Propene

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Gas phase ion energetics data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas20.41kJ/molEqkFuruyama, Golden, et al., 1969ALS
Δfgas20.41kJ/molCmLacher, Walden, et al., 1950Heat of hydrobromination; ALS
Quantity Value Units Method Reference Comment
Δcgas-2057.8 ± 1.1kJ/molCmWiberg and Fenoglio, 1968Corresponding Δfgas = 19.8 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcgas-2057.7 ± 0.6kJ/molCmRossini and Knowlton, 1937Reanalyzed by Cox and Pilcher, 1970, Original value = -2057.42 ± 0.62 kJ/mol; Corresponding Δfgas = 19.7 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
34.3550.Thermodynamics Research Center, 1997p=1 bar. Recommended entropies and heat capacities are in good agreement with other statistically calculated values [ Crawford B.L., 1939, Kilpatrick J.E., 1946, Kilpatrick J.E., 1947, Chao J., 1975] as well as with ab initio value of S(298.15 K)=266.82 J/mol*K [ East A.L.L., 1997].; GT
39.07100.
44.34150.
50.24200.
60.47273.15
64.32298.15
64.61300.
80.45400.
95.17500.
108.00600.
119.09700.
128.72800.
137.12900.
144.441000.
150.831100.
156.401200.
161.251300.
165.481400.
169.181500.
176.541750.
181.902000.
185.892250.
188.912500.
191.242750.
193.083000.

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
44.52148.2Bier K., 1974Please also see Kistiakowsky G.B., 1940, Kistiakowsky G.B., 1940, 2, Telfair D., 1942.; GT
45.44157.6
52.22213.1
53.09220.1
53.68223.7
58.45258.0
59.78270.
60.08 ± 0.13272.29
61.45280.
63.43291.1
63.79 ± 0.13298.15
64.73 ± 0.13299.33
64.71300.
67.89320.
67.88 ± 0.14323.15
70.04 ± 0.17333.86
71.03340.
71.78 ± 0.14348.15
74.13360.
74.47 ± 0.15365.15
75.02 ± 0.08367.11
75.79 ± 0.15373.15
79.85 ± 0.16378.15
77.14380.
80.15400.
83.17420.
83.61 ± 0.17423.15
86.09440.
87.44 ± 0.17448.15
89.02460.
91.18 ± 0.18473.15
91.91480.
94.76500.
96.18510.

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
liquid195.7J/mol*KN/AChao, Hall, et al., 1983 

Constant pressure heat capacity of liquid

Cp,liquid (J/mol*K) Temperature (K) Reference Comment
102.298.15Chao, Hall, et al., 1983T = 14 to 340 K.
98.9300.Auerbach, Sage, et al., 1950T = 300 to 344 K. Datum at 80°C is Cp at the bubble point, 0.5615 Btu/lb*R.
92.09230.Powell and Giauque, 1939T = 14 to 225 K.
90.0210.3Huffman, Parks, et al., 1931T = 69 to 210 K. Value is unsmoothed experimental datum.

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to C3H6+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)9.73 ± 0.01eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)751.6kJ/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity722.7kJ/molN/AHunter and Lias, 1998HL

Ionization energy determinations

IE (eV) Method Reference Comment
9.73PITraeger, 1984LBLHLM
9.69 ± 0.09EISelim, 1980LLK
9.73 ± 0.02PIWood and Taylor, 1979LLK
9.7 ± 0.1PEBieri, Burger, et al., 1977LLK
9.73 ± 0.01PIKrassig, Reinke, et al., 1974LLK
9.744 ± 0.003PEMasclet, Grosjean, et al., 1973LLK
9.72PEKatrib and Rabalais, 1973LLK
9.72EILossing, 1972LLK
9.74PEFrost and Sandhu, 1971LLK
9.74 ± 0.01PIPerson and Nicole, 1970RDSH
9.69PEDewar and Worley, 1969RDSH
9.76CICermak, 1968RDSH
9.727 ± 0.010PINicholson, 1965RDSH
9.74SSamson, Marmo, et al., 1962RDSH
9.73 ± 0.02PISteiner, Giese, et al., 1961RDSH
9.73PIBralsford, Harris, et al., 1960RDSH
9.73 ± 0.01PIWatanabe, 1957RDSH
9.91 ± 0.01PEKrause, Taylor, et al., 1978Vertical value; LLK
10.2PEKobayashi, 1978Vertical value; LLK
10.03PEKimura, Katsumata, et al., 1975Vertical value; LLK
10.2PEWhite, Carlson, et al., 1974Vertical value; LLK
9.70PEHentrich, Gunkel, et al., 1974Vertical value; LLK
9.9PEWeidner and Schweig, 1972Vertical value; LLK
9.86PEMollere, Bock, et al., 1972Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
C+24.5 ± 0.5?EIPeers and Vigny, 1968RDSH
CH+22.5 ± 0.5?EIPeers and Vigny, 1968RDSH
CH2+17.0 ± 0.5?EIPeers and Vigny, 1968RDSH
CH3+14.9C2H3EIHaney and Franklin, 1968RDSH
CH4+14.7 ± 0.5?EIPeers and Vigny, 1968RDSH
C2+28. ± 1.?EIPeers and Vigny, 1968RDSH
C2H+21. ± 1.?EIPeers and Vigny, 1968RDSH
C2H2+12.92 ± 0.05CH4PIKrassig, Reinke, et al., 1974LLK
C2H2+13.6 ± 0.5CH4EIPeers and Vigny, 1968RDSH
C2H2+14.1CH4EIHaney and Franklin, 1968RDSH
C2H3+13.78 ± 0.03CH3EISelim, 1980LLK
C2H3+13.20 ± 0.04CH3PIKrassig, Reinke, et al., 1974LLK
C2H3+13.7 ± 0.5CH3EIPeers and Vigny, 1968RDSH
C2H4+12.4 ± 0.5?EIPeers and Vigny, 1968RDSH
C2H5+12.6 ± 0.5?EIPeers and Vigny, 1968RDSH
C3+27. ± 1.?EIPeers and Vigny, 1968RDSH
C3H+20.5 ± 0.52H2+HEIPeers and Vigny, 1968RDSH
C3H+20.2 ± 0.52H2+HEIHarrison and Tait, 1962RDSH
C3H2+47. ± 1.?EIPeers and Vigny, 1968RDSH
C3H2+17. ± 1.2H2EIPeers and Vigny, 1968RDSH
C3H3+14.21 ± 0.09H2+HEISelim, 1980LLK
C3H3+13.19 ± 0.05H2+HPIKrassig, Reinke, et al., 1974LLK
C3H3+14.3 ± 0.5H2+HEIPeers and Vigny, 1968RDSH
C3H3+14.21H2+HEIOmura, 1962RDSH
C3H4+11.91 ± 0.03H2PIKrassig, Reinke, et al., 1974LLK
C3H4+12.3 ± 0.5H2EIPeers and Vigny, 1968RDSH
C3H4+12.52H2EIOmura, 1961RDSH
C3H5+11.86HPITraeger, 1984LBLHLM
C3H5+11.90 ± 0.05HEISelim, 1980LLK
C3H5+11.78HPIButtrill, Williamson, et al., 1975LLK
C3H5+11.88 ± 0.03HPIKrassig, Reinke, et al., 1974LLK
C3H5+11.88HEILossing, 1971LLK
C3H22+33.3 ± 0.5?EIPeers and Vigny, 1968RDSH
C3H52+31.1 ± 0.5HEIPeers and Vigny, 1968RDSH
H+20. ± 1.?EIPeers and Vigny, 1968RDSH
H2+16. ± 1.?EIPeers and Vigny, 1968RDSH

De-protonation reactions

C3H5- + Hydrogen cation = Propene

By formula: C3H5- + H+ = C3H6

Quantity Value Units Method Reference Comment
Δr1636.4 ± 1.3kJ/molG+TSEllison, Davico, et al., 1996gas phase; calculated dSacid=24.2±1.0 eu; B
Δr1634. ± 4.2kJ/molD-EAWenthold, Polak, et al., 1996gas phase; B
Δr1635. ± 8.8kJ/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Δr1632.8 ± 2.7kJ/molG+TSMackay, Lien, et al., 1978gas phase; B
Quantity Value Units Method Reference Comment
Δr1605.8 ± 0.42kJ/molIMREEllison, Davico, et al., 1996gas phase; calculated dSacid=24.2±1.0 eu; B
Δr1606. ± 4.6kJ/molH-TSWenthold, Polak, et al., 1996gas phase; B
Δr1607. ± 8.4kJ/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Δr1605.0 ± 2.1kJ/molIMREMackay, Lien, et al., 1978gas phase; B

C3H5- + Hydrogen cation = Propene

By formula: C3H5- + H+ = C3H6

Quantity Value Units Method Reference Comment
Δr1698. ± 8.4kJ/molBranDePuy, Gronert, et al., 1989gas phase; B
Δr>1693.5 ± 2.5kJ/molG+TSFroelicher, Freiser, et al., 1986gas phase; B
Quantity Value Units Method Reference Comment
Δr1665. ± 8.8kJ/molH-TSDePuy, Gronert, et al., 1989gas phase; B
Δr>1661.0kJ/molIMRBFroelicher, Freiser, et al., 1986gas phase; B

C3H5- + Hydrogen cation = Propene

By formula: C3H5- + H+ = C3H6

Quantity Value Units Method Reference Comment
Δr>1693.5 ± 3.8kJ/molG+TSFroelicher, Freiser, et al., 1986gas phase; B
Quantity Value Units Method Reference Comment
Δr>1661.0kJ/molIMRBFroelicher, Freiser, et al., 1986gas phase; B

Ion clustering data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
RCD - Robert C. Dunbar
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

Gold ion (1+) + Propene = (Gold ion (1+) • Propene)

By formula: Au+ + C3H6 = (Au+ • C3H6)

Quantity Value Units Method Reference Comment
Δr>310.kJ/molIMRBSchroeder, Hrusak, et al., 1995RCD

C3H9Si+ + Propene = (C3H9Si+ • Propene)

By formula: C3H9Si+ + C3H6 = (C3H9Si+ • C3H6)

Quantity Value Units Method Reference Comment
Δr128.kJ/molPHPMSLi and Stone, 1989gas phase; condensation; M
Quantity Value Units Method Reference Comment
Δr178.J/mol*KPHPMSLi and Stone, 1989gas phase; condensation; M

Cobalt ion (1+) + Propene = (Cobalt ion (1+) • Propene)

By formula: Co+ + C3H6 = (Co+ • C3H6)

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
180. (+7.1,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M
180. (+6.7,-0.) CIDHaynes and Armentrout, 1994gas phase; guided ion beam CID; M

Iron ion (1+) + Propene = (Iron ion (1+) • Propene)

By formula: Fe+ + C3H6 = (Fe+ • C3H6)

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
145. (+7.1,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

Lithium ion (1+) + Propene = (Lithium ion (1+) • Propene)

By formula: Li+ + C3H6 = (Li+ • C3H6)

Quantity Value Units Method Reference Comment
Δr96.kJ/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 extrapolated; M

Rh+ + Propene = (Rh+ • Propene)

By formula: Rh+ + C3H6 = (Rh+ • C3H6)

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
118. CIDChen and Armetrout, 1995gas phase; ΔrH>=, guided ion beam CID; M

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Gas phase ion energetics data, Ion clustering data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Furuyama, Golden, et al., 1969
Furuyama, S.; Golden, D.M.; Benson, S.W., Thermochemistry of the gas phase equilibria i-C3H7I = C3H6 + HI, n-C3H7I = i-C3H7I, and C3H6 + 2HI = C3H8 + I2, J. Chem. Thermodyn., 1969, 1, 363-375. [all data]

Lacher, Walden, et al., 1950
Lacher, J.R.; Walden, C.H.; Lea, K.R.; Park, J.D., Vapor phase heats of hydrobromination of cyclopropane and propylene, J. Am. Chem. Soc., 1950, 72, 331-333. [all data]

Wiberg and Fenoglio, 1968
Wiberg, K.B.; Fenoglio, R.A., Heats of formation of C4H6 hydrocarbons, J. Am. Chem. Soc., 1968, 90, 3395-3397. [all data]

Rossini and Knowlton, 1937
Rossini, F.d.; Knowlton, J.W., Calorimetric determination of the heats of combustion of ethylene and propylene, J. Res. NBS, 1937, 19, 249-262. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Thermodynamics Research Center, 1997
Thermodynamics Research Center, Selected Values of Properties of Chemical Compounds., Thermodynamics Research Center, Texas A&M University, College Station, Texas, 1997. [all data]

Crawford B.L., 1939
Crawford B.L., Jr., The entropy and heat capacity of propylene, J. Am. Chem. Soc., 1939, 61, 2980-2981. [all data]

Kilpatrick J.E., 1946
Kilpatrick J.E., Heat content, free energy function, entropy, and heat capacity of ethylene, propylene, and the four butenes to 1500 K, J. Res. Nat. Bur. Stand, 1946, 37, 163-171. [all data]

Kilpatrick J.E., 1947
Kilpatrick J.E., Normal coordinate analysis of the vibrational frequencies of ethylene, propylene, cis-2-butene, trans-2-butene, and isobutene, J. Res. Nat. Bur. Stand., 1947, 38, 191-209. [all data]

Chao J., 1975
Chao J., Ideal gas thermodynamic properties of ethylene and propylene, J. Phys. Chem. Ref. Data, 1975, 4, 251-261. [all data]

East A.L.L., 1997
East A.L.L., Ab initio statistical thermodynamical models for the computation of third-law entropies, J. Chem. Phys., 1997, 106, 6655-6674. [all data]

Bier K., 1974
Bier K., Thermodynamic properties of propylene from calorimetric measurements, J. Chem. Thermodyn., 1974, 6, 1039-1052. [all data]

Kistiakowsky G.B., 1940
Kistiakowsky G.B., The low temperature gaseous heat capacities of certain C3 hydrocarbons, J. Chem. Phys., 1940, 8, 970-977. [all data]

Kistiakowsky G.B., 1940, 2
Kistiakowsky G.B., Gaseous heat capacities. II, J. Chem. Phys., 1940, 8, 610-618. [all data]

Telfair D., 1942
Telfair D., Supersonic measurement of the heat capacity of propylene, J. Chem. Phys., 1942, 10, 167-171. [all data]

Chao, Hall, et al., 1983
Chao, J.; Hall, K.R.; Yao, J.M., Thermodynamic properties of simple alkenes, Thermochim. Acta, 1983, 64(3), 285-303. [all data]

Auerbach, Sage, et al., 1950
Auerbach, C.E.; Sage, B.H.; Lacey, W.N., Isobaric heat capacities at bubble point, Ind. Eng. Chem., 1950, 42, 110-113. [all data]

Powell and Giauque, 1939
Powell, T.M.; Giauque, W.F., Propylene. The heat capacity, vapor pressure, heats of fusion and vaporization. The third law of thermodynamics and orientation equilibrium in the solid, J. Am. Chem. Soc., 1939, 61, 2366-2370. [all data]

Huffman, Parks, et al., 1931
Huffman, H.M.; Parks, G.S.; Barmore, M., Thermal data on organic compounds. X. Further studies on the heat capacities, entropies and free energies of hydrocarbons, J. Am. Chem. Soc., 1931, 53, 3876-3888. [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Traeger, 1984
Traeger, J.C., A study of the allyl cation thermochemistry by photoionization mass spectrometry, Int. J. Mass Spectrom. Ion Processes, 1984, 58, 259. [all data]

Selim, 1980
Selim, E.T.M., Ionization dissociation of propylene by electron impact, Indian J. Pure Appl. Phys., 1980, 18, 31. [all data]

Wood and Taylor, 1979
Wood, K.V.; Taylor, J.W., A photoionization mass spectrometric study of autoionization in ethylene and trans-2-butene, Int. J. Mass Spectrom. Ion Phys., 1979, 30, 307. [all data]

Bieri, Burger, et al., 1977
Bieri, G.; Burger, F.; Heilbronner, E.; Maier, J.P., Valence ionization enrgies of hydrocarbons, Helv. Chim. Acta, 1977, 60, 2213. [all data]

Krassig, Reinke, et al., 1974
Krassig, R.; Reinke, D.; Baumgartel, H., Photo-reaktionen kleiner organischer molekule II. Die photoionenspektren der Isomeren propylen-cyclopropan und acetaldehyd-athylenoxyd, Ber. Bunsen-Ges. Phys. Chem., 1974, 78, 425. [all data]

Masclet, Grosjean, et al., 1973
Masclet, P.; Grosjean, D.; Mouvier, G., Alkene ionization potentials. Part I. Quantitative determination of alkyl group structural effects, J. Electron Spectrosc. Relat. Phenom., 1973, 2, 225. [all data]

Katrib and Rabalais, 1973
Katrib, A.; Rabalais, J.W., Electronic interaction between the vinyl group and its substituents, J. Phys. Chem., 1973, 77, 2358. [all data]

Lossing, 1972
Lossing, F.P., Free radicals by mass spectrometry. XLV. Ionization potentials and heats of formation of C3H3, C3H5, and C4H7 radicals and ions, Can. J. Chem., 1972, 50, 3973. [all data]

Frost and Sandhu, 1971
Frost, D.C.; Sandhu, J.S., Ionization potentials of ethylene and some methyl-substituted ethylenes as determined by photoelectron spectroscopy, Indian J. Chem., 1971, 9, 1105. [all data]

Person and Nicole, 1970
Person, J.C.; Nicole, P.P., Isotope effects in the photoionization yields and the absorption cross sections for acetylene, propyne, and propene, J. Chem. Phys., 1970, 53, 1767. [all data]

Dewar and Worley, 1969
Dewar, M.J.S.; Worley, S.D., Photoelectron spectra of molecules. I. Ionization potentials of some organic molecules and their interpretation, J. Chem. Phys., 1969, 50, 654. [all data]

Cermak, 1968
Cermak, V., Penning ionization electron spectroscopy. I. Determination of ionization potentials of polyatomic molecules, Collection Czech. Chem. Commun., 1968, 33, 2739. [all data]

Nicholson, 1965
Nicholson, A.J.C., Photoionization-efficiency curves. II. False and genuine structure, J. Chem. Phys., 1965, 43, 1171. [all data]

Samson, Marmo, et al., 1962
Samson, J.A.R.; Marmo, F.F.; Watanabe, K., Absorption and photoionization coefficients of propylene and butene-1 in the vacuum ultraviolet, J. Chem. Phys., 1962, 36, 783. [all data]

Steiner, Giese, et al., 1961
Steiner, B.; Giese, C.F.; Inghram, M.G., Photoionization of alkanes. Dissociation of excited molecular ions, J. Chem. Phys., 1961, 34, 189. [all data]

Bralsford, Harris, et al., 1960
Bralsford, R.; Harris, P.V.; Price, W.C., The effect of fluorine on the electronic spectra and ionization potentials of molecules, Proc. Roy. Soc. (London), 1960, A258, 459. [all data]

Watanabe, 1957
Watanabe, K., Ionization potentials of some molecules, J. Chem. Phys., 1957, 26, 542. [all data]

Krause, Taylor, et al., 1978
Krause, D.A.; Taylor, J.W.; Fenske, R.F., An analysis of the effects of alkyl substituents on the ionization potentials of n-alkenes, J. Am. Chem. Soc., 1978, 100, 718. [all data]

Kobayashi, 1978
Kobayashi, T., A simple general tendency in photoelectron angular distributions of some monosubstituted benzenes, Phys. Lett., 1978, 69, 105. [all data]

Kimura, Katsumata, et al., 1975
Kimura, K.; Katsumata, S.; Yamazaki, T.; Wakabayashi, H., UV photoelectron spectra and sum rule consideration; out-of-plane orbitals of unsaturated compounds with planar-skeleton structure, J. Electron Spectrosc. Relat. Phenom., 1975, 6, 41. [all data]

White, Carlson, et al., 1974
White, R.M.; Carlson, T.A.; Spears, D.P., Angular distribution of the photoelectron spectra for ethylene, propylene, butene and butadiene, J. Electron Spectrosc. Relat. Phenom., 1974, 3, 59. [all data]

Hentrich, Gunkel, et al., 1974
Hentrich, G.; Gunkel, E.; Klessinger, M., Photoelektronenspektren organischer verbindungen. 4. Photoelektronenspektren ungesattigter carbonylverbindungen, J. Mol. Struct., 1974, 21, 231. [all data]

Weidner and Schweig, 1972
Weidner, U.; Schweig, A., Theory and application of photoelectron spectroscopy. V. The nature of bonding in vinyl- and allylsilanes: the effects of σ-π (hyperconjugation) pπ-dπ conjugation in these compounds, J. Organomet. Chem., 1972, 39, 261. [all data]

Mollere, Bock, et al., 1972
Mollere, P.; Bock, H.; Becker, G.; Fritz, G., Photoelectron spectra and molecular properties. XV. The effects of α- and β-silyl substituents on π-systems, J. Organomet. Chem., 1972, 46, 89. [all data]

Peers and Vigny, 1968
Peers, A.M.; Vigny, P., Reactions molecule-ion dans le propylene, J. Chim. Phys., 1968, 65, 805. [all data]

Haney and Franklin, 1968
Haney, M.A.; Franklin, J.L., Correlation of excess energies of electron-impact dissociations with the translational energies of the products, J.Chem. Phys., 1968, 48, 4093. [all data]

Harrison and Tait, 1962
Harrison, A.G.; Tait, J.M.S., Concurrent ion-molecule reactions leading to the same product ion, Can. J. Chem., 1962, 40, 1986. [all data]

Omura, 1962
Omura, I., Study on unimolecular decomposition of excited olefin ions, Bull. Chem. Soc. Japan, 1962, 35, 1845. [all data]

Omura, 1961
Omura, I., Mass spectra at low ionizing voltage and bond dissociation energies of molecular ions from hydrocarbons, Bull. Chem. Soc. Japan, 1961, 34, 1227. [all data]

Buttrill, Williamson, et al., 1975
Buttrill, S.E., Jr.; Williamson, A.D.; LeBreton, P., Photoionization measurement of the heat of formation of allyl cations, J. Chem. Phys., 1975, 62, 1586. [all data]

Lossing, 1971
Lossing, F.P., Free radicals by mass spectrometry. XLIII. Ionization potentials and ionic heats of formation for vinyl, allyl, and benzyl radicals, Can. J. Chem., 1971, 49, 357. [all data]

Ellison, Davico, et al., 1996
Ellison, G.B.; Davico, G.E.; Bierbaum, V.M.; DePuy, C.H., Thermochemistry of theb Benzyl and Allyl Radicals and Ions, Int. J. Mass Spectrom. Ion Proc., 1996, 156, 1-2, 109-131, https://doi.org/10.1016/S0168-1176(96)04383-2 . [all data]

Wenthold, Polak, et al., 1996
Wenthold, P.G.; Polak, M.L.; Lineberger, W.C., Photoelectron Spectroscopy of the Allyl and 2-Methylallyl Anions, J. Phys. Chem., 1996, 100, 17, 6920, https://doi.org/10.1021/jp953401n . [all data]

Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr., The gas phase acidity scale from methanol to phenol, J. Am. Chem. Soc., 1979, 101, 6047. [all data]

Mackay, Lien, et al., 1978
Mackay, G.I.; Lien, M.H.; Hopkinson, A.C.; Bohme, D.K., Experimental and theoretical studies of proton removal from propene, Can. J. Chem., 1978, 56, 131. [all data]

DePuy, Gronert, et al., 1989
DePuy, C.H.; Gronert, S.; Barlow, S.E.; Bierbaum, V.M.; Damrauer, R., The Gas Phase Acidities of the Alkanes, J. Am. Chem. Soc., 1989, 111, 6, 1968, https://doi.org/10.1021/ja00188a003 . [all data]

Froelicher, Freiser, et al., 1986
Froelicher, S.W.; Freiser, B.S.; Squires, R.R., The C3H5- isomers. Experimental and theoretical studies of the tautomeric propenyl ions and the cyclopropyl anion in the gas phase, J. Am. Chem. Soc., 1986, 108, 2853. [all data]

Schroeder, Hrusak, et al., 1995
Schroeder, D.; Hrusak, J.; Hertwig, R.H.; Koch, W.; Schwerdtfeger, P.; Schwarz, H., Experimental and Theoretical Studies of Gold(I) Complexes Au(L)+ (L=H2O, CO, NH3, C2H4, C3H6, C4H6, C6H6, C6F6), Organometallics, 1995, 14, 1, 312, https://doi.org/10.1021/om00001a045 . [all data]

Li and Stone, 1989
Li, X.; Stone, J.A., Determination of the beta silicon effect from a mass spectrometric study of the association of trimethylsilylium ion with alkenes, J. Am. Chem. Soc., 1989, 111, 15, 5586, https://doi.org/10.1021/ja00197a013 . [all data]

Armentrout and Kickel, 1994
Armentrout, P.B.; Kickel, B.L., Gas Phase Thermochemistry of Transition Metal Ligand Systems: Reassessment of Values and Periodic Trends, in Organometallic Ion Chemistry, B. S. Freiser, ed, 1994. [all data]

Haynes and Armentrout, 1994
Haynes, C.L.; Armentrout, P.B., Thermochemistry and Structures of CoC3H6+: Metallacyclic and Metal-Alkene Isomers, Organomettalics, 1994, 13, 9, 3480, https://doi.org/10.1021/om00021a022 . [all data]

Staley and Beauchamp, 1975
Staley, R.H.; Beauchamp, J.L., Intrinsic Acid - Base Properties of Molecules. Binding Energies of Li+ to pi - and n - Donor Bases, J. Am. Chem. Soc., 1975, 97, 20, 5920, https://doi.org/10.1021/ja00853a050 . [all data]

Dzidic and Kebarle, 1970
Dzidic, I.; Kebarle, P., Hydration of the Alkali Ions in the Gas Phase. Enthalpies and Entropies of Reactions M+(H2O)n-1 + H2O = M+(H2O)n, J. Phys. Chem., 1970, 74, 7, 1466, https://doi.org/10.1021/j100702a013 . [all data]

Chen and Armetrout, 1995
Chen, Y.M.; Armetrout, P.B., Activation of C2H6, C3H8, and c-C3H6 by Gas-Phase Rh+ and the Thermochemistry of Rh-Ligand Complexes, J. Am. Chem. Soc., 1995, 117, 36, 9291, https://doi.org/10.1021/ja00141a022 . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Gas phase ion energetics data, Ion clustering data, References