1,4-Benzenedicarboxylic acid, dimethyl ester
- Formula: C10H10O4
- Molecular weight: 194.1840
- IUPAC Standard InChIKey: WOZVHXUHUFLZGK-UHFFFAOYSA-N
- CAS Registry Number: 120-61-6
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Terephthalic acid, dimethyl ester; Dimethyl p-phthalate; Dimethyl terephthalate; Dimethyl 1,4-benzenedicarboxylate; Methyl 4-(carbomethoxy)benzoate; Dimethyl p-benzenedicarboxylate; Dimethylester kyseliny isoftalove; DMT; NCI-C50055; Dimethylester kyseliny tereftalove; Dimethyl ester of 1,4-benzenedicarboxylic acid; Terephthalate, dimethyl; 1,4-Benzenedicarboxylic acid, 1,4-dimethyl ester; Methyl p-(methoxycarbonyl)benzoate; NSC 3503; Dimethyl terphthalate
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Condensed phase thermochemistry data
Go To: Top, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°solid | -710.0 | kJ/mol | Ccb | Karyakin, Rabinovich, et al., 1978 | ALS |
ΔfH°solid | -732.6 ± 1.0 | kJ/mol | Ccb | Colomina, Laynez, et al., 1972 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°solid | -4631.66 ± 0.88 | kJ/mol | Ccb | Colomina, Laynez, et al., 1972 | Corresponding ΔfHºsolid = -732.59 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
Constant pressure heat capacity of solid
Cp,solid (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
261.1 | 298.15 | Elliott and Chris, 1968 | T = 30 to 200°C.; DH |
276.1 | 353. | Smith and Dole, 1956 | T = 80 to 190°C. Equation only.; DH |
Gas phase ion energetics data
Go To: Top, Condensed phase thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
Data compiled as indicated in comments:
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
B - John E. Bartmess
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Proton affinity (review) | 843.2 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Quantity | Value | Units | Method | Reference | Comment |
Gas basicity | 812.3 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Electron affinity determinations
EA (eV) | Method | Reference | Comment |
---|---|---|---|
0.824 ± 0.087 | IMRE | Mishima, Huh, et al., 1995 | ΔGea(343 K)=-20.2 kcal/mol. Reanchored to EA(PhNO2), Kebarle and Chowdhury, 1987.; B |
0.824 ± 0.087 | IMRE | Huh, Kang, et al., 1999 | ΔG(EA) 343K; anchored to ΔG value. Including anchor ΔS, EA is ca. 0.4 kcal/mol more bound.; B |
0.640011 | ECD | Kuhn, Levins, et al., 1968 | Done at constant temperature, accuracy uncertain: Chen and Wentworth, 1989;; B |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
9.78 ± 0.03 | EI | Kuhn, Levins, et al., 1968 | RDSH |
References
Go To: Top, Condensed phase thermochemistry data, Gas phase ion energetics data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Karyakin, Rabinovich, et al., 1978
Karyakin, N.V.; Rabinovich, I.B.; Sokolov, L.B.,
Thermodynamics of the synthesis of isomeric poly(phenylenephthalamides),
Vysokomol. Soedin. Ser. B, 1978, 20, 662-666. [all data]
Colomina, Laynez, et al., 1972
Colomina, M.; Laynez, J.L.; Perez-Ossorio, R.; Turrion, C.,
Enthalpies of combustion and formation of six methyl esters of benzene carboxylic acids,
J. Chem. Thermodyn., 1972, 4, 499-506. [all data]
Elliott and Chris, 1968
Elliott, J.H.; Chris, M.D.,
Some thermodynamic properties of high purity dimethyl terephthalate,
J. Chem. Eng. Data, 1968, 13, 475-479. [all data]
Smith and Dole, 1956
Smith, C.W.; Dole, M.,
Specific heat of synthetic high polymers. VII. Polyethylene terephthalate,
J. Polym. Sci., 1956, 20, 37-56. [all data]
Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G.,
Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update,
J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018
. [all data]
Mishima, Huh, et al., 1995
Mishima, M.; Huh, C.; Lee, H.W.; Nakamura, H.; Fujio, M.; Tsuno, Y.,
Electron affinities of acetophenones and methyl benzoates. Varying resonance demand of aromatic radical anions,
Tetrahed. Lett., 1995, 36, 13, 2265, https://doi.org/10.1016/0040-4039(95)00267-G
. [all data]
Kebarle and Chowdhury, 1987
Kebarle, P.; Chowdhury, S.,
Electron affinities and electron transfer reactions,
Chem. Rev., 1987, 87, 513. [all data]
Huh, Kang, et al., 1999
Huh, C.; Kang, C.H.; Lee, H.W.; Nakamura, H.; Mishima, M.; Tsuno, Y.; Yamataka, H.,
Thermodynamic stabilities and resonance demand of aromatic radical anions in the gas phase,
Bull. Chem. Soc. Japan, 1999, 72, 5, 1083-1091, https://doi.org/10.1246/bcsj.72.1083
. [all data]
Kuhn, Levins, et al., 1968
Kuhn, W.F.; Levins, R.J.; Lilly, A.C., Jr.,
Electron affinities and ionization potentials of phthalate compounds,
J. Chem. Phys., 1968, 49, 5550. [all data]
Chen and Wentworth, 1989
Chen, E.C.M.; Wentworth, W.E.,
Experimental Determination of Electron Affinities of Organic Molecules,
Mol. Cryst. Liq. Cryst., 1989, 171, 271. [all data]
Notes
Go To: Top, Condensed phase thermochemistry data, Gas phase ion energetics data, References
- Symbols used in this document:
Cp,solid Constant pressure heat capacity of solid EA Electron affinity ΔcH°solid Enthalpy of combustion of solid at standard conditions ΔfH°solid Enthalpy of formation of solid at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.