Acetic acid, phenyl ester

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Condensed phase thermochemistry data

Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Quantity Value Units Method Reference Comment
Δfliquid-77.8 ± 0.2kcal/molCcbLebedeva and Katin, 1972 
Δfliquid-80.02 ± 0.22kcal/molCmWadso, 1960Heat of formation derived by Cox and Pilcher, 1970
Quantity Value Units Method Reference Comment
Δcliquid-947.90 ± 0.20kcal/molCcbLebedeva and Katin, 1972Corresponding Δfliquid = -77.77 kcal/mol (simple calculation by NIST; no Washburn corrections)

Reaction thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C3H9Si+ + Acetic acid, phenyl ester = (C3H9Si+ • Acetic acid, phenyl ester)

By formula: C3H9Si+ + C8H8O2 = (C3H9Si+ • C8H8O2)

Quantity Value Units Method Reference Comment
Δr48.8kcal/molPHPMSWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr31.9cal/mol*KN/AWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
33.8468.PHPMSWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M

Acetic acid, phenyl ester + Water = Phenol + Acetic acid

By formula: C8H8O2 + H2O = C6H6O + C2H4O2

Quantity Value Units Method Reference Comment
Δr-6.86 ± 0.04kcal/molCmWadso, 1960liquid phase; Heat of hydrolysis; ALS

Gas phase ion energetics data

Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi

View reactions leading to C8H8O2+ (ion structure unspecified)

Ionization energy determinations

IE (eV) Method Reference
8.6 ± 0.05PEBouchoux, 1978
8.8 ± 0.2EIGamble, Gilbert, et al., 1971
8.75 ± 0.03EIBenezra and Bursey, 1971

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
C2H3O+12.8 ± 0.2cyclo-C6H5EIGamble, Gilbert, et al., 1971 
C2H3O+12.83 ± 0.03C6H5OEIBenezra and Bursey, 1971 
C6H6O+9.9 ± 0.2CH2=C=OEIGamble, Gilbert, et al., 1971 
C6H6O+9.57 ± 0.03CH2=C=OEIBenezra and Bursey, 1971 

References

Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Lebedeva and Katin, 1972
Lebedeva, N.D.; Katin, Yu.A., Heats of combustion of certain monosubstituted benzenes, Russ. J. Phys. Chem. (Engl. Transl.), 1972, 46, 1088. [all data]

Wadso, 1960
Wadso, I., Heats of hydrolysis of phenyl acetate and phenyl thiolacetate, Acta Chem. Scand., 1960, 14, 561-565. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Wojtyniak and Stone, 1986
Wojtyniak, A.C.M.; Stone, A.J., A High-Pressure Mass Spectrometric Study of the Bonding of Trimethylsilylium to Oxygen and Aromatic Bases, Can. J. Chem., 1986, 74, 59. [all data]

Bouchoux, 1978
Bouchoux, G., Ionisation et fragmentation en spectrometrie de masse VIII. Energies d'activation de deux fragmentations competitives, dissociation de l'acetate de phenyle et de l'acetanilide sous impact electronique, Int. J. Mass Spectrom. Ion Phys., 1978, 26, 379. [all data]

Gamble, Gilbert, et al., 1971
Gamble, A.A.; Gilbert, J.R.; Tillett, J.G., Substituent effects on the mass spectra of substituted phenyl acetates, Org. Mass Spectrom., 1971, 5, 1093. [all data]

Benezra and Bursey, 1971
Benezra, S.A.; Bursey, M.M., ortho-Effects on ordering factors in mass spectral rearrangements. Loss of keten from halogenated phenyl acetates and acetanilides, J. Chem. Soc. B, 1971, 1515. [all data]


Notes

Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, References