1 | 804. | Ramsey and Flanagan, 1982 | Program: not specified |
Normal alkane RI, polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | AT-Wax | 1167. | Kiss, Csoka, et al., 2011 | 60. m/0.25 mm/0.25 μm, Helium, 4. K/min; Tstart: 60. C; Tend: 280. C |
Capillary | Carbowax 20M | 1200. | Seifert and King, 1982 | He, 50. C @ 10. min, 1. K/min, 170. C @ 60. min; Column length: 150. m; Column diameter: 0.64 mm |
Normal alkane RI, polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | Carbowax 20M | 1230. | Ramsey and Flanagan, 1982 | Program: not specified |
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, UV/Visible spectrum, Gas Chromatography, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Hacking and Pilcher, 1979
Hacking, J.M.; Pilcher, G.,
Enthalpy of combustion of pentane-2,4-dione,
J. Chem. Thermodyn., 1979, 11, 1015-1017. [all data]
Conrath, Van de Sande, et al., 1974
Conrath, k.; Van de Sande, C.; Vandewalle, M.,
Studies in organic mass spectrometry. XVI. A combined approach to the structures of ions generated from the molecular ions of acyclic β-diketones through loss of small neutral molecules,
Org. Mass Spectrom., 1974, 9, 585-593. [all data]
Melia and Merrifield, 1969
Melia, T.P.; Merrifield, R.,
Thermal properties of acetylacetone,
J. Appl. Chem., 1969, 19, 79-82. [all data]
Vilcu and Perisanu, 1979
Vilcu, R.; Perisanu, S.,
The standard enthalpies of formation of some C, H, O containing compounds,
Rev. Roum. Chim., 1979, 24, 237-243. [all data]
Guinchant, 1918
Guinchant, M.J.,
Etude sur la fonction acide dans les derives metheniques et methiniques,
Ann. Chem., 1918, 10, 30-84. [all data]
Nicholson, 1957
Nicholson, G.R.,
The heat of combustion of acetylacetone,
J. Chem. Soc., 1957, 2431-2432. [all data]
Timmermans, 1921
Timmermans, J.,
The Freezing Points of Organic Substances IV. New Exp. Determinations,
Bull. Soc. Chim. Belg., 1921, 30, 62. [all data]
Majer and Svoboda, 1985
Majer, V.; Svoboda, V.,
Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]
Irving and Wads, 1970
Irving, R.J.; Wads, I.,
Enthalpy of vaporization of organic compounds at 25°C. V. Acetylacetone,
Acta Chem. Scand., 1970, 24, 589-592. [all data]
Weast and Grasselli, 1989
CRC Handbook of Data on Organic Compounds, 2nd Editon, Weast,R.C and Grasselli, J.G., ed(s)., CRC Press, Inc., Boca Raton, FL, 1989, 1. [all data]
Melia and Merrifield, 2007
Melia, T.P.; Merrifield, R.,
Thermal properties of acetylacetone,
J. Appl. Chem., 2007, 19, 3, 79-82, https://doi.org/10.1002/jctb.5010190305
. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Nakanishi and Toyama, 1972
Nakanishi, Koichiro; Toyama, Osamu,
Vapor Pressure of Acetylacetone below Normal Boiling Point,
Bull. Chem. Soc. Jpn., 1972, 45, 10, 3210-3211, https://doi.org/10.1246/bcsj.45.3210
. [all data]
Raviprasad and Venkateswara Rao, 1985
Raviprasad, A.; Venkateswara Rao, K.,
Vapour pressure of 2,4-pentanedione,
The Journal of Chemical Thermodynamics, 1985, 17, 2, 117-121, https://doi.org/10.1016/0021-9614(85)90063-1
. [all data]
Inoue, Arai, et al., 1981
Inoue, Mikio; Arai, Yasuhiko; Saito, Shozaburo; Suzuki, Nobuo,
Vapor-liquid equilibriums of acetylacetone-organic solvent systems,
J. Chem. Eng. Data, 1981, 26, 3, 287-293, https://doi.org/10.1021/je00025a020
. [all data]
Taft and Bordwell, 1988
Taft, R.W.; Bordwell, F.G.,
Structural and Solvent Effects Evaluated from Acidities Measured in Dimethyl Sulfoxide and in the Gas Phase,
Acc. Chem. Res., 1988, 21, 12, 463, https://doi.org/10.1021/ar00156a005
. [all data]
Strohmeier and Höhne, 1952
Strohmeier, W.; Höhne, I.,
Keto-Enol-Umwandlung des Acetylacteons in Gaszustand,
Z. Naturfor., 1952, 7B, 184. [all data]
Cumming and Kebarle, 1978
Cumming, J.B.; Kebarle, P.,
Summary of gas phase measurements involving acids AH. Entropy changes in proton transfer reactions involving negative ions. Bond dissociation energies D(A-H) and electron affinities EA(A),
Can. J. Chem., 1978, 56, 1. [all data]
Folkendt, Weiss-Lopez, et al., 1989
Folkendt, M.M.; Weiss-Lopez, B.E.; Chauvel, J.P., Jr.; True, N.S.,
Gas-Phase 1H NMR Studies of Keto-Enol Tautomerization of Acetylacetone, Methyl Acetoacetate, and Ethyl Acetoacetate,
J. Phys. Chem., 1989, 89, 15, 3347, https://doi.org/10.1021/j100261a038
. [all data]
Irikura, 1999
Irikura, K.K.,
Acetylacetonate (acac) anion in the gas phase: predicted structures, vibrational spectra, and photodetachment energies,
Int. J. Mass Spectrom., 1999, 187, 577-587, https://doi.org/10.1016/S1387-3806(98)14192-1
. [all data]
Schweig, Vermeer, et al., 1974
Schweig, A.; Vermeer, H.; Weidner, U.,
A photoelectron spectroscopic study of keto-enol tautomerism in acetylacetones - a new application of photoelectron spectroscopy,
Chem. Phys. Lett., 1974, 26, 229-233. [all data]
Thompson and Allred, 1971
Thompson, D.W.; Allred, A.L.,
Keto-enol equilibria in 2,4-Pentanedione and 3,3-dideuterio-2,4-pentanedione,
J. Phys. Chem., 1971, 75, 433-435. [all data]
Calmon, 1969
Calmon, J.P.,
Thermodynamic functions of enolization of aliphatic β-diketones,
C. R. Acad. Sci. Paris, 1969, 268, 1435-1438. [all data]
French, Ikuta, et al., 1982
French, M.A.; Ikuta, S.; Kebarle, P.,
Hydrogen bonding of O-H and C-H hydrogen donors to Cl-. Results from mass spectrometric measurement of the ion-molecule equilibria RH + Cl- = RHCl-,
Can. J. Chem., 1982, 60, 1907. [all data]
Caldwell, Masucci, et al., 1989
Caldwell, G.W.; Masucci, J.A.; Ikonomou, M.G.,
Negative Ion Chemical Ionization Mass Spectrometry - Binding of Molecules to Bromide and Iodide Anions,
Org. Mass Spectrom., 1989, 24, 1, 8, https://doi.org/10.1002/oms.1210240103
. [all data]
Folkendt, Weiss-Lopez, et al., 1985
Folkendt, M.M.; Weiss-Lopez, B.E.; Chauvel, J.P., Jr.; True, N.S.,
Gas-phase 1H NMR studies of keto-enol tautomerism of acetylacetone, methyl acetoacetate, and ethyl acetoacetate,
J. Phys. Chem., 1985, 89, 3347-3352. [all data]
Mines and Thompson, 1975
Mines, G.W.; Thompson, H.,
Infrared and photoelectron spectra, and keto-enol tautomerism of acetylacetones and acetoacetic esters,
Proc. Roy. Soc. London A, 1975, 342, 327-339. [all data]
Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G.,
Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update,
J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018
. [all data]
Houk, Davis, et al., 1973
Houk, K.N.; Davis, L.P.; Newkome, G.R.; Duke, R.E., Jr.; Nauman, R.V.,
Photoelectron spectroscopy of cyclic β-diketones their enolone tautomers,
J. Am. Chem. Soc., 1973, 95, 8364. [all data]
Shigorin, Filyugina, et al., 1967
Shigorin, D.N.; Filyugina, A.D.; Potapov, V.K.,
Role of intramolecular hydrogen bonding in the ionisation and dissociation of compounds,
Zh. Fiz. Khim., 1967, 41, 2336, In original 1255. [all data]
Watanabe, Nakayama, et al., 1962
Watanabe, K.; Nakayama, T.; Mottl, J.,
Ionization potentials of some molecules,
J. Quant. Spectry. Radiative Transfer, 1962, 2, 369. [all data]
Hush, Livett, et al., 1987
Hush, N.S.; Livett, M.K.; Peel, J.B.; Willett, G.D.,
Variable-temperature ultraviolet photoelectron spectroscopy of the keto-enol tautomers of pentane-2,4-dione,
Aust. J. Chem., 1987, 40, 599. [all data]
Cauletti, Furlani, et al., 1980
Cauletti, C.; Furlani, C.; Storto, G.,
Coordinative bond d-shell ionisations in the UV photoelectron spectra of bis({beta}-diketonato) cobalt (II) copper (II) complexes, their thio analogues,
J. Electron Spectrosc. Relat. Phenom., 1980, 18, 329. [all data]
Schweig, Vermeer, et al., 1974, 2
Schweig, A.; Vermeer, H.; Weidner, U.,
A photoelectron spectroscopic study of keto-enol tautomerism in acetylacetones - a new application of photoelectron spectroscopy,
Chem. Phys. Lett., 1974, 26, 229. [all data]
Evans, Hamnett, et al., 1972
Evans, S.; Hamnett, A.; Orchard, A.F.; Lloyd, D.R.,
Study of the metal-oxygen bond in simple tris-chelate complexes by He(I) photoelectron spectroscopy,
Faraday Discuss. Chem. Soc., 1972, 54, 227. [all data]
Reichert and Westmore, 1969
Reichert, C.; Westmore, J.B.,
Mass spectral studies of metal chelates. IV.Mass spectra, appearance potentials, and coordinate bond energies of bis(acetylacetonate)metal(II) complexes of the first transition series,
Inorg. Chem., 1969, 8, 1012. [all data]
Bernasconi and Kamararioti, 1986
Bernasconi, C.F.; Kamararioti, A.,
Nucleophilic addition to olefins. 19. Abnormally high intrinsic barrier in the reaction of piperidine and morpholine with benzylideneacetylacetone,
J. Am. Chem. Soc., 1986, 108, 24, 7744-7751. [all data]
Mijin and Antonovic, 2004
Mijin, D.Z.; Antonovic, D.G.,
Temperature dependence of the Kovats retention indices for alkyl 1,3-diketones on a DB-5 capillary column,
J. Serb. Chem. Soc., 2004, 69, 10, 759-767, https://doi.org/10.2298/JSC0410759M
. [all data]
Tiess, 1984
Tiess, D.,
Gaschromatographische Retentionsindices von 125 leicht- bis mittelflüchtigen organischen Substanzen toxikologisch-analytischer Relevanz auf SE-30,
Wiss. Z. Wilhelm-Pieck-Univ. Rostock Math. Naturwiss. Reihe, 1984, 33, 6-9. [all data]
Bogoslovsky, Anvaer, et al., 1978
Bogoslovsky, Yu.N.; Anvaer, B.I.; Vigdergauz, M.S.,
Chromatographic constants in gas chromatography (in Russian), Standards Publ. House, Moscow, 1978, 192. [all data]
Haken, Ho, et al., 1975
Haken, J.K.; Ho, D.K.M.; Vaughan, C.E.,
Gas chromatography of homologous esters. VII. The retention behaviour of pyruvate esters and related carbonyl and carboxyl compounds,
J. Chromatogr., 1975, 106, 2, 317-325, https://doi.org/10.1016/S0021-9673(00)93839-1
. [all data]
Vernon and Edwards, 1975
Vernon, F.; Edwards, G.T.,
Gas-liquid chromatography on fluorinated stationary phases. II. Fluorinated compounds containing a functional group,
J. Chromatogr., 1975, 114, 1, 87-93, https://doi.org/10.1016/S0021-9673(00)85245-0
. [all data]
Pino, Mesa, et al., 2005
Pino, J.A.; Mesa, J.; Muñoz, Y.; Martí, M.P.; Marbot, R.,
Volatile components from mango (Mangifera indica L.) cultivars,
J. Agric. Food Chem., 2005, 53, 6, 2213-2223, https://doi.org/10.1021/jf0402633
. [all data]
Whitfield and Mottram, 1999
Whitfield, F.B.; Mottram, D.S.,
Investigation of the reaction between 4-hydroxy-5-methyl-3(2H)-furanone and cysteine or hydrogen sulfide at pH 4.5,
J. Agric. Food Chem., 1999, 47, 4, 1626-1634, https://doi.org/10.1021/jf980980v
. [all data]
Madruga and Mottram, 1998
Madruga, M.S.; Mottram, D.S.,
The effect of pH on the formation of volatile compounds produced by heating a model system containing 5'-imp and cysteine,
J. Braz. Chem. Soc., 1998, 9, 3, 261-271, https://doi.org/10.1590/S0103-50531998000300010
. [all data]
Kuo and Ho, 1992
Kuo, M.-C.; Ho, C.-T.,
Volatile constituents of the solvent extracts of Welsh onions (Allium fistulosum L. variety Maichuon) and scallions (A. fistulosum L. variety caepitosum),
J. Agric. Food Chem., 1992, 40, 10, 1906-1910, https://doi.org/10.1021/jf00022a036
. [all data]
Zhang and Ho, 1991
Zhang, Y.; Ho, C.-T.,
Formation of meatlike aroma compounds from thermal reaction of inosine 5'-monophosphate with cysteine and glutathione,
J. Agric. Food Chem., 1991, 39, 6, 1145-1148, https://doi.org/10.1021/jf00006a031
. [all data]
Zhang and Ho, 1991, 2
Zhang, Y.; Ho, C.-T.,
Comparison of the volatile compounds formed from the thermal reaction of glucose with cysteine and glutathione,
J. Agric. Food Chem., 1991, 39, 4, 760-763, https://doi.org/10.1021/jf00004a029
. [all data]
Flath, Light, et al., 1990
Flath, R.A.; Light, D.M.; Jang, E.B.; Mon, T.R.; John, J.O.,
Headspace Examination of Volatile Emissions from Ripening Papaya (Carica papaya L., Solo Variety),
J. Agric. Food Chem., 1990, 38, 4, 1060-1063, https://doi.org/10.1021/jf00094a032
. [all data]
Parker, Hassell, et al., 2000
Parker, J.K.; Hassell, G.M.E.; Mottram, D.S.; Guy, R.C.E.,
Sensory and instrumental analyses of volatiles generated during the extrusion cooking of oat flours,
J. Agric. Food Chem., 2000, 48, 8, 3497-3506, https://doi.org/10.1021/jf991302r
. [all data]
Bianchi, Careri, et al., 2007
Bianchi, F.; Careri, M.; Mangia, A.; Musci, M.,
Retention indices in the analysis of food aroma volatile compounds in temperature-programmed gas chromatography: Database creation and evaluation of precision and robustness,
J. Sep. Sci., 2007, 39, 4, 563-572, https://doi.org/10.1002/jssc.200600393
. [all data]
Leffingwell and Alford, 2011
Leffingwell, J.; Alford, E.D.,
Volatile constituents of the giant pufball mushroom (Calvatia gigantea),
Leffingwell Rep., 2011, 4, 1-17. [all data]
Radulovic, Blagojevic, et al., 2010
Radulovic, N.; Blagojevic, P.; Palic, R.,
Comparative study of the leaf volatiles of Arctostaphylos uva-ursi (L.) Spreng. and Vaccinium vitis-idaea L. (Ericaceae),
Molecules, 2010, 15, 9, 6168-6185, https://doi.org/10.3390/molecules15096168
. [all data]
Frerot, Velluz, et al., 2008
Frerot, E.; Velluz, A.; Bagnoud, A.; Delort, E.,
Analysis of the volatile constituents of cooked petai beans (Parkia speciosa) using high-resolution GC/TOF-MS,
Flav. Fragr. J., 2008, 23, 6, 434-440, https://doi.org/10.1002/ffj.1902
. [all data]
Pino, Marbot, et al., 2003
Pino, J.A.; Marbot, R.; Fuentes, V.,
Characterization of volatiles in Bullock's heart (Annona reticulata L.) fruit cultivars from Cuba,
J. Agric. Food Chem., 2003, 51, 13, 3836-3839, https://doi.org/10.1021/jf020733y
. [all data]
Chen, 2008
Chen, H.-F.,
Quantitative prediction of gas chromatography retention indices with support vector machines, radial basis neutral networks and multiple linear regression,
Anal. Chim. Acta, 2008, 609, 1, 24-36, https://doi.org/10.1016/j.aca.2008.01.003
. [all data]
Flanagan, Streete, et al., 1997
Flanagan, R.J.; Streete, P.J.; Ramsey, J.D.,
Volatile Substance Abuse, UNODC Technical Series, No 5, United Nations, Office on Drugs and Crime, Vienna International Centre, PO Box 500, A-1400 Vienna, Austria, 1997, 56, retrieved from http://www.odccp.org/pdf/technicalseries1997-01-011.pdf. [all data]
Strete, Ruprah, et al., 1992
Strete, P.J.; Ruprah, M.; Ramsey, J.D.; Flanagan, R.J.,
Detection and identification of volatile substances by headspace capillary gas chromatography to aid the diagnosis of acute poisoning,
Analyst, 1992, 117, 7, 1111-1127, https://doi.org/10.1039/an9921701111
. [all data]
Schutz and Wollrab A., 1988
Schutz, H.; Wollrab A.,
The significance of the retention index in toxicologic analysis II,
Pharmazie in unzerer Zeit, 1988, 17, 4, 97-101. [all data]
Ramsey and Flanagan, 1982
Ramsey, J.D.; Flanagan, R.J.,
Detection and Identification of Volatile Organic Compounds in Blood by Headspace Gas Chromatography as an Aid to the Diagnosis of Solvent Abuse,
J. Chromatogr., 1982, 240, 2, 423-444, https://doi.org/10.1016/S0021-9673(00)99622-5
. [all data]
Kiss, Csoka, et al., 2011
Kiss, M.; Csoka, M.; Gyorfi, J.; Korany, K.,
Comparison of the fragrance constituents of Tuber aestivium and Tuber Brumale gathered in Hungary,
J. Appl. Botany Food Quality, 2011, 84, 102-110. [all data]
Seifert and King, 1982
Seifert, R.M.; King, A.D., Jr.,
Identification of some volatile constituents of Aspergillus clavatus,
J. Agric. Food Chem., 1982, 30, 4, 786-790, https://doi.org/10.1021/jf00112a044
. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, UV/Visible spectrum, Gas Chromatography, References
- Symbols used in this document:
AE Appearance energy IE (evaluated) Recommended ionization energy T Temperature Tboil Boiling point Tfus Fusion (melting) point Ttriple Triple point temperature ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.