Formamide, N-methyl-

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase ion energetics data

Go To: Top, Ion clustering data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

Quantity Value Units Method Reference Comment
IE (evaluated)9.83 ± 0.04eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)203.5kcal/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity196.1kcal/molN/AHunter and Lias, 1998HL

Electron affinity determinations

EA (eV) Reference Comment
0.0157Desfrancois, Periquet, et al., 1999B

Ionization energy determinations

IE (eV) Method Reference Comment
9.86PEKimura, Katsumata, et al., 1981LLK
10.00 ± 0.05EIBaldwin, Loudon, et al., 1977LLK
9.79PEBrundle, Turner, et al., 1969RDSH

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
CHO+12.40?EILoudon and Webb, 1977LLK
CH4N+11.65?EILoudon and Webb, 1977LLK
C2H4NO+11.20?EILoudon and Webb, 1977LLK

De-protonation reactions

C2H4NO- + Hydrogen cation = Formamide, N-methyl-

By formula: C2H4NO- + H+ = C2H5NO

Quantity Value Units Method Reference Comment
Δr360.4 ± 2.1kcal/molG+TSTaft, 1987gas phase; value altered from reference due to change in acidity scale; B
Quantity Value Units Method Reference Comment
Δr353.4 ± 2.0kcal/molIMRETaft, 1987gas phase; value altered from reference due to change in acidity scale; B

Ion clustering data

Go To: Top, Gas phase ion energetics data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
RCD - Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

C2H4NO- + Formamide, N-methyl- = (C2H4NO- • Formamide, N-methyl-)

By formula: C2H4NO- + C2H5NO = (C2H4NO- • C2H5NO)

Quantity Value Units Method Reference Comment
Δr28. ± 2.kcal/molPHPMSMeot-Ner (Mautner), 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr31.cal/mol*KPHPMSMeot-Ner (Mautner), 1988gas phase; M

pyrrolide anion + Formamide, N-methyl- = (pyrrolide anion • Formamide, N-methyl-)

By formula: C4H4N- + C2H5NO = (C4H4N- • C2H5NO)

Quantity Value Units Method Reference Comment
Δr26. ± 2.kcal/molPHPMSMeot-Ner (Mautner), 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr31.cal/mol*KPHPMSMeot-Ner (Mautner), 1988gas phase; M

Lithium ion (1+) + Formamide, N-methyl- = (Lithium ion (1+) • Formamide, N-methyl-)

By formula: Li+ + C2H5NO = (Li+ • C2H5NO)

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
39.6373.CIDCHerreros, Gal, et al., 1999RCD

Mass spectrum (electron ionization)

Go To: Top, Gas phase ion energetics data, Ion clustering data, UV/Visible spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin J.A.GILPIN DOW CHEM. CO., MIDLAND, MICHIGAN, USA
NIST MS number 143

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


UV/Visible spectrum

Go To: Top, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Victor Talrose, Eugeny B. Stern, Antonina A. Goncharova, Natalia A. Messineva, Natalia V. Trusova, Margarita V. Efimkina

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

UVVis spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Source Nielsen and Schellman, 1967
Owner INEP CP RAS, NIST OSRD
Collection (C) 2007 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin INSTITUTE OF ENERGY PROBLEMS OF CHEMICAL PHYSICS, RAS
Source reference RAS UV No. 3944
Instrument n.i.g.
Melting point -3.8
Boiling point 199.5

Gas Chromatography

Go To: Top, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Kovats' RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
PackedSE-30180.793.Krawczyk and Piotrowski, 1989N2, Chromosorb W AW; Column length: 1. m

Normal alkane RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryOV-101722.Zenkevich, 200525. m/0.20 mm/0.10 μm, N2/He, 6. K/min; Tstart: 50. C; Tend: 250. C

Normal alkane RI, polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-Wax1615.Peng, Yang, et al., 1991Program: not specified

References

Go To: Top, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Desfrancois, Periquet, et al., 1999
Desfrancois, C.; Periquet, V.; Carles, S.; Schermann, J.P.; Smith, D.M.A.; Adamowicz, L., Experimental and ab initio theoretical studies of electron binding to formamide, N-methylformamide, and N,N-dimethylformamide., J. Chem. Phys., 1999, 110, 9, 4309-4314, https://doi.org/10.1063/1.478353 . [all data]

Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S., Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]

Baldwin, Loudon, et al., 1977
Baldwin, M.A.; Loudon, A.G.; Webb, K.S.; Cardnell, P.C., Charge location and fragmentation under electron impact. V-The ionization potentials of (methylated) phosphoramides, guanidines, formamides, acetamides, ureas and thioureas, Org. Mass Spectrom., 1977, 12, 279. [all data]

Brundle, Turner, et al., 1969
Brundle, C.R.; Turner, D.W.; Robin, M.B.; Basch, H., Photoelectron spectroscopy of simple amides and carboxylic acids, Chem. Phys. Lett., 1969, 3, 292. [all data]

Loudon and Webb, 1977
Loudon, A.G.; Webb, K.S., The nature of the [C2H6N]+ and [CH4N]+ ions formed by electron impact on methylated formamides, acetamides, ureas, thioureas and hexamethylphosphoramide, Org. Mass Spectrom., 1977, 12, 283. [all data]

Taft, 1987
Taft, R.W., The Nature and Analysis of Substitutent Electronic Effects, Personal communication. See also Prog. Phys. Org. Chem., 1987, 16, 1. [all data]

Meot-Ner (Mautner), 1988
Meot-Ner (Mautner), M., Models for Strong Interactions in Proteins and Enzymes. 2. Interactions of Ions with the Peptide Link and Imidazole, J. Am. Chem. Soc., 1988, 110, 10, 3075, https://doi.org/10.1021/ja00218a014 . [all data]

Herreros, Gal, et al., 1999
Herreros, M.; Gal, J.-F.; Maria, P.-C.; Decouzon, M., Gas-Phase Basicity of Simple Amides Toward Proton and Lithium Cation: An Experimental and Theoretical Study, Eur. J. Mass Spectrom., 1999, 5, 1, 259, https://doi.org/10.1255/ejms.282 . [all data]

Nielsen and Schellman, 1967
Nielsen, E.B.; Schellman, J.A., The absorption spectra of simple amides and peptides, J. Phys. Chem., 1967, 71, 7, 2297-2304. [all data]

Krawczyk and Piotrowski, 1989
Krawczyk, W.; Piotrowski, G.T., Relationships Between Structure and Retention Index for N-Substituted Amides of Aliphatic Acids on a Non-Polar Column, J. Chromatogr., 1989, 463, 297-304, https://doi.org/10.1016/S0021-9673(01)84484-8 . [all data]

Zenkevich, 2005
Zenkevich, I.G., Experimentally measured retention indices., 2005. [all data]

Peng, Yang, et al., 1991
Peng, C.T.; Yang, Z.C.; Ding, S.F., Prediction of rentention idexes. II. Structure-retention index relationship on polar columns, J. Chromatogr., 1991, 586, 1, 85-112, https://doi.org/10.1016/0021-9673(91)80028-F . [all data]


Notes

Go To: Top, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References