Naphthalene, 1,2,3,4-tetrahydro-

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas30.0kJ/molN/AGood and Lee, 1976Value computed using ΔfHliquid° value of -28.6±1.0 kj/mol from Good and Lee, 1976 and ΔvapH° value of 58.6 kj/mol from Boyd, Sanwal, et al., 1971.; DRB
Δfgas26.0 ± 2.0kJ/molCcbBoyd, Sanwal, et al., 1971Reanalyzed by Pedley, Naylor, et al., 1986, Original value = 22.1 ± 3.4 kJ/mol; ALS

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
39.5150.Dorofeeva O.V., 1988Recommended values were calculated statistically mechanically using force field approximation for polycyclic aromatic hydrocarbons to estimate the needed vibrational frequencies (see also [ Dorofeeva O.V., 1986]). These functions are reproduced in the reference book [ Frenkel M., 1994]. Values of S(298.15 K)=368.6 and Cp(298.15 K)=146.6 J/mol*K were calculated using molecular constants estimated by molecular mechanics [ Boyd R.H., 1971]. Discrepancies with semiempirical calculation [ Szekely, 1955] amount to 14 and 6 J/mol*K for S and Cp at 298.15 K. Cp(298.15 K) calculated by semiempirical calculation [ Vvedenskii A.A., 1957] agrees well with value recommended here.; GT
55.34100.
75.22150.
98.28200.
136.97273.15
150.9 ± 2.0298.15
151.98300.
206.65400.
254.31500.
293.63600.
325.91700.
352.66800.
375.08900.
394.001000.
410.071100.
423.771200.
435.511300.
445.601400.
454.311500.

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-28.6 ± 1.0kJ/molCcbGood and Lee, 1976ALS
Δfliquid-32.6 ± 2.2kJ/molCcbBoyd, Sanwal, et al., 1971Reanalyzed by Pedley, Naylor, et al., 1986, Original value = -33.1 ± 2.1 kJ/mol; ALS
Quantity Value Units Method Reference Comment
Δcliquid-5621.54 ± 0.88kJ/molCcbGood and Lee, 1976Corresponding Δfliquid = -28.5 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-5617.5 ± 2.1kJ/molCcbBoyd, Sanwal, et al., 1971Corresponding Δfliquid = -32.6 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-5598.6kJ/molCcbKaro, McLaughlin, et al., 1953Corrected from net heat of combustion; Corresponding Δfliquid = -51.5 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-5581.9kJ/molCcbHock and Knauel, 1951Corresponding Δfliquid = -68.2 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
liquid251.46J/mol*KN/AMcCullough, Finke, et al., 1957DH

Constant pressure heat capacity of liquid

Cp,liquid (J/mol*K) Temperature (K) Reference Comment
217.44298.15McCullough, Finke, et al., 1957T = 10 to 320 K.; DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
AC - William E. Acree, Jr., James S. Chickos
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Tboil480. ± 1.KAVGN/AAverage of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus237.3 ± 0.9KAVGN/AAverage of 7 values; Individual data points
Quantity Value Units Method Reference Comment
Ttriple237.3400KN/AMcCullough, Finke, et al., 1957, 2Uncertainty assigned by TRC = 0.07 K; TRC
Ttriple237.3500KN/AMcCullough, Finke, et al., 1957, 2Uncertainty assigned by TRC = 0.05 K; TRC
Quantity Value Units Method Reference Comment
Tc720. ± 1.KN/ATsonopoulos and Ambrose, 1995 
Tc721.7KN/AGude and Teja, 1994Uncertainty assigned by TRC = 0.5 K; by the flow method; TRC
Tc719.9KN/ATeja and Anselme, 1990Uncertainty assigned by TRC = 1. K; TRC
Tc721.KN/ASteele, Chirico, et al., 1988Uncertainty assigned by TRC = 1.5 K; TRC
Quantity Value Units Method Reference Comment
Pc37. ± 1.barN/ATsonopoulos and Ambrose, 1995 
Pc36.30barN/AGude and Teja, 1994Uncertainty assigned by TRC = 0.25 bar; by the flow method; TRC
Pc37.50barN/ASteele, Chirico, et al., 1988Uncertainty assigned by TRC = 0.80 bar; TRC
Quantity Value Units Method Reference Comment
Vc0.408l/molN/ATsonopoulos and Ambrose, 1995 
Quantity Value Units Method Reference Comment
ρc2.5 ± 0.1mol/lN/ATsonopoulos and Ambrose, 1995 
ρc2.45mol/lN/ATeja and Anselme, 1990Uncertainty assigned by TRC = 0.05 mol/l; TRC
ρc2.27mol/lN/ASteele, Chirico, et al., 1988Uncertainty assigned by TRC = 0.11 mol/l; TRC
Quantity Value Units Method Reference Comment
Δvap55. ± 1.kJ/molVBoyd, Sanwal, et al., 1971ALS
Δvap58.6kJ/molN/ABoyd, Sanwal, et al., 1971DRB

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
44.1480.N/ALee, Dempsey, et al., 1992Based on data from 465. to 580. K.; AC
51.1326.AStephenson and Malanowski, 1987Based on data from 311. to 481. K.; AC
41.3 ± 0.1498.CNatarajan and Viswanath, 1985AC
37.6 ± 0.1552.CNatarajan and Viswanath, 1985AC
35.7 ± 0.1567.CNatarajan and Viswanath, 1985AC
33.9 ± 0.1585.CNatarajan and Viswanath, 1985AC
32.0 ± 0.1604.CNatarajan and Viswanath, 1985AC
52.1346.N/AKatayama and Harada, 1984Based on data from 331. to 437. K.; AC
48.6382.N/AStull, 1947Based on data from 367. to 479. K.; AC

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
367.0 to 479.44.126711690.912-70.229Herz and Schuftan, 1922Coefficents calculated by NIST from author's data.

Enthalpy of fusion

ΔfusH (kJ/mol) Temperature (K) Reference Comment
12.447237.36McCullough, Finke, et al., 1957DH
12.45237.4Domalski and Hearing, 1996AC

Entropy of fusion

ΔfusS (J/mol*K) Temperature (K) Reference Comment
52.44237.36McCullough, Finke, et al., 1957DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

2Hydrogen + Naphthalene = Naphthalene, 1,2,3,4-tetrahydro-

By formula: 2H2 + C10H8 = C10H12

Quantity Value Units Method Reference Comment
Δr-125.kJ/molEqkFrye and Weitkamp, 1969gas phase
Δr-120.5 ± 5.0kJ/molEqkWilson, Caflisch, et al., 1958gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -133.9 ± 5.0 kJ/mol; At 400 K

Hydrogen + Naphthalene, 1,2-dihydro- = Naphthalene, 1,2,3,4-tetrahydro-

By formula: H2 + C10H10 = C10H12

Quantity Value Units Method Reference Comment
Δr-100.83 ± 0.83kJ/molChydWilliams, 1942liquid phase; solvent: Acetic acid; At 302 K

Hydrogen + 1,4-Dihydronaphthalene = Naphthalene, 1,2,3,4-tetrahydro-

By formula: H2 + C10H10 = C10H12

Quantity Value Units Method Reference Comment
Δr-113.5 ± 0.4kJ/molChydWilliams, 1942liquid phase; solvent: Acetic acid; At 302 K

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
MM - Michael M. Meot-Ner (Mautner)
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to C10H12+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)8.46 ± 0.02eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)809.7kJ/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity782.1kJ/molN/AHunter and Lias, 1998HL

Proton affinity at 298K

Proton affinity (kJ/mol) Reference Comment
800.8Aue, Guidoni, et al., 2000Experimental literature data re-evaluated by the authors using ab initio protonation entropies; MM

Gas basicity at 298K

Gas basicity (review) (kJ/mol) Reference Comment
774.0Aue, Guidoni, et al., 2000Experimental literature data re-evaluated by the authors using ab initio protonation entropies; MM

Ionization energy determinations

IE (eV) Method Reference Comment
8.44EIDass and Gross, 1985LBLHLM
8.48 ± 0.05EQMautner(Meot-Ner), 1980LLK
8.47CTSPitt, 1970RDSH
8.73EILoudon, Maccoll, et al., 1970RDSH
9.14 ± 0.05EIMeier, Heiss, et al., 1968RDSH
8.45 ± 0.02PEMaier and Turner, 1973Vertical value; LLK
8.44PEBrogli, Giovannini, et al., 1973Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
C8H8+11.31?EILoudon, Maccoll, et al., 1970RDSH

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes

Data compiled by: Coblentz Society, Inc.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, UV/Visible spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin CONTINENTAL OIL CO., PONCA CITY, OKLA, USA
NIST MS number 34859

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


UV/Visible spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Victor Talrose, Eugeny B. Stern, Antonina A. Goncharova, Natalia A. Messineva, Natalia V. Trusova, Margarita V. Efimkina

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

UVVis spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Source missing citation
Owner INEP CP RAS, NIST OSRD
Collection (C) 2007 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin INSTITUTE OF ENERGY PROBLEMS OF CHEMICAL PHYSICS, RAS
Source reference RAS UV No. 8974
Instrument Unicam SP 500, Hilger Ultrascan
Melting point -35.7
Boiling point 207.6

Gas Chromatography

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Kovats' RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryHP-1100.1143.Zhang, Li, et al., 1992N2; Column length: 25. m; Column diameter: 0.20 mm
CapillaryHP-1100.1143.Zhang, Li, et al., 1992N2; Column length: 25. m; Column diameter: 0.20 mm
CapillaryOV-1160.1168.5Meusinger and Engewald, 1991Column length: 20. m; Column diameter: 0.3 mm
CapillaryOV-1100.1142.8Engewald and Maurer, 1990Column length: 60. m; Column diameter: 0.32 mm
CapillaryOV-1120.1154.Engewald and Maurer, 1990Column length: 60. m; Column diameter: 0.32 mm
CapillaryOV-101145.1180.Grinberg, Tokarev, et al., 1984He; Column length: 50. m; Column diameter: 0.25 mm
CapillaryOV-101145.1179.Grinberg, Tokarev, et al., 1984He; Column length: 100. m; Column diameter: 0.25 mm
PackedSE-30150.1170.Tiess, 1984Ar, Gas Chrom Q (80-100 mesh); Column length: 3. m
CapillaryOV-101100.1142.Boneva, Papazova, et al., 1983N2; Column length: 85. m; Column diameter: 0.28 mm
CapillaryOV-101100.1142.Boneva, Papazova, et al., 1983N2; Column length: 85. m; Column diameter: 0.28 mm
CapillaryOV-101110.1147.Boneva, Papazova, et al., 1983N2; Column length: 85. m; Column diameter: 0.28 mm
CapillaryOV-10190.1136.Boneva, Papazova, et al., 1983N2; Column length: 85. m; Column diameter: 0.28 mm
CapillarySE-3070.1129.8Tóth, 1983N2; Column length: 15. m; Column diameter: 0.25 mm
CapillarySE-30130.1164.Bredael, 1982Column length: 100. m; Column diameter: 0.5 mm
CapillarySE-30150.1178.Bredael, 1982Column length: 100. m; Column diameter: 0.5 mm
CapillarySE-3080.1137.Bredael, 1982Column length: 100. m; Column diameter: 0.5 mm
CapillarySqualane86.1133.2Macák, Nabivach, et al., 1982N2; Column length: 50. m; Column diameter: 0.25 mm
CapillarySqualane96.1137.6Macák, Nabivach, et al., 1982N2; Column length: 50. m; Column diameter: 0.25 mm
CapillaryOV-101140.1168.7Gerasimenko, Kirilenko, et al., 1981N2; Column length: 50. m; Column diameter: 0.3 mm
CapillaryOV-101160.1179.8Gerasimenko, Kirilenko, et al., 1981N2; Column length: 50. m; Column diameter: 0.3 mm
CapillarySqualane100.1140.Bogoslovsky, Anvaer, et al., 1978 
CapillarySqualane110.1142.Bogoslovsky, Anvaer, et al., 1978 
CapillarySqualane120.1150.Bogoslovsky, Anvaer, et al., 1978 
CapillarySqualane130.1155.Bogoslovsky, Anvaer, et al., 1978 
CapillarySqualane90.1133.Bogoslovsky, Anvaer, et al., 1978 
CapillarySqualane92.1137.Bogoslovsky, Anvaer, et al., 1978 
CapillarySqualane86.1133.2Nabivach, Bur'yan, et al., 1978Column length: 50. m; Column diameter: 0.25 mm
CapillarySqualane96.1137.6Nabivach, Bur'yan, et al., 1978Column length: 50. m; Column diameter: 0.25 mm
PackedSE-30120.1165.Mitra, Mohan, et al., 1974N2, Chrom W; Column length: 6.1 m
PackedSE-30130.1168.Mitra, Mohan, et al., 1974N2, Chrom W; Column length: 6.1 m
PackedSE-30140.1173.Mitra, Mohan, et al., 1974N2, Chrom W; Column length: 6.1 m
CapillarySqualane100.1140.Mitra, Mohan, et al., 1974, 2H2; Column length: 50. m; Column diameter: 0.2 mm
CapillarySE-3065.1125.6Svob and Deur-Siftar, 1974He; Column length: 25.5 m; Column diameter: 0.5 mm
CapillarySqualane120.1150.Schomburg, 1966 

Kovats' RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryOV-1011136.Hayes and Pitzer, 1982110. m/0.25 mm/0.20 μm, He, 1. K/min; Tstart: 35. C; Tend: 200. C

Kovats' RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryPetrocol DH-1001163.35Haagen-Smit Laboratory, 1997He; Column length: 100. m; Column diameter: 0.2 mm; Program: 5C(10min) => 5C/min => 50C(48min) => 1.5C/min => 195C(91min)

Kovats' RI, polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryPEG-20M70.1490.4Tóth, 1983N2; Column length: 30. m; Column diameter: 0.3 mm
PackedCarbowax 20M140.1476.Szabó and Jánosi, 1979Ar, Chromosorb W; Column length: 1.5 m

Van Den Dool and Kratz RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryPetrocol DH1153.9Censullo, Jones, et al., 200350. m/0.25 mm/0.5 μm, He, 35. C @ 10. min, 3. K/min, 200. C @ 10. min
CapillaryDB-51151.7Song, Lai, et al., 200330. m/0.25 mm/0.25 μm, He, 2. K/min; Tstart: 40. C; Tend: 310. C
CapillaryDB-51158.5Song, Lai, et al., 200330. m/0.25 mm/0.25 μm, He, 4. K/min; Tstart: 40. C; Tend: 310. C
CapillaryDB-51162.5Song, Lai, et al., 200330. m/0.25 mm/0.25 μm, He, 6. K/min; Tstart: 40. C; Tend: 310. C
CapillaryDB-51179.4Xu, van Stee, et al., 200330. m/0.25 mm/1. μm, He, 2.5 K/min; Tstart: 50. C; Tend: 200. C
CapillaryOV-11142.9Gautzsch and Zinn, 19968. K/min; Tstart: 35. C; Tend: 300. C
CapillaryDB-51151.7Lai and Song, 199530. m/0.25 mm/0.25 μm, He, 2. K/min; Tstart: 40. C; Tend: 310. C
CapillaryDB-51158.5Lai and Song, 199530. m/0.25 mm/0.25 μm, He, 4. K/min; Tstart: 40. C; Tend: 310. C
CapillaryDB-51162.5Lai and Song, 199530. m/0.25 mm/0.25 μm, He, 6. K/min; Tstart: 40. C; Tend: 310. C
CapillaryPetrocol DH1140.47White, Douglas, et al., 1992100. m/0.25 mm/0.5 μm, He, 1. K/min; Tstart: 30. C; Tend: 220. C
CapillaryPetrocol DH1140.85White, Douglas, et al., 1992100. m/0.25 mm/0.5 μm, He, 1. K/min; Tstart: 30. C; Tend: 220. C
CapillaryPetrocol DH1141.White, Hackett, et al., 1992100. m/0.25 mm/0.5 μm, He, 1. K/min; Tstart: 30. C; Tend: 220. C
CapillaryDB-51163.Rostad and Pereira, 198630. m/0.26 mm/0.25 μm, He, 50. C @ 4. min, 6. K/min, 300. C @ 20. min
CapillaryUltra-11130.46Haynes and Pitzer, 198550. m/0.22 mm/0.33 μm, He, 1. K/min; Tstart: -30. C; Tend: 240. C
CapillaryUltra-11138.09Haynes and Pitzer, 198550. m/0.22 mm/0.33 μm, He, 2. K/min; Tstart: -30. C; Tend: 240. C
CapillaryUltra-11142.95Haynes and Pitzer, 198550. m/0.22 mm/0.33 μm, He, 3. K/min; Tstart: -30. C; Tend: 240. C
CapillaryUltra-21157.79Haynes and Pitzer, 198550. m/0.22 mm/0.33 μm, He, 1. K/min; Tstart: -30. C; Tend: 240. C
CapillaryUltra-21166.27Haynes and Pitzer, 198550. m/0.22 mm/0.33 μm, He, 2. K/min; Tstart: -30. C; Tend: 240. C
CapillaryUltra-21171.51Haynes and Pitzer, 198550. m/0.22 mm/0.33 μm, He, 3. K/min; Tstart: -30. C; Tend: 240. C
CapillaryOV-1011136.Hayes and Pitzer, 1981108. m/0.25 mm/0.2 μm, 1. K/min; Tstart: 35. C; Tend: 200. C

Van Den Dool and Kratz RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
PackedSE-301169.Peng, Ding, et al., 1988Supelcoport; Chromosorb; Column length: 3.05 m; Program: 40C(5min) => 10C/min => 200C or 250C (60min)

Van Den Dool and Kratz RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillarySupelcowax-101523.Cadwallader, Tan, et al., 199560. m/0.25 mm/0.25 μm, He, 40. C @ 5. min, 2. K/min, 200. C @ 30. min
CapillaryDB-Wax1517.Shimoda, Shigematsu, et al., 199560. m/0.25 mm/0.25 μm, 2. K/min; Tstart: 50. C; Tend: 230. C

Normal alkane RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillarySqualane100.1133.Berezkin, 1993 
CapillarySqualane100.1137.Berezkin, 1993 
CapillarySqualane110.1142.Papazova and Pankova, 1975N2; Column length: 100. m; Column diameter: 0.25 mm
CapillarySqualane130.1155.Papazova and Pankova, 1975N2; Column length: 100. m; Column diameter: 0.25 mm
PackedPolydimethyl siloxane110.1147.Ferrand, 1962 
PackedPolydimethyl siloxane147.1166.Ferrand, 1962 

Normal alkane RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryPolydimethyl siloxane: CP-Sil 5 CB1169.Bramston-Cook, 201360. m/0.25 mm/1.0 μm, Helium, 45. C @ 1.45 min, 3.6 K/min, 210. C @ 2.72 min
CapillaryHP-5 MS1155.Kotowska, Zalikowski, et al., 201230. m/0.25 mm/0.25 μm, Helium, 35. C @ 5. min, 3. K/min, 300. C @ 15. min
CapillaryPetrocol DH1148.Supelco, 2012100. m/0.25 mm/0.50 μm, Helium, 20. C @ 15. min, 15. K/min, 220. C @ 30. min
CapillaryPetrocol DH1152.Supelco, 2012100. m/0.25 mm/0.50 μm, Helium, 20. C @ 15. min, 15. K/min, 220. C @ 30. min
CapillaryVF-5 MS1162.Leffingwell and Alford, 201160. m/0.32 mm/0.25 μm, Helium, 2. K/min, 260. C @ 28. min; Tstart: 30. C
CapillaryVF-5 MS1164.Leffingwell and Alford, 201160. m/0.32 mm/0.25 μm, Helium, 2. K/min, 260. C @ 28. min; Tstart: 30. C
CapillaryVF-51174.Li and Zhao, 200930. m/0.25 mm/0.25 μm, Helium, 60. C @ 2. min, 10. K/min, 300. C @ 10. min
CapillaryOV-11136.Orav, Kailas, et al., 19992. K/min; Tstart: 50. C; Tend: 160. C
CapillaryUltra-11147.Elizalde-González, Hutfliess, et al., 199650. m/0.2 mm/0.33 μm, H2, 3. K/min, 300. C @ 35. min; Tstart: 60. C
CapillaryUltra-21167.King, Hamilton, et al., 199350. m/0.32 mm/0.52 μm, He, 40. C @ 3. min, 4. K/min, 250. C @ 30. min
CapillaryDB-11137.Habu, Flath, et al., 19853. K/min; Column length: 50. m; Column diameter: 0.32 mm; Tstart: 0. C; Tend: 250. C

Normal alkane RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryHP-5 MS1158.Kotowska, Zalikowski, et al., 201230. m/0.25 mm/0.25 μm, Helium; Program: not specified
CapillaryPolydimethyl siloxane with 5 % Ph groups1171.Robinson, Adams, et al., 2012Program: not specified
CapillaryPolydimethyl siloxane with 5 % Ph groups1179.Robinson, Adams, et al., 2012Program: not specified
CapillarySqualane1137.Chen, 2008Program: not specified
CapillaryHP-51162.Zhao, Li, et al., 200830. m/0.25 mm/0.25 μm; Program: 40 0C (2 min) 5 0C/min -> 80 0C 7 oC/min -> 160 0C 9 0C/min -> 200 0C 20 0C/min -> 280 0C (10 min)
CapillaryHP-51163.Zhao, Li, et al., 200830. m/0.25 mm/0.25 μm; Program: not specified
CapillaryPolymethylsiloxane, (PMS-20000)1130.Cornwell and Cordano, 2003Program: not specified
CapillaryHP Ultra 11144.Hernandes, Vargas-Arispuro, et al., 199925. m/0.20 mm/0.33 μm, Nitrogen; Program: 50 0C 4 0C/min -> 180 0C 10 0C/min -> 280 0C
CapillaryDB-11169.Peng, 199630. m/0.53 mm/1.5 μm; Program: 40 0C (4 min) 8 0C/min -> 200 0C (1 min) 5 0C/min -> 280 0C (20 min)
CapillaryOV-11142.1Engewald and Maurer, 1990Column length: 60. m; Column diameter: 0.32 mm; Program: 1) 1st 30m column temp ramp 4C/min 60-120C 2)2nd 30m column isothermal 100C
CapillaryOV-11152.9Engewald and Maurer, 1990Column length: 60. m; Column diameter: 0.32 mm; Program: 1) 1st 30m column temp ramp 4C/min 60-120C. 2) 2nd 30m column isothermal 120C.
CapillaryOV-11149.7Engewald and Maurer, 1990Column length: 60. m; Column diameter: 0.32 mm; Program: 1) 1st 30m column temp ramp 6C/min 60-120C. 2) 2nd 30m column isothermal 120C.
CapillaryOV-11152.4Engewald and Maurer, 1990Column length: 60. m; Column diameter: 0.32 mm; Program: 1)1st 30m column temp ramp 3C/min 60-120 2)2nd 30m column isothermal 120C
CapillaryOV-1, SE-30, Methyl silicone, SP-2100, OV-101, DB-1, etc.1141.Waggott and Davies, 1984Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified
CapillaryOV-1, SE-30, Methyl silicone, SP-2100, OV-101, DB-1, etc.1136.Waggott and Davies, 1984Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified
CapillaryApieson L1153.Vaisberg and Gizitdinova, 1969Helium; Column length: 50. m; Column diameter: 0.25 mm; Program: not specified

Normal alkane RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-Wax1565.Shimadzu, 201230. m/0.32 mm/0.50 μm, Helium, 4. K/min; Tstart: 40. C; Tend: 260. C
CapillaryDB-Wax1565.Shimadzu Corporation, 200330. m/0.32 mm/0.5 μm, He, 4. K/min; Tstart: 40. C; Tend: 260. C

Normal alkane RI, polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryCarbowax 20M1490.Cornwell and Cordano, 2003Program: not specified
CapillaryDB-Wax1525.Peng, 199630. m/0.53 mm/1.0 μm; Program: 40 0C (4 min) 4 0C/min -> 200 0C (20 min)
CapillaryDB-Wax1525.Peng, Yang, et al., 1991Program: not specified
CapillaryDB-Wax1525.Peng, Yang, et al., 1991Program: not specified

Lee's RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-5MS195.21Chen, Keeran, et al., 200230. m/0.25 mm/0.5 μm, 40. C @ 1. min, 10. K/min; Tend: 310. C
CapillaryDB-5195.47Rostad and Pereira, 198630. m/0.26 mm/0.25 μm, He, 50. C @ 4. min, 6. K/min, 300. C @ 20. min
CapillarySE-52197.04Lee, Vassilaros, et al., 197912. m/0.3 mm/0.34 μm, He, 2. K/min; Tstart: 50. C; Tend: 250. C

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Good and Lee, 1976
Good, W.D.; Lee, S.H., The enthalpies of formation of selected naphthalenes, diphenylmethanes, and bicyclic hydrocarbons, J. Chem. Thermodyn., 1976, 8, 643-650. [all data]

Boyd, Sanwal, et al., 1971
Boyd, R.H.; Sanwal, S.N.; Shary-Tehrany, S.; McNally, D., The thermochemistry, thermodynamic functions, and molecular structures of some cyclic hydrocarbons, J. Phys. Chem., 1971, 75, 1264-1271. [all data]

Pedley, Naylor, et al., 1986
Pedley, J.B.; Naylor, R.D.; Kirby, S.P., Thermochemical Data of Organic Compounds, Chapman and Hall, New York, 1986, 1-792. [all data]

Dorofeeva O.V., 1988
Dorofeeva O.V., Thermodynamic Properties of Polycyclic Aromatic Hydrocarbons in the Gaseous Phase. Institute for High Temperatures, USSR Academy of Sciences, Preprint No.1-238 (in Russian), Moscow, 1988. [all data]

Dorofeeva O.V., 1986
Dorofeeva O.V., On calculation of thermodynamic properties of polycyclic aromatic hydrocarbons, Thermochim. Acta, 1986, 102, 59-66. [all data]

Frenkel M., 1994
Frenkel M., Thermodynamics of Organic Compounds in the Gas State, Vol. I, II, Thermodynamics Research Center, College Station, Texas, 1994, 1994. [all data]

Boyd R.H., 1971
Boyd R.H., The thermochemistry, thermodynamic functions, and molecular structures of some cyclic hydrocarbons, J. Phys. Chem., 1971, 75, 1264-1271. [all data]

Szekely, 1955
Szekely, A., Semiempirical method for calculating thermodynamic properties. The thermodynamic data of 1,2,3,4-tetrahydronaphthalene, Acta Chim. Acad. Sci. Hung., 1955, 5, 317-339. [all data]

Vvedenskii A.A., 1957
Vvedenskii A.A., Reaction equilibrium of hydrocarbons. X. Heat capacity of naphthalene, tetrahydronaphthalene, and decahydronaphthalene, Zh. Obshch. Khim., 1957, 27, 2052-2054. [all data]

Karo, McLaughlin, et al., 1953
Karo, W.; McLaughlin, R.L.; Hipsher, H.F., Dicyclic hydrocarbons. VI. 1,2,3,4-Tetrahydronaphthalene and 1-alkyl-1,2,3,4-tetrahydronaphthalenes, J. Am. Chem. Soc., 1953, 75, 3233-3235. [all data]

Hock and Knauel, 1951
Hock, I.H.; Knauel, G., Autoxydation von kohlenwasserstoffen, XIV. Mitteil. Uber die energetische stellung organischer hydroperoxyde, Chem. Ber., 1951, 84, 1-5. [all data]

McCullough, Finke, et al., 1957
McCullough, J.P.; Finke, H.L.; Messerly, J.F.; Kincheloe, T.C.; Waddington, G., The low temperature thermodynamic properties of naphthalene, 1-methylnaphthalene, 2-methylnaphthalene, 1,2,3,4-tetrahydronaphthalene, trans-decahydronaphthalene and cis-decahydronaphthalene, J. Phys. Chem., 1957, 61, 1105-1116. [all data]

McCullough, Finke, et al., 1957, 2
McCullough, J.P.; Finke, H.L.; Messerly, J.F.; Todd, S.S.; Kincheloe, T.C.; Waddington, G., The Low-Temperature Thermodynamic Properties of Naphthalene, 1-Methylnaphthalene, 2-Methylnaphthalene, 1,2,3,4-tetrahydro- naphthalene, trans-decahydronaphthalene and cis-Decahydronaphthalene, J. Phys. Chem., 1957, 61, 1105. [all data]

Tsonopoulos and Ambrose, 1995
Tsonopoulos, C.; Ambrose, D., Vapor-Liquid Critical Properties of Elements and Compounds. 3. Aromatic Hydrocarbons, J. Chem. Eng. Data, 1995, 40, 547-558. [all data]

Gude and Teja, 1994
Gude, M.T.; Teja, A.S., The Critical Properties of Several n-Alkanals, Tetralin and NMP, Experimental Results for DIPPR 1990-91 Projects on Phase Equilibria and Pure Component Properties, 1994, 1994, DIPPR Data Series No. 2, p.174-83. [all data]

Teja and Anselme, 1990
Teja, A.S.; Anselme, M.J., The critical properties of thermally stable and unstable fluids. II. 1986 results, AIChE Symp. Ser., 1990, 86, 279, 122-7. [all data]

Steele, Chirico, et al., 1988
Steele, W.V.; Chirico, R.D.; Knipmeyer, S.E.; Smith, N.K., , Report, NIPPR-395, 1988. [all data]

Lee, Dempsey, et al., 1992
Lee, Chang Ha; Dempsey, Dennis M.; Mohamed, Rahoma S.; Holder, Gerald D., Vapor-liquid equilibria in the systems of n-decane/tetralin, n-hexadecane/tetralin, n-decane/1-methylnaphthalene, and 1-methylnaphthalene/tetralin, J. Chem. Eng. Data, 1992, 37, 2, 183-186, https://doi.org/10.1021/je00006a012 . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Natarajan and Viswanath, 1985
Natarajan, Govindarajan; Viswanath, Dabir S., Enthalpy of vaporization and vapor pressure of benzene, toluene, p-xylene, and tetralin between 1 and 16 bar, J. Chem. Eng. Data, 1985, 30, 2, 137-140, https://doi.org/10.1021/je00040a001 . [all data]

Katayama and Harada, 1984
Katayama, Hirotake; Harada, Yasuhiro, Vapor pressure measurement of Tetralin at reduced pressures, J. Chem. Eng. Data, 1984, 29, 4, 373-375, https://doi.org/10.1021/je00038a002 . [all data]

Stull, 1947
Stull, Daniel R., Vapor Pressure of Pure Substances. Organic and Inorganic Compounds, Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022 . [all data]

Herz and Schuftan, 1922
Herz, W.; Schuftan, P., Physikalisch-chemische Untersuchungen an Tetralin und Dekalin, Z. Phys. Chem. (Frankfurt/Main), 1922, 101, 269-285. [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Frye and Weitkamp, 1969
Frye, C.G.; Weitkamp, A.W., Equilibrium hydrogenations of multi-ring aromatics, J. Chem. Eng. Data, 1969, 14, 372-376. [all data]

Wilson, Caflisch, et al., 1958
Wilson, T.P.; Caflisch, E.G.; Hurley, G.F., The naphthalene-tetralin-hydrogen equilibrium at elevated temperature and pressure, J. Phys. Chem., 1958, 62, 1059. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Williams, 1942
Williams, R.B., Heats of catalytic hydrogenation in solution. I. Apparatus, technique, and the heats of hydrogenation of certain pairs of stereoisomers, J. Am. Chem. Soc., 1942, 64, 1395-1404. [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Aue, Guidoni, et al., 2000
Aue, D.H.; Guidoni, M.; Betowski, L.D., Ab initio calculated gas-phase basicities of polynuclear aromatic hydrocarbons, Int. J. Mass Spectrom., 2000, 201, 283. [all data]

Dass and Gross, 1985
Dass, C.; Gross, M.L., The question of cyclic versus acyclic ions: The structure of [C6H10]+ gas phase ions, Org. Mass Spectrom., 1985, 20, 34. [all data]

Mautner(Meot-Ner), 1980
Mautner(Meot-Ner), M., Ion thermochemistry of low volatility compounds in the gas phase. 3. Polycyclic aromatics: Ionization energies, proton, and hydrogen affinities. Extrapolations to graphite, J. Phys. Chem., 1980, 84, 2716. [all data]

Pitt, 1970
Pitt, C.G., Hyperconjugation: An alternative to the concept of the pπ-dπ bond in Group IV chemistry, J. Organomet. Chem., 1970, 23, 35. [all data]

Loudon, Maccoll, et al., 1970
Loudon, A.G.; Maccoll, A.; Wong, S.K., Comparison between unimolecular gas phase pyrolysis and electron impact fragmentation. Part I. The mass spectra of tetralin and some related heterocycles, J. Chem. Soc. B, 1970, 1727. [all data]

Meier, Heiss, et al., 1968
Meier, H.; Heiss, J.; Suhr, H.; Muller, E., Energetische Untersuchungen zum Mills-Nixon-Effekt. Ionisierungsenergien von Benzolmolekulen mit ankondensierten gesattigten Ringen, Tetrahedron, 1968, 24, 2307. [all data]

Maier and Turner, 1973
Maier, J.P.; Turner, D.W., Steric inhibition of resonance studied by molecular photoelectron spectroscopy. Part 2. Phenylethylenes, J. Chem. Soc. Faraday Trans. 2, 1973, 69, 196. [all data]

Brogli, Giovannini, et al., 1973
Brogli, F.; Giovannini, E.; Heilbronner, E.; Schurter, R., Die photoelektronen spektren der benzocycloalkene, Chem. Ber., 1973, 106, 961. [all data]

Zhang, Li, et al., 1992
Zhang, M.J.; Li, S.D.; Chen, B.J., Compositional studies of high-temperature coal tar by GC/FTIR analysis of light oil fractions, Chromatographia, 1992, 33, 3/4, 138-146, https://doi.org/10.1007/BF02275894 . [all data]

Meusinger and Engewald, 1991
Meusinger, R.; Engewald, W., Struktur - Retentionsbeziehungen von stereoisomeren methylsubstituierten Isochromanen in der Gaschromatographie, J. Prakt. Chem., 1991, 333, 6, 835-840, https://doi.org/10.1002/prac.19913330603 . [all data]

Engewald and Maurer, 1990
Engewald, W.; Maurer, T., Enhanced possibilities for identification by the use of series-coupled capillary gas chromatographic columns. I. General exposition and application of the retention index concept, J. Chromatogr., 1990, 520, 3-13, https://doi.org/10.1016/0021-9673(90)85078-A . [all data]

Grinberg, Tokarev, et al., 1984
Grinberg, A.A.; Tokarev, M.I.; Bigdash, T.V.; Kogan, L.O.; Leont'eva, S.A., Special features of using Kovats retention indices in chromatomass spectrometric analysis, Zh. Anal. Khim., 1984, 39, 6, 909-911. [all data]

Tiess, 1984
Tiess, D., Gaschromatographische Retentionsindices von 125 leicht- bis mittelflüchtigen organischen Substanzen toxikologisch-analytischer Relevanz auf SE-30, Wiss. Z. Wilhelm-Pieck-Univ. Rostock Math. Naturwiss. Reihe, 1984, 33, 6-9. [all data]

Boneva, Papazova, et al., 1983
Boneva, St.; Papazova, D.; Dimov, N., Retention Indices of aromatic hydrocarbons on glass and metal capillary columns with stationary phase OV-101, Jahrb. Chem. Tech. Hochschule Burgas, 1983, 18, 143-148. [all data]

Tóth, 1983
Tóth, T., Use of capillary gas chromatography in collecting retention and chemical information for the analysis of complex petrochemical mixtures, J. Chromatogr., 1983, 279, 157-165, https://doi.org/10.1016/S0021-9673(01)93614-3 . [all data]

Bredael, 1982
Bredael, P., Retention indices of hydrocarbons on SE-30, J. Hi. Res. Chromatogr. Chromatogr. Comm., 1982, 5, 6, 325-328, https://doi.org/10.1002/jhrc.1240050610 . [all data]

Macák, Nabivach, et al., 1982
Macák, J.; Nabivach, V.; Buryan, P.; Sindler, S., Dependence of retention indices of alkylbenzenes on their molecular structure, J. Chromatogr., 1982, 234, 2, 285-302, https://doi.org/10.1016/S0021-9673(00)81867-1 . [all data]

Gerasimenko, Kirilenko, et al., 1981
Gerasimenko, V.A.; Kirilenko, A.V.; Nabivach, V.M., Capillary gas chromatography of aromatic compounds found in coal tar fractions, J. Chromatogr., 1981, 208, 1, 9-16, https://doi.org/10.1016/S0021-9673(00)87953-4 . [all data]

Bogoslovsky, Anvaer, et al., 1978
Bogoslovsky, Yu.N.; Anvaer, B.I.; Vigdergauz, M.S., Chromatographic constants in gas chromatography (in Russian), Standards Publ. House, Moscow, 1978, 192. [all data]

Nabivach, Bur'yan, et al., 1978
Nabivach, V.M.; Bur'yan, P.; Matsak, I., Retention indices of aromatic hydrocarbons on a squalane capillary column, Zh. Anal. Khim., 1978, 33, 7, 1108-1113. [all data]

Mitra, Mohan, et al., 1974
Mitra, G.D.; Mohan, G.; Sinha, A., Advances in the utilization of the retention index system for characterizing hydrocarbons in complex mixtures by gas chromatography, J. Chromatogr., 1974, 99, 215-230, https://doi.org/10.1016/S0021-9673(00)90857-4 . [all data]

Mitra, Mohan, et al., 1974, 2
Mitra, G.D.; Mohan, G.; Sinha, A., Gas chromatographic analysis of complex hydrocarbon mixtures, J. Chromatogr. A, 1974, 91, 633-648, https://doi.org/10.1016/S0021-9673(01)97944-0 . [all data]

Svob and Deur-Siftar, 1974
Svob, V.; Deur-Siftar, D., Kovats Retention Indices in the Identification of Alkylbenzene Degradation Products, J. Chromatogr., 1974, 91, 677-689, https://doi.org/10.1016/S0021-9673(01)97947-6 . [all data]

Schomburg, 1966
Schomburg, G., Gaschromatographische Retentionsdaten und struktur chemischer verbindungen. III. Alkylverzweigte und ungesättigte cyclische Kohlenwasserstoffe, J. Chromatogr., 1966, 23, 18-41, https://doi.org/10.1016/S0021-9673(01)98653-4 . [all data]

Hayes and Pitzer, 1982
Hayes, P.C., Jr.; Pitzer, E.W., Characterizing petroleum- and shale-derived jet fuel distillates via temperature-programmed Kováts indices, J. Chromatogr., 1982, 253, 179-198, https://doi.org/10.1016/S0021-9673(01)88376-X . [all data]

Haagen-Smit Laboratory, 1997
Haagen-Smit Laboratory, Procedure for the detailed hydrocarbon analysis of gasolines by single column high efficiency (capillary) column gas chromatography, SOP NO. MLD 118, Revision No. 1.1, California Environmental Protection Agency, Air Resources Board, El Monte, California, 1997, 22. [all data]

Szabó and Jánosi, 1979
Szabó, M.; Jánosi, A., Gas chromatographic separation and determination of the components of competitive chlorination reaction mixtures of heptene-1 and cyclohexene, J. Chromatogr., 1979, 170, 1, 240-244, https://doi.org/10.1016/S0021-9673(00)84259-4 . [all data]

Censullo, Jones, et al., 2003
Censullo, A.C.; Jones, D.R.; Wills, M.T., Speciation of the volatile organic compounds (VOCs) in solventborne aerosol coatings by solid phase microextraction-gas chromatography, J. Coat. Technol., 2003, 75, 936, 47-53, https://doi.org/10.1007/BF02697922 . [all data]

Song, Lai, et al., 2003
Song, C.; Lai, W.-C.; Madhusudan Reddy, K.; Wei, B., Chapter 7. Temperature-programmed retention indices for GC and GC-MS of hydrocarbon fuels and simulated distillation GC of heavy oils in Analytical advances for hydrocarbon research, Hsu,C.S., ed(s)., Kluwer Academic/Plenum Publishers, New York, 2003, 147-193. [all data]

Xu, van Stee, et al., 2003
Xu, X.; van Stee, L.L.P.; Williams, J.; Beens, J.; Adahchour, M.; Vreuls, R.J.J.; Brinkman, U.A.Th.; Lelieveld, J., Comprehensive two-dimensional gas chromatography (GC×GC) measurements of volatile organic compounds in the atmosphere, Atmos. Chem. Phys., 2003, 3, 3, 665-682, https://doi.org/10.5194/acp-3-665-2003 . [all data]

Gautzsch and Zinn, 1996
Gautzsch, R.; Zinn, P., Use of incremental models to estimate the retention indexes of aromatic compounds, Chromatographia, 1996, 43, 3/4, 163-176, https://doi.org/10.1007/BF02292946 . [all data]

Lai and Song, 1995
Lai, W.-C.; Song, C., Temperature-programmed retention indices for g.c. and g.c.-m.s. analysis of coal- and petroleum-derived liquid fuels, Fuel, 1995, 74, 10, 1436-1451, https://doi.org/10.1016/0016-2361(95)00108-H . [all data]

White, Douglas, et al., 1992
White, C.M.; Douglas, L.J.; Hackett, J.P.; Anderson, R.R., Characterization of synthetic gasoline from the chloromethane-zeolite reaction, Energy Fuels, 1992, 6, 1, 76-82, https://doi.org/10.1021/ef00031a012 . [all data]

White, Hackett, et al., 1992
White, C.M.; Hackett, J.; Anderson, R.R.; Kail, S.; Spock, P.S., Linear temperature programmed retention indices of gasoline range hydrocarbons and chlorinated hydrocarbons on cross-linked polydimethylsiloxane, J. Hi. Res. Chromatogr., 1992, 15, 2, 105-120, https://doi.org/10.1002/jhrc.1240150211 . [all data]

Rostad and Pereira, 1986
Rostad, C.E.; Pereira, W.E., Kovats and Lee retention indices determined by gas chromatography/mass spectrometry for organic compounds of environmental interest, J. Hi. Res. Chromatogr. Chromatogr. Comm., 1986, 9, 6, 328-334, https://doi.org/10.1002/jhrc.1240090603 . [all data]

Haynes and Pitzer, 1985
Haynes, P.C., Jr.; Pitzer, E.W., Disengaging solutes in shale- and petroleum-derived jet fuels by altering GC programmed temperature rates, J. Hi. Res. Chromatogr. Chromatogr. Comm., 1985, 8, 5, 230-242, https://doi.org/10.1002/jhrc.1240080504 . [all data]

Hayes and Pitzer, 1981
Hayes, P.C., Jr.; Pitzer, E.W., Kovats indices as a tool in characterizing hydrocarbon fuels in temperature programmed glass capillary gas chromatography. Part 1. Qualitative identification, Inhouse rpt. for Air Force Wright Aeronautical Labs., Air Force Wright Aeronautical Labs., Wright-Patterson AFB, Ohio, 1981, 75. [all data]

Peng, Ding, et al., 1988
Peng, C.T.; Ding, S.F.; Hua, R.L.; Yang, Z.C., Prediction of Retention Indexes I. Structure-Retention Index Relationship on Apolar Columns, J. Chromatogr., 1988, 436, 137-172, https://doi.org/10.1016/S0021-9673(00)94575-8 . [all data]

Cadwallader, Tan, et al., 1995
Cadwallader, K.R.; Tan, Q.; Chen, F.; Meyers, S.P., Evaluation of the aroma of cooked spiny lobster tail meat by aroma extract dilution analysis, J. Agric. Food Chem., 1995, 43, 9, 2432-2437, https://doi.org/10.1021/jf00057a022 . [all data]

Shimoda, Shigematsu, et al., 1995
Shimoda, M.; Shigematsu, H.; Shiratsuchi, H.; Osajima, Y., Comparison of the odor concentrates by SDE and adsorptive column method from green tea infusion, J. Agric. Food Chem., 1995, 43, 6, 1616-1620, https://doi.org/10.1021/jf00054a037 . [all data]

Berezkin, 1993
Berezkin, V.G., Linear correlation between retention indexes obtained in different laboratories on open tubular capillary columns with the same liquid stationary phase, Chem. Anal. (Warsaw), 1993, 38, 5, 649-651. [all data]

Papazova and Pankova, 1975
Papazova, D.I.; Pankova, M.C., Identification of individual aromatic hydrocarbons in kerosene fraction (b.p. 150-250 °), J. Chromatogr., 1975, 105, 2, 411-414, https://doi.org/10.1016/S0021-9673(01)82276-7 . [all data]

Ferrand, 1962
Ferrand, R., Gas phase chromatography using retention indices for the analysis of tars and their hydrogenation products, Journees internationales d'etude des methodes de separation immediate at de chromatographie; Org. sur l'initiative du IX., 1962, 132-140. [all data]

Bramston-Cook, 2013
Bramston-Cook, R., Kovats indices for C2-C13 hydrocarbons and selected oxygenated/halocarbons with 100 % dimethylpolysiloxane columns, 2013, retrieved from http://lotusinstruments.com/monographs/List .... [all data]

Kotowska, Zalikowski, et al., 2012
Kotowska, U.; Zalikowski, M.; Isidorov, V.A., HS-SPME/GC-MS analysis of volatile and semi-volatile organic compounds emitted from municipal sewage sludge, Environ. Monit. Asses., 2012, 184, 5, 2893-2907, https://doi.org/10.1007/s10661-011-2158-8 . [all data]

Supelco, 2012
Supelco, CatalogNo. 24160-U, Petrocol DH Columns. Catalog No. 24160-U, 2012, retrieved from http://www.sigmaaldrich.com/etc/medialib/docs/Supelco/Datasheet/1/w97949.Par.0001.File.tmp/w97949.pdf. [all data]

Leffingwell and Alford, 2011
Leffingwell, J.; Alford, E.D., Volatile constituents of the giant pufball mushroom (Calvatia gigantea), Leffingwell Rep., 2011, 4, 1-17. [all data]

Li and Zhao, 2009
Li, L.; Zhao, J., Determination of the volatile composition of Rhodobryum giganteum (Schwaegr.) Par. (Bryaceae) using solid-phase microextraction and gas chromatography / mass spectrometry (GC/MS), Molecules, 2009, 14, 6, 2195-2201, https://doi.org/10.3390/molecules14062195 . [all data]

Orav, Kailas, et al., 1999
Orav, A.; Kailas, T.; Muurisepp, M.; Kann, J., Composition of the oil from waste tires. 2. Fraction boiling at 160-180 0C, Proc. Estonian Acad. Sci. Chem., 1999, 48, 3, 136-140. [all data]

Elizalde-González, Hutfliess, et al., 1996
Elizalde-González, M.P.; Hutfliess, M.; Hedden, K., Retention index system, adsorption characteristics, and sructure correlations of polycyclic aromatic hydrocarbons in fuels, J. Hi. Res. Chromatogr., 1996, 19, 6, 345-352, https://doi.org/10.1002/jhrc.1240190608 . [all data]

King, Hamilton, et al., 1993
King, M.-F.; Hamilton, B.L.; Matthews, M.A.; Rule, D.C.; Field, R.A., Isolation and identification of volatiles and condensable material in raw beef with supercritical carbon dioxide extraction, J. Agric. Food Chem., 1993, 41, 11, 1974-1981, https://doi.org/10.1021/jf00035a030 . [all data]

Habu, Flath, et al., 1985
Habu, T.; Flath, R.A.; Mon, T.R.; Morton, J.F., Volatile components of Rooibos tea (Aspalathus linearis), J. Agric. Food Chem., 1985, 33, 2, 249-254, https://doi.org/10.1021/jf00062a024 . [all data]

Robinson, Adams, et al., 2012
Robinson, A.L.; Adams, D.O.; Boss, P.K.; Heymann, H.; Solomon, P.S.; Trengove, R.D., Influence of geographic origine on the sensory characteristics and wine composition of Vitus viniferas cv. Cabernet Sauvignon wines from Australia (Supplemental data), Am. J. Enol. Vitic., 2012, 64, 4, 467-476, https://doi.org/10.5344/ajev.2012.12023 . [all data]

Chen, 2008
Chen, H.-F., Quantitative prediction of gas chromatography retention indices with support vector machines, radial basis neutral networks and multiple linear regression, Anal. Chim. Acta, 2008, 609, 1, 24-36, https://doi.org/10.1016/j.aca.2008.01.003 . [all data]

Zhao, Li, et al., 2008
Zhao, Y.; Li, J.; Xu, Y.; Duan, H.; Fan, W.; Zhao, G., EXtraction, preparation and identification of volatile compounds in Changyu XO brandy, Chinese J. Chromatogr., 2008, 26, 2, 212-222, https://doi.org/10.1016/S1872-2059(08)60014-0 . [all data]

Cornwell and Cordano, 2003
Cornwell, E.; Cordano, G., Nueva proposicion para predecir datos de retencion obtenidos mediante cromatografia de gases de hidrocarburos derivados de las naftas, Revista de la Sociedad Quimica de Mexico, 2003, 47, 1, 38-43. [all data]

Hernandes, Vargas-Arispuro, et al., 1999
Hernandes, N.N.; Vargas-Arispuro, I.; Sanz, I.; Adelantado, M.; Primo-Yufera, E., Electroantennogram activity and attraction assay of Ceratitis capitata to aiborne volatiles from peach at three ripeness stages, The Southwestern entomologist, 1999, 24, 2, 133-142. [all data]

Peng, 1996
Peng, C.T., Gas chromatographic identification of aromatic hydrocarbons in Liquid Scintillation Spectrometry, Cook, G.T.; Harkness, D.D.; MacKenzie, A.B.; Miller, B.F.; Scott, E.M., ed(s)., 1996, 221-232. [all data]

Waggott and Davies, 1984
Waggott, A.; Davies, I.W., Identification of organic pollutants using linear temperature programmed retention indices (LTPRIs) - Part II, 1984, retrieved from http://dwi.defra.gov.uk/research/completed-research/reports/dwi0383.pdf. [all data]

Vaisberg and Gizitdinova, 1969
Vaisberg, K.M.; Gizitdinova, V.G., Gas chromatographic investigation of tetralin and its homologues C11-C12, Neftekhimia (Rus), 1969, 9, 3, 482-486. [all data]

Shimadzu, 2012
Shimadzu, Pharmaceutical Related, Analysis of pharmaceutical residual solvent (observation of separation) (1) - GC, 2012, retrieved from www.shimadzu.ru/applications/Applicationspdf/GC/Pharma/Pharmaceutical residual solvents GC.pdf. [all data]

Shimadzu Corporation, 2003
Shimadzu Corporation, Analysis of pharmaceutical residual solvent (observation of separation), 2003, retrieved from http://www.shimadzu.com.br/analitica/aplicacoes/book/pharm69.pdf. [all data]

Peng, Yang, et al., 1991
Peng, C.T.; Yang, Z.C.; Ding, S.F., Prediction of rentention idexes. II. Structure-retention index relationship on polar columns, J. Chromatogr., 1991, 586, 1, 85-112, https://doi.org/10.1016/0021-9673(91)80028-F . [all data]

Chen, Keeran, et al., 2002
Chen, P.H.; Keeran, W.S.; Van Ausdale, W.A.; Schindler, D.R.; Roberts, D.W., Application of Lee retention indices to the confirmation of tentatively identified compounds from GC/MS analysis of environmental samples, Technical paper, Analytical Services Division, Environmental ScienceEngineering, Inc, PO Box 1703, Gainesville, FL 32602, 2002, 11. [all data]

Lee, Vassilaros, et al., 1979
Lee, M.L.; Vassilaros, D.L.; White, C.M.; Novotny, M., Retention Indices for Programmed-Temperature Capillary-Column Gas Chromatography of Polycyclic Aromatic Hydrocarbons, Anal. Chem., 1979, 51, 6, 768-773, https://doi.org/10.1021/ac50042a043 . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References