Propene

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas20.41kJ/molEqkFuruyama, Golden, et al., 1969ALS
Δfgas20.41kJ/molCmLacher, Walden, et al., 1950Heat of hydrobromination; ALS
Quantity Value Units Method Reference Comment
Δcgas-2057.8 ± 1.1kJ/molCmWiberg and Fenoglio, 1968Corresponding Δfgas = 19.8 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcgas-2057.7 ± 0.6kJ/molCmRossini and Knowlton, 1937Reanalyzed by Cox and Pilcher, 1970, Original value = -2057.42 ± 0.62 kJ/mol; Corresponding Δfgas = 19.7 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
34.3550.Thermodynamics Research Center, 1997p=1 bar. Recommended entropies and heat capacities are in good agreement with other statistically calculated values [ Crawford B.L., 1939, Kilpatrick J.E., 1946, Kilpatrick J.E., 1947, Chao J., 1975] as well as with ab initio value of S(298.15 K)=266.82 J/mol*K [ East A.L.L., 1997].; GT
39.07100.
44.34150.
50.24200.
60.47273.15
64.32298.15
64.61300.
80.45400.
95.17500.
108.00600.
119.09700.
128.72800.
137.12900.
144.441000.
150.831100.
156.401200.
161.251300.
165.481400.
169.181500.
176.541750.
181.902000.
185.892250.
188.912500.
191.242750.
193.083000.

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
44.52148.2Bier K., 1974Please also see Kistiakowsky G.B., 1940, Kistiakowsky G.B., 1940, 2, Telfair D., 1942.; GT
45.44157.6
52.22213.1
53.09220.1
53.68223.7
58.45258.0
59.78270.
60.08 ± 0.13272.29
61.45280.
63.43291.1
63.79 ± 0.13298.15
64.73 ± 0.13299.33
64.71300.
67.89320.
67.88 ± 0.14323.15
70.04 ± 0.17333.86
71.03340.
71.78 ± 0.14348.15
74.13360.
74.47 ± 0.15365.15
75.02 ± 0.08367.11
75.79 ± 0.15373.15
79.85 ± 0.16378.15
77.14380.
80.15400.
83.17420.
83.61 ± 0.17423.15
86.09440.
87.44 ± 0.17448.15
89.02460.
91.18 ± 0.18473.15
91.91480.
94.76500.
96.18510.

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
liquid195.7J/mol*KN/AChao, Hall, et al., 1983 

Constant pressure heat capacity of liquid

Cp,liquid (J/mol*K) Temperature (K) Reference Comment
102.298.15Chao, Hall, et al., 1983T = 14 to 340 K.
98.9300.Auerbach, Sage, et al., 1950T = 300 to 344 K. Datum at 80°C is Cp at the bubble point, 0.5615 Btu/lb*R.
92.09230.Powell and Giauque, 1939T = 14 to 225 K.
90.0210.3Huffman, Parks, et al., 1931T = 69 to 210 K. Value is unsmoothed experimental datum.

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
DH - Eugene S. Domalski and Elizabeth D. Hearing
AC - William E. Acree, Jr., James S. Chickos

Quantity Value Units Method Reference Comment
Tboil225.6 ± 0.6KAVGN/AAverage of 9 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus88.0KN/AStreng, 1971Uncertainty assigned by TRC = 0.3 K; TRC
Tfus87.9KN/AHaselden and Snowden, 1962Uncertainty assigned by TRC = 0.4 K; TRC
Tfus88.25KN/AParks and Huffman, 1931Uncertainty assigned by TRC = 1. K; TRC
Tfus87.95KN/ACoffin and Maass, 1927Uncertainty assigned by TRC = 0.6 K; TRC
Quantity Value Units Method Reference Comment
Ttriple87.8 ± 0.8KAVGN/AAverage of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Ptriple9.50barN/AAngus, Armstrong, et al., 1980Uncertainty assigned by TRC = 0.15 bar; TRC
Quantity Value Units Method Reference Comment
Tc365.2 ± 0.8KAVGN/AAverage of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Pc46.0 ± 0.3barN/ATsonopoulos and Ambrose, 1996 
Pc45.79barN/AOhgaki, Umezono, et al., 1990Uncertainty assigned by TRC = 0.15 bar; TRC
Pc46.646barN/AAngus, Armstrong, et al., 1980Uncertainty assigned by TRC = 2.00 bar; TRC
Pc46.21barN/AMarchman, Prengle, et al., 1949Uncertainty assigned by TRC = 0.1519 bar; TRC
Pc45.9468barN/ASeibert and Burrell, 1915Uncertainty assigned by TRC = 0.3333 bar; TRC
Quantity Value Units Method Reference Comment
Vc0.1846l/molN/ATsonopoulos and Ambrose, 1996 
Vc0.192l/molN/AMarchman, Prengle, et al., 1949Uncertainty assigned by TRC = 0.005 l/mol; TRC
Quantity Value Units Method Reference Comment
ρc5.42 ± 0.03mol/lN/ATsonopoulos and Ambrose, 1996 
ρc5.549mol/lN/AOhgaki, Umezono, et al., 1990Uncertainty assigned by TRC = 0.07 mol/l; TRC
ρc5.309mol/lN/AAngus, Armstrong, et al., 1980Uncertainty assigned by TRC = 0.36 mol/l; TRC
Quantity Value Units Method Reference Comment
Δvap16.04kJ/molN/AMajer and Svoboda, 1985 

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
18.42225.5N/AMajer and Svoboda, 1985 
18.418225.35N/APowell and Giauque, 1939DH
18.7312.AStephenson and Malanowski, 1987Based on data from 297. to 363. K.; AC
22.2146.AStephenson and Malanowski, 1987Based on data from 104. to 161. K.; AC
18.7256.AStephenson and Malanowski, 1987Based on data from 228. to 271. K.; AC
18.5285.AStephenson and Malanowski, 1987Based on data from 270. to 327. K.; AC
18.8340.AStephenson and Malanowski, 1987Based on data from 325. to 363. K.; AC
19.2227.AStephenson and Malanowski, 1987Based on data from 161. to 242. K. See also Dykyj, 1970.; AC
18.7360.N/AMichels, Wassenaar, et al., 1953Based on data from 298. to 423. K.; AC
19.6211.N/APowell and Giauque, 1939Based on data from 166. to 226. K.; AC
19.3268.N/AMaass and Wright, 1921Based on data from 236. to 283. K. See also Boublik, Fried, et al., 1984.; AC

Entropy of vaporization

ΔvapS (J/mol*K) Temperature (K) Reference Comment
81.73225.35Powell and Giauque, 1939DH

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
165.81 to 225.983.97488795.819-24.884Powell and Giauque, 1939Coefficents calculated by NIST from author's data.

Enthalpy of fusion

ΔfusH (kJ/mol) Temperature (K) Reference Comment
3.00387.85Chao, Hall, et al., 1983DH
3.00287.85Powell and Giauque, 1939DH
2.93388.2Huffman, Parks, et al., 1931DH
2.9388.2Domalski and Hearing, 1996AC

Entropy of fusion

ΔfusS (J/mol*K) Temperature (K) Reference Comment
34.1887.85Chao, Hall, et al., 1983DH
34.1887.85Powell and Giauque, 1939DH
33.388.2Huffman, Parks, et al., 1931DH

Temperature of phase transition

Ttrs (K) Initial Phase Final Phase Reference Comment
56.0crystalineglassTakeda, Oguni, et al., 1990DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
RCD - Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C3H5- + Hydrogen cation = Propene

By formula: C3H5- + H+ = C3H6

Quantity Value Units Method Reference Comment
Δr1636.4 ± 1.3kJ/molG+TSEllison, Davico, et al., 1996gas phase; calculated dSacid=24.2±1.0 eu; B
Δr1634. ± 4.2kJ/molD-EAWenthold, Polak, et al., 1996gas phase; B
Δr1635. ± 8.8kJ/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Δr1632.8 ± 2.7kJ/molG+TSMackay, Lien, et al., 1978gas phase; B
Quantity Value Units Method Reference Comment
Δr1605.8 ± 0.42kJ/molIMREEllison, Davico, et al., 1996gas phase; calculated dSacid=24.2±1.0 eu; B
Δr1606. ± 4.6kJ/molH-TSWenthold, Polak, et al., 1996gas phase; B
Δr1607. ± 8.4kJ/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Δr1605.0 ± 2.1kJ/molIMREMackay, Lien, et al., 1978gas phase; B

Hydrogen bromide + Propene = Propane, 2-bromo-

By formula: HBr + C3H6 = C3H7Br

Quantity Value Units Method Reference Comment
Δr-85.48kJ/molCmLacher, Kianpour, et al., 1957gas phase; ALS
Δr-83.889kJ/molCmLacher, Lea, et al., 1950gas phase; Heat of hydrobromination at 367°K; ALS
Δr-84.10 ± 0.59kJ/molCmLacher, Walden, et al., 1950gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -84.4 ± 1.0 kJ/mol; Heat of hydrobromination; ALS

Propene + Hydrogen = Propane

By formula: C3H6 + H2 = C3H8

Quantity Value Units Method Reference Comment
Δr-123.4 ± 5.0kJ/molChydKistiakowsky and Nickle, 1951gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -124.9 ± 2.1 kJ/mol; ALS
Δr-125.0 ± 0.42kJ/molChydKistiakowsky, Ruhoff, et al., 1935gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -126.00 ± 0.054 kJ/mol; At 355 °K; ALS

C3H5- + Hydrogen cation = Propene

By formula: C3H5- + H+ = C3H6

Quantity Value Units Method Reference Comment
Δr1698. ± 8.4kJ/molBranDePuy, Gronert, et al., 1989gas phase; B
Δr>1693.5 ± 2.5kJ/molG+TSFroelicher, Freiser, et al., 1986gas phase; B
Quantity Value Units Method Reference Comment
Δr1665. ± 8.8kJ/molH-TSDePuy, Gronert, et al., 1989gas phase; B
Δr>1661.0kJ/molIMRBFroelicher, Freiser, et al., 1986gas phase; B

Hydrogen iodide + 1-Propene, 3-iodo- = Propene + Iodine

By formula: HI + C3H5I = C3H6 + I2

Quantity Value Units Method Reference Comment
Δr-33.3 ± 1.4kJ/molEqkRodgers, Golden, et al., 1966gas phase; ALS
Δr-39.7 ± 4.2kJ/molEqkRodgers, Golden, et al., 1966gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -34.9 ± 0.96 kJ/mol; At 527 K; ALS

Propane, 2-chloro- = Propene + Hydrogen chloride

By formula: C3H7Cl = C3H6 + HCl

Quantity Value Units Method Reference Comment
Δr72.4 ± 0.8kJ/molEqkNoren and Sunner, 1970gas phase; ALS
Δr73.72 ± 0.63kJ/molEqkKabo and Andreevskii, 1963gas phase; At 415.5 K; ALS
Δr73.0 ± 2.1kJ/molEqkHowlett, 1955gas phase; ALS

Cobalt ion (1+) + Propene = (Cobalt ion (1+) • Propene)

By formula: Co+ + C3H6 = (Co+ • C3H6)

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
180. (+7.1,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M
180. (+6.7,-0.) CIDHaynes and Armentrout, 1994gas phase; guided ion beam CID; M

C3H9Si+ + Propene = (C3H9Si+ • Propene)

By formula: C3H9Si+ + C3H6 = (C3H9Si+ • C3H6)

Quantity Value Units Method Reference Comment
Δr128.kJ/molPHPMSLi and Stone, 1989gas phase; condensation; M
Quantity Value Units Method Reference Comment
Δr178.J/mol*KPHPMSLi and Stone, 1989gas phase; condensation; M

Propene + Bromine = Propane, 1,2-dibromo-

By formula: C3H6 + Br2 = C3H6Br2

Quantity Value Units Method Reference Comment
Δr-122.5 ± 0.84kJ/molCmConn, Kistiakowsky, et al., 1938gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -123.1 ± 0.84 kJ/mol; At 355 °K; ALS

C3H5- + Hydrogen cation = Propene

By formula: C3H5- + H+ = C3H6

Quantity Value Units Method Reference Comment
Δr>1693.5 ± 3.8kJ/molG+TSFroelicher, Freiser, et al., 1986gas phase; B
Quantity Value Units Method Reference Comment
Δr>1661.0kJ/molIMRBFroelicher, Freiser, et al., 1986gas phase; B

Lithium ion (1+) + Propene = (Lithium ion (1+) • Propene)

By formula: Li+ + C3H6 = (Li+ • C3H6)

Quantity Value Units Method Reference Comment
Δr96.kJ/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 extrapolated; M

Rh+ + Propene = (Rh+ • Propene)

By formula: Rh+ + C3H6 = (Rh+ • C3H6)

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
118. CIDChen and Armetrout, 1995gas phase; ΔrH>=, guided ion beam CID; M

Iron ion (1+) + Propene = (Iron ion (1+) • Propene)

By formula: Fe+ + C3H6 = (Fe+ • C3H6)

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
145. (+7.1,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(CAS Reg. No. 25012-80-0 • 4294967295Propene) + Propene = CAS Reg. No. 25012-80-0

By formula: (CAS Reg. No. 25012-80-0 • 4294967295C3H6) + C3H6 = CAS Reg. No. 25012-80-0

Quantity Value Units Method Reference Comment
Δr45.2 ± 8.8kJ/molN/ADePuy, Gronert, et al., 1989gas phase; B

(CAS Reg. No. 59513-13-2 • 4294967295Propene) + Propene = CAS Reg. No. 59513-13-2

By formula: (CAS Reg. No. 59513-13-2 • 4294967295C3H6) + C3H6 = CAS Reg. No. 59513-13-2

Quantity Value Units Method Reference Comment
Δr61.1 ± 8.8kJ/molN/ADePuy, Gronert, et al., 1989gas phase; B

Propene + Hydrogen chloride = Propane, 2-chloro-

By formula: C3H6 + HCl = C3H7Cl

Quantity Value Units Method Reference Comment
Δr-73.39kJ/molEqkKabo and Andreevskii, 1963gas phase; At 385°K; ALS

Hydrogen iodide + Propene = Propane, 2-iodo-

By formula: HI + C3H6 = C3H7I

Quantity Value Units Method Reference Comment
Δr-86.27kJ/molEqkFuruyama, Golden, et al., 1969gas phase; ALS

Propene + Sulfuric Acid = isopropyl hydrogen sulphate

By formula: C3H6 + H2O4S = isopropyl hydrogen sulphate

Quantity Value Units Method Reference Comment
Δr-38. ± 0.8kJ/molEqkEntelis, Korovina, et al., 1960liquid phase; ALS

1,2-Diiodopropane = Propene + Iodine

By formula: C3H6I2 = C3H6 + I2

Quantity Value Units Method Reference Comment
Δr47. ± 2.kJ/molEqkBenson and Amano, 1962gas phase; ALS

Propane, 2-bromo- = Hydrogen bromide + Propene

By formula: C3H7Br = HBr + C3H6

Quantity Value Units Method Reference Comment
Δr81. ± 2.kJ/molEqkRozhnov and Andreevskii, 1962gas phase; ALS

Propene + 2-Propanone, 1,1,1,3,3,3-hexafluoro- = 4-Penten-2-ol, 1,1,1-trifluoro-2-(trifluoromethyl)-

By formula: C3H6 + C3F6O = C6H6F6O

Quantity Value Units Method Reference Comment
Δr-78.2 ± 4.2kJ/molEqkMoore, 1971gas phase; ALS

Gold ion (1+) + Propene = (Gold ion (1+) • Propene)

By formula: Au+ + C3H6 = (Au+ • C3H6)

Quantity Value Units Method Reference Comment
Δr>310.kJ/molIMRBSchroeder, Hrusak, et al., 1995RCD

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to C3H6+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)9.73 ± 0.01eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)751.6kJ/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity722.7kJ/molN/AHunter and Lias, 1998HL

Ionization energy determinations

IE (eV) Method Reference Comment
9.73PITraeger, 1984LBLHLM
9.69 ± 0.09EISelim, 1980LLK
9.73 ± 0.02PIWood and Taylor, 1979LLK
9.7 ± 0.1PEBieri, Burger, et al., 1977LLK
9.73 ± 0.01PIKrassig, Reinke, et al., 1974LLK
9.744 ± 0.003PEMasclet, Grosjean, et al., 1973LLK
9.72PEKatrib and Rabalais, 1973LLK
9.72EILossing, 1972LLK
9.74PEFrost and Sandhu, 1971LLK
9.74 ± 0.01PIPerson and Nicole, 1970RDSH
9.69PEDewar and Worley, 1969RDSH
9.76CICermak, 1968RDSH
9.727 ± 0.010PINicholson, 1965RDSH
9.74SSamson, Marmo, et al., 1962RDSH
9.73 ± 0.02PISteiner, Giese, et al., 1961RDSH
9.73PIBralsford, Harris, et al., 1960RDSH
9.73 ± 0.01PIWatanabe, 1957RDSH
9.91 ± 0.01PEKrause, Taylor, et al., 1978Vertical value; LLK
10.2PEKobayashi, 1978Vertical value; LLK
10.03PEKimura, Katsumata, et al., 1975Vertical value; LLK
10.2PEWhite, Carlson, et al., 1974Vertical value; LLK
9.70PEHentrich, Gunkel, et al., 1974Vertical value; LLK
9.9PEWeidner and Schweig, 1972Vertical value; LLK
9.86PEMollere, Bock, et al., 1972Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
C+24.5 ± 0.5?EIPeers and Vigny, 1968RDSH
CH+22.5 ± 0.5?EIPeers and Vigny, 1968RDSH
CH2+17.0 ± 0.5?EIPeers and Vigny, 1968RDSH
CH3+14.9C2H3EIHaney and Franklin, 1968RDSH
CH4+14.7 ± 0.5?EIPeers and Vigny, 1968RDSH
C2+28. ± 1.?EIPeers and Vigny, 1968RDSH
C2H+21. ± 1.?EIPeers and Vigny, 1968RDSH
C2H2+12.92 ± 0.05CH4PIKrassig, Reinke, et al., 1974LLK
C2H2+13.6 ± 0.5CH4EIPeers and Vigny, 1968RDSH
C2H2+14.1CH4EIHaney and Franklin, 1968RDSH
C2H3+13.78 ± 0.03CH3EISelim, 1980LLK
C2H3+13.20 ± 0.04CH3PIKrassig, Reinke, et al., 1974LLK
C2H3+13.7 ± 0.5CH3EIPeers and Vigny, 1968RDSH
C2H4+12.4 ± 0.5?EIPeers and Vigny, 1968RDSH
C2H5+12.6 ± 0.5?EIPeers and Vigny, 1968RDSH
C3+27. ± 1.?EIPeers and Vigny, 1968RDSH
C3H+20.5 ± 0.52H2+HEIPeers and Vigny, 1968RDSH
C3H+20.2 ± 0.52H2+HEIHarrison and Tait, 1962RDSH
C3H2+47. ± 1.?EIPeers and Vigny, 1968RDSH
C3H2+17. ± 1.2H2EIPeers and Vigny, 1968RDSH
C3H3+14.21 ± 0.09H2+HEISelim, 1980LLK
C3H3+13.19 ± 0.05H2+HPIKrassig, Reinke, et al., 1974LLK
C3H3+14.3 ± 0.5H2+HEIPeers and Vigny, 1968RDSH
C3H3+14.21H2+HEIOmura, 1962RDSH
C3H4+11.91 ± 0.03H2PIKrassig, Reinke, et al., 1974LLK
C3H4+12.3 ± 0.5H2EIPeers and Vigny, 1968RDSH
C3H4+12.52H2EIOmura, 1961RDSH
C3H5+11.86HPITraeger, 1984LBLHLM
C3H5+11.90 ± 0.05HEISelim, 1980LLK
C3H5+11.78HPIButtrill, Williamson, et al., 1975LLK
C3H5+11.88 ± 0.03HPIKrassig, Reinke, et al., 1974LLK
C3H5+11.88HEILossing, 1971LLK
C3H22+33.3 ± 0.5?EIPeers and Vigny, 1968RDSH
C3H52+31.1 ± 0.5HEIPeers and Vigny, 1968RDSH
H+20. ± 1.?EIPeers and Vigny, 1968RDSH
H2+16. ± 1.?EIPeers and Vigny, 1968RDSH

De-protonation reactions

C3H5- + Hydrogen cation = Propene

By formula: C3H5- + H+ = C3H6

Quantity Value Units Method Reference Comment
Δr1636.4 ± 1.3kJ/molG+TSEllison, Davico, et al., 1996gas phase; calculated dSacid=24.2±1.0 eu; B
Δr1634. ± 4.2kJ/molD-EAWenthold, Polak, et al., 1996gas phase; B
Δr1635. ± 8.8kJ/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Δr1632.8 ± 2.7kJ/molG+TSMackay, Lien, et al., 1978gas phase; B
Quantity Value Units Method Reference Comment
Δr1605.8 ± 0.42kJ/molIMREEllison, Davico, et al., 1996gas phase; calculated dSacid=24.2±1.0 eu; B
Δr1606. ± 4.6kJ/molH-TSWenthold, Polak, et al., 1996gas phase; B
Δr1607. ± 8.4kJ/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Δr1605.0 ± 2.1kJ/molIMREMackay, Lien, et al., 1978gas phase; B

C3H5- + Hydrogen cation = Propene

By formula: C3H5- + H+ = C3H6

Quantity Value Units Method Reference Comment
Δr1698. ± 8.4kJ/molBranDePuy, Gronert, et al., 1989gas phase; B
Δr>1693.5 ± 2.5kJ/molG+TSFroelicher, Freiser, et al., 1986gas phase; B
Quantity Value Units Method Reference Comment
Δr1665. ± 8.8kJ/molH-TSDePuy, Gronert, et al., 1989gas phase; B
Δr>1661.0kJ/molIMRBFroelicher, Freiser, et al., 1986gas phase; B

C3H5- + Hydrogen cation = Propene

By formula: C3H5- + H+ = C3H6

Quantity Value Units Method Reference Comment
Δr>1693.5 ± 3.8kJ/molG+TSFroelicher, Freiser, et al., 1986gas phase; B
Quantity Value Units Method Reference Comment
Δr>1661.0kJ/molIMRBFroelicher, Freiser, et al., 1986gas phase; B

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compiled by: Coblentz Society, Inc.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
NIST MS number 50

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


Gas Chromatography

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Kovats' RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
PackedPorapack Q100.292.Ji, Majors, et al., 1999 
CapillaryCP Sil 5 CB20.294.Do and Raulin, 199225. m/0.15 mm/2. μm, H2
CapillaryPoraPLOT Q160.300.Do and Raulin, 198910. m/0.32 mm/10. μm, H2
CapillaryOV-120.289.Nijs and Jacobs, 1981He; Column length: 150. m; Column diameter: 0.50 mm
CapillarySqualane50.283.3Schröder, 1980 
PackedSqualane80.287.Chrétien and Dubois, 1977 
CapillarySqualane40.289.Matukuma, 1969N2; Column length: 91.4 m; Column diameter: 0.25 mm
PackedSqualane27.287.Hively and Hinton, 1968He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm
PackedSqualane49.287.Hively and Hinton, 1968He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm
PackedSqualane67.288.Hively and Hinton, 1968He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm
PackedSqualane86.288.Hively and Hinton, 1968He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm
PackedSqualane26.289.Zulaïca and Guiochon, 1966Column length: 10. m

Kovats' RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryPetrocol DH-100283.Haagen-Smit Laboratory, 1997He; Column length: 100. m; Column diameter: 0.2 mm; Program: 5C(10min) => 5C/min => 50C(48min) => 1.5C/min => 195C(91min)
CapillaryDB-1290.Hoekman, 199360. m/0.32 mm/1.0 μm, He; Program: -40 C for 12 min; -40 - 125 C at 3 deg.min; 125-185 C at 6 deg/min; 185 - 220 C at 20 deg/min; hold 220 C for 2 min

Van Den Dool and Kratz RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryChromosorb 101295.Voorhees, Hileman, et al., 197510. K/min; Tstart: 0. C; Tend: 220. C

Van Den Dool and Kratz RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
PackedSE-30294.Peng, Ding, et al., 1988Supelcoport; Chromosorb; Column length: 3.05 m; Program: 40C(5min) => 10C/min => 200C or 250C (60min)

Normal alkane RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryPolydimethyl siloxane: CP-Sil 5 CB286.Bramston-Cook, 201360. m/0.25 mm/1.0 μm, Helium, 45. C @ 1.45 min, 3.6 K/min, 210. C @ 2.72 min
CapillaryPetrocol DH294.Supelco, 2012100. m/0.25 mm/0.50 μm, Helium, 20. C @ 15. min, 15. K/min, 220. C @ 30. min
CapillaryUltra-ALLOY-5295.Tsuge, Ohtan, et al., 201130. m/0.25 mm/0.25 μm, 40. C @ 2. min, 20. K/min, 320. C @ 13. min
CapillaryUltra-ALLOY-5295.Tsuge, Ohtan, et al., 201130. m/0.25 mm/0.25 μm, 40. C @ 2. min, 20. K/min, 320. C @ 13. min
CapillaryUltra-ALLOY-5295.Tsuge, Ohtan, et al., 201130. m/0.25 mm/0.25 μm, 40. C @ 2. min, 20. K/min, 320. C @ 13. min
CapillaryUltra-ALLOY-5295.Tsuge, Ohtan, et al., 201130. m/0.25 mm/0.25 μm, 40. C @ 2. min, 20. K/min, 320. C @ 13. min
CapillaryUltra-ALLOY-5298.Tsuge, Ohtan, et al., 201130. m/0.25 mm/0.25 μm, 40. C @ 2. min, 20. K/min, 320. C @ 13. min
CapillaryOV-101290.Chupalov and Zenkevich, 1996N2, 3. K/min; Column length: 52. m; Column diameter: 0.26 mm; Tstart: 50. C; Tend: 220. C

Normal alkane RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryMethyl Silicone288.Chen and Feng, 2007Program: not specified
CapillaryMethyl Silicone290.Blunden, Aneja, et al., 200560. m/0.32 mm/1.0 μm, Helium; Program: -50 0C (2 min) 8 0C/min -> 200 0C (7.75 min) 25 0C -> 225 0C (8 min)
CapillaryMethyl Silicone290.Zenkevich, 2000Program: not specified
CapillarySPB-1283.Flanagan, Streete, et al., 199760. m/0.53 mm/5. μm, He; Program: 40C(6min) => 5C/min => 80C => 10C/min => 200C
CapillaryPolydimethyl siloxanes290.Zenkevich, Chupalov, et al., 1996Program: not specified
CapillaryPolydimethyl siloxanes290.Zenkevich and Chupalov, 1996Program: not specified
CapillarySPB-1283.Strete, Ruprah, et al., 199260. m/0.53 mm/5.0 μm, Helium; Program: 40 0C (6 min) 5 0C/min -> 80 0C 10 0C/min -> 200 0C
CapillarySPB-1310.Strete, Ruprah, et al., 199260. m/0.53 mm/5.0 μm, Helium; Program: not specified
PackedApieson L280.Kojima, Fujii, et al., 1980Chromosorb W; Column length: 20. m; Program: not specified
PackedSE-30290.Robinson and Odell, 1971N2, Chromosorb W; Column length: 6.1 m; Program: 50C910min) => 20C/min => 90(6min) => 10C/min => 150C(hold)

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Furuyama, Golden, et al., 1969
Furuyama, S.; Golden, D.M.; Benson, S.W., Thermochemistry of the gas phase equilibria i-C3H7I = C3H6 + HI, n-C3H7I = i-C3H7I, and C3H6 + 2HI = C3H8 + I2, J. Chem. Thermodyn., 1969, 1, 363-375. [all data]

Lacher, Walden, et al., 1950
Lacher, J.R.; Walden, C.H.; Lea, K.R.; Park, J.D., Vapor phase heats of hydrobromination of cyclopropane and propylene, J. Am. Chem. Soc., 1950, 72, 331-333. [all data]

Wiberg and Fenoglio, 1968
Wiberg, K.B.; Fenoglio, R.A., Heats of formation of C4H6 hydrocarbons, J. Am. Chem. Soc., 1968, 90, 3395-3397. [all data]

Rossini and Knowlton, 1937
Rossini, F.d.; Knowlton, J.W., Calorimetric determination of the heats of combustion of ethylene and propylene, J. Res. NBS, 1937, 19, 249-262. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Thermodynamics Research Center, 1997
Thermodynamics Research Center, Selected Values of Properties of Chemical Compounds., Thermodynamics Research Center, Texas A&M University, College Station, Texas, 1997. [all data]

Crawford B.L., 1939
Crawford B.L., Jr., The entropy and heat capacity of propylene, J. Am. Chem. Soc., 1939, 61, 2980-2981. [all data]

Kilpatrick J.E., 1946
Kilpatrick J.E., Heat content, free energy function, entropy, and heat capacity of ethylene, propylene, and the four butenes to 1500 K, J. Res. Nat. Bur. Stand, 1946, 37, 163-171. [all data]

Kilpatrick J.E., 1947
Kilpatrick J.E., Normal coordinate analysis of the vibrational frequencies of ethylene, propylene, cis-2-butene, trans-2-butene, and isobutene, J. Res. Nat. Bur. Stand., 1947, 38, 191-209. [all data]

Chao J., 1975
Chao J., Ideal gas thermodynamic properties of ethylene and propylene, J. Phys. Chem. Ref. Data, 1975, 4, 251-261. [all data]

East A.L.L., 1997
East A.L.L., Ab initio statistical thermodynamical models for the computation of third-law entropies, J. Chem. Phys., 1997, 106, 6655-6674. [all data]

Bier K., 1974
Bier K., Thermodynamic properties of propylene from calorimetric measurements, J. Chem. Thermodyn., 1974, 6, 1039-1052. [all data]

Kistiakowsky G.B., 1940
Kistiakowsky G.B., The low temperature gaseous heat capacities of certain C3 hydrocarbons, J. Chem. Phys., 1940, 8, 970-977. [all data]

Kistiakowsky G.B., 1940, 2
Kistiakowsky G.B., Gaseous heat capacities. II, J. Chem. Phys., 1940, 8, 610-618. [all data]

Telfair D., 1942
Telfair D., Supersonic measurement of the heat capacity of propylene, J. Chem. Phys., 1942, 10, 167-171. [all data]

Chao, Hall, et al., 1983
Chao, J.; Hall, K.R.; Yao, J.M., Thermodynamic properties of simple alkenes, Thermochim. Acta, 1983, 64(3), 285-303. [all data]

Auerbach, Sage, et al., 1950
Auerbach, C.E.; Sage, B.H.; Lacey, W.N., Isobaric heat capacities at bubble point, Ind. Eng. Chem., 1950, 42, 110-113. [all data]

Powell and Giauque, 1939
Powell, T.M.; Giauque, W.F., Propylene. The heat capacity, vapor pressure, heats of fusion and vaporization. The third law of thermodynamics and orientation equilibrium in the solid, J. Am. Chem. Soc., 1939, 61, 2366-2370. [all data]

Huffman, Parks, et al., 1931
Huffman, H.M.; Parks, G.S.; Barmore, M., Thermal data on organic compounds. X. Further studies on the heat capacities, entropies and free energies of hydrocarbons, J. Am. Chem. Soc., 1931, 53, 3876-3888. [all data]

Streng, 1971
Streng, A.G., Miscibility and Compatibility of Some Liquid and Solidified Gases at Low Temperature, J. Chem. Eng. Data, 1971, 16, 357. [all data]

Haselden and Snowden, 1962
Haselden, G.G.; Snowden, P., Equilibrium Properties of the Carbon Dioxide+ Propylene and Carbon Dioxide + Cyclopropane Systems at Low Temperatures, Trans. Faraday Soc., 1962, 58, 1515-28. [all data]

Parks and Huffman, 1931
Parks, G.S.; Huffman, H.M., Some fusion and transition data for hydrocarbons, Ind. Eng. Chem., 1931, 23, 1138-9. [all data]

Coffin and Maass, 1927
Coffin, C.C.; Maass, O., The Prepartion and Physical Properties of Isobutylene, Trans. R. Soc. Can., Sect. 3, 1927, 21, 33. [all data]

Angus, Armstrong, et al., 1980
Angus, S.; Armstrong, B.; de Reuck, K.M., International Thermodynamic Tables of the Fluid State - 7 Propylene(Propene), Pergamon, New York, 1980. [all data]

Tsonopoulos and Ambrose, 1996
Tsonopoulos, C.; Ambrose, D., Vapor-Liquid Critical Properties of Elements and Compounds. 6. Unsaturated Aliphatic Hydrocarbons, J. Chem. Eng. Data, 1996, 41, 645-656. [all data]

Ohgaki, Umezono, et al., 1990
Ohgaki, K.; Umezono, S.; Katayama, T., Pressure-density-temperature (p-ρ-T) relations of fluoroform, nitrous oxide, and propene in the critical region, J. Supercrit. Fluids, 1990, 3, 78-84. [all data]

Marchman, Prengle, et al., 1949
Marchman, H.; Prengle, H.W.; Motard, R.L., Compressibility and Critical Constants of Propylene Vapor, Ind. Eng. Chem., 1949, 41, 2658. [all data]

Seibert and Burrell, 1915
Seibert, F.M.; Burrell, G.A., The Critical Constants of Normal Butane, Iso-butane and Propylene and Their Vapor Pressures at Temperatures Bewtween 0 deg.C and 120 deg.C, J. Am. Chem. Soc., 1915, 37, 2683-91. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Dykyj, 1970
Dykyj, J., Petrochemica, 1970, 10, 2, 51. [all data]

Michels, Wassenaar, et al., 1953
Michels, A.; Wassenaar, T.; Louwerse, P.; Lunbeck, R.J.; Wolkers, G.J., Isotherms and thermodynamical functions of propene at temperatures between 25° and 150°c and at densities up to 340 amagat (pressures up to 2800 atm), Physica, 1953, 19, 1-12, 287-297, https://doi.org/10.1016/S0031-8914(53)80030-3 . [all data]

Maass and Wright, 1921
Maass, O.; Wright, C.H., SOME PHYSICAL PROPERTIES OF HYDROCARBONS CONTAINING TWO AND THREE CARBON ATOMS., J. Am. Chem. Soc., 1921, 43, 5, 1098-1111, https://doi.org/10.1021/ja01438a013 . [all data]

Boublik, Fried, et al., 1984
Boublik, T.; Fried, V.; Hala, E., The Vapour Pressures of Pure Substances: Selected Values of the Temperature Dependence of the Vapour Pressures of Some Pure Substances in the Normal and Low Pressure Region, 2nd ed., Elsevier, New York, 1984, 972. [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Takeda, Oguni, et al., 1990
Takeda, K.; Oguni, M.; Suga, H., A DTA apparatus for vapour-deposited samples. Characterisation of some vapour-deposited hydrocarbons, Thermochim. Acta, 1990, 158(1), 195-203. [all data]

Ellison, Davico, et al., 1996
Ellison, G.B.; Davico, G.E.; Bierbaum, V.M.; DePuy, C.H., Thermochemistry of theb Benzyl and Allyl Radicals and Ions, Int. J. Mass Spectrom. Ion Proc., 1996, 156, 1-2, 109-131, https://doi.org/10.1016/S0168-1176(96)04383-2 . [all data]

Wenthold, Polak, et al., 1996
Wenthold, P.G.; Polak, M.L.; Lineberger, W.C., Photoelectron Spectroscopy of the Allyl and 2-Methylallyl Anions, J. Phys. Chem., 1996, 100, 17, 6920, https://doi.org/10.1021/jp953401n . [all data]

Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr., The gas phase acidity scale from methanol to phenol, J. Am. Chem. Soc., 1979, 101, 6047. [all data]

Mackay, Lien, et al., 1978
Mackay, G.I.; Lien, M.H.; Hopkinson, A.C.; Bohme, D.K., Experimental and theoretical studies of proton removal from propene, Can. J. Chem., 1978, 56, 131. [all data]

Lacher, Kianpour, et al., 1957
Lacher, J.R.; Kianpour, A.; Park, J.D., Reaction heats of organic halogen compounds. X. Vapor phase heats of hydrobromination of cyclopropane and propylene, J. Phys. Chem., 1957, 61, 1124-1125. [all data]

Lacher, Lea, et al., 1950
Lacher, J.R.; Lea, K.R.; Walden, C.H.; Olson, G.G.; Park, J.D., Reaction heats of organic fluorine compounds. III. The vapor phase heats of hydrobromination of some simple fluoroolefins, J. Am. Chem. Soc., 1950, 72, 3231-3234. [all data]

Kistiakowsky and Nickle, 1951
Kistiakowsky, G.B.; Nickle, A.G., Ethane-ethylene and propane-propylene equilibria, Faraday Discuss. Chem. Soc., 1951, 10, 175-187. [all data]

Kistiakowsky, Ruhoff, et al., 1935
Kistiakowsky, G.B.; Ruhoff, J.R.; Smith, H.A.; Vaughan, W.E., Heats of organic reactions. II. Hydrogenation of some simpler olefinic hydrocarbons, J. Am. Chem. Soc., 1935, 57, 876-882. [all data]

DePuy, Gronert, et al., 1989
DePuy, C.H.; Gronert, S.; Barlow, S.E.; Bierbaum, V.M.; Damrauer, R., The Gas Phase Acidities of the Alkanes, J. Am. Chem. Soc., 1989, 111, 6, 1968, https://doi.org/10.1021/ja00188a003 . [all data]

Froelicher, Freiser, et al., 1986
Froelicher, S.W.; Freiser, B.S.; Squires, R.R., The C3H5- isomers. Experimental and theoretical studies of the tautomeric propenyl ions and the cyclopropyl anion in the gas phase, J. Am. Chem. Soc., 1986, 108, 2853. [all data]

Rodgers, Golden, et al., 1966
Rodgers, A.S.; Golden, D.M.; Benson, S.W., The thermochemistry of the gas phase equilibrium I2 + C3H6 = C3H5I + HI, J. Am. Chem. Soc., 1966, 88, 3194-3196. [all data]

Noren and Sunner, 1970
Noren, I.; Sunner, S., The enthalpy of formation of 2-chloropropane from equilibrium studies, J. Chem. Thermodyn., 1970, 2, 597-602. [all data]

Kabo and Andreevskii, 1963
Kabo, G.Ya.; Andreevskii, D.N., Equilibrium of 2-chloropropane dehydrochlorination, Neftekhimiya, 1963, 3, 764-770. [all data]

Howlett, 1955
Howlett, K.E., The use of equilibrium constants to calculate thermodynamic quantities. Part II, J. Chem. Soc., 1955, 1784-17. [all data]

Armentrout and Kickel, 1994
Armentrout, P.B.; Kickel, B.L., Gas Phase Thermochemistry of Transition Metal Ligand Systems: Reassessment of Values and Periodic Trends, in Organometallic Ion Chemistry, B. S. Freiser, ed, 1994. [all data]

Haynes and Armentrout, 1994
Haynes, C.L.; Armentrout, P.B., Thermochemistry and Structures of CoC3H6+: Metallacyclic and Metal-Alkene Isomers, Organomettalics, 1994, 13, 9, 3480, https://doi.org/10.1021/om00021a022 . [all data]

Li and Stone, 1989
Li, X.; Stone, J.A., Determination of the beta silicon effect from a mass spectrometric study of the association of trimethylsilylium ion with alkenes, J. Am. Chem. Soc., 1989, 111, 15, 5586, https://doi.org/10.1021/ja00197a013 . [all data]

Conn, Kistiakowsky, et al., 1938
Conn, J.B.; Kistiakowsky, G.B.; Smith, E.A., Heats of organic reactions. VII. Addition of halogens to olefins, J. Am. Chem. Soc., 1938, 60, 2764-2771. [all data]

Staley and Beauchamp, 1975
Staley, R.H.; Beauchamp, J.L., Intrinsic Acid - Base Properties of Molecules. Binding Energies of Li+ to pi - and n - Donor Bases, J. Am. Chem. Soc., 1975, 97, 20, 5920, https://doi.org/10.1021/ja00853a050 . [all data]

Dzidic and Kebarle, 1970
Dzidic, I.; Kebarle, P., Hydration of the Alkali Ions in the Gas Phase. Enthalpies and Entropies of Reactions M+(H2O)n-1 + H2O = M+(H2O)n, J. Phys. Chem., 1970, 74, 7, 1466, https://doi.org/10.1021/j100702a013 . [all data]

Chen and Armetrout, 1995
Chen, Y.M.; Armetrout, P.B., Activation of C2H6, C3H8, and c-C3H6 by Gas-Phase Rh+ and the Thermochemistry of Rh-Ligand Complexes, J. Am. Chem. Soc., 1995, 117, 36, 9291, https://doi.org/10.1021/ja00141a022 . [all data]

Entelis, Korovina, et al., 1960
Entelis, S.G.; Korovina, G.V.; Chirkov, N.M., The thermodynamics of propylene absorption by the H2SO4-H20 system, Dokl. Akad. Nauk SSSR, 1960, 134, 856-859. [all data]

Benson and Amano, 1962
Benson, S.W.; Amano, A., Thermodynamics of iodine addition to ethylene, propylene, and cyclopropane, J. Chem. Phys., 1962, 36, 3464-3471. [all data]

Rozhnov and Andreevskii, 1962
Rozhnov, A.M.; Andreevskii, D.N., Equilibrium in the system propene, hydrogen bromide, bromopropane, Dokl. Akad. Nauk SSSR, 1962, 147, 388-391. [all data]

Moore, 1971
Moore, L.O., Kinetics and thermodynamic data for the hydrogen fluoride addition to vinyl fluoride, Can. J. Chem., 1971, 49, 2471-2475. [all data]

Schroeder, Hrusak, et al., 1995
Schroeder, D.; Hrusak, J.; Hertwig, R.H.; Koch, W.; Schwerdtfeger, P.; Schwarz, H., Experimental and Theoretical Studies of Gold(I) Complexes Au(L)+ (L=H2O, CO, NH3, C2H4, C3H6, C4H6, C6H6, C6F6), Organometallics, 1995, 14, 1, 312, https://doi.org/10.1021/om00001a045 . [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Traeger, 1984
Traeger, J.C., A study of the allyl cation thermochemistry by photoionization mass spectrometry, Int. J. Mass Spectrom. Ion Processes, 1984, 58, 259. [all data]

Selim, 1980
Selim, E.T.M., Ionization dissociation of propylene by electron impact, Indian J. Pure Appl. Phys., 1980, 18, 31. [all data]

Wood and Taylor, 1979
Wood, K.V.; Taylor, J.W., A photoionization mass spectrometric study of autoionization in ethylene and trans-2-butene, Int. J. Mass Spectrom. Ion Phys., 1979, 30, 307. [all data]

Bieri, Burger, et al., 1977
Bieri, G.; Burger, F.; Heilbronner, E.; Maier, J.P., Valence ionization enrgies of hydrocarbons, Helv. Chim. Acta, 1977, 60, 2213. [all data]

Krassig, Reinke, et al., 1974
Krassig, R.; Reinke, D.; Baumgartel, H., Photo-reaktionen kleiner organischer molekule II. Die photoionenspektren der Isomeren propylen-cyclopropan und acetaldehyd-athylenoxyd, Ber. Bunsen-Ges. Phys. Chem., 1974, 78, 425. [all data]

Masclet, Grosjean, et al., 1973
Masclet, P.; Grosjean, D.; Mouvier, G., Alkene ionization potentials. Part I. Quantitative determination of alkyl group structural effects, J. Electron Spectrosc. Relat. Phenom., 1973, 2, 225. [all data]

Katrib and Rabalais, 1973
Katrib, A.; Rabalais, J.W., Electronic interaction between the vinyl group and its substituents, J. Phys. Chem., 1973, 77, 2358. [all data]

Lossing, 1972
Lossing, F.P., Free radicals by mass spectrometry. XLV. Ionization potentials and heats of formation of C3H3, C3H5, and C4H7 radicals and ions, Can. J. Chem., 1972, 50, 3973. [all data]

Frost and Sandhu, 1971
Frost, D.C.; Sandhu, J.S., Ionization potentials of ethylene and some methyl-substituted ethylenes as determined by photoelectron spectroscopy, Indian J. Chem., 1971, 9, 1105. [all data]

Person and Nicole, 1970
Person, J.C.; Nicole, P.P., Isotope effects in the photoionization yields and the absorption cross sections for acetylene, propyne, and propene, J. Chem. Phys., 1970, 53, 1767. [all data]

Dewar and Worley, 1969
Dewar, M.J.S.; Worley, S.D., Photoelectron spectra of molecules. I. Ionization potentials of some organic molecules and their interpretation, J. Chem. Phys., 1969, 50, 654. [all data]

Cermak, 1968
Cermak, V., Penning ionization electron spectroscopy. I. Determination of ionization potentials of polyatomic molecules, Collection Czech. Chem. Commun., 1968, 33, 2739. [all data]

Nicholson, 1965
Nicholson, A.J.C., Photoionization-efficiency curves. II. False and genuine structure, J. Chem. Phys., 1965, 43, 1171. [all data]

Samson, Marmo, et al., 1962
Samson, J.A.R.; Marmo, F.F.; Watanabe, K., Absorption and photoionization coefficients of propylene and butene-1 in the vacuum ultraviolet, J. Chem. Phys., 1962, 36, 783. [all data]

Steiner, Giese, et al., 1961
Steiner, B.; Giese, C.F.; Inghram, M.G., Photoionization of alkanes. Dissociation of excited molecular ions, J. Chem. Phys., 1961, 34, 189. [all data]

Bralsford, Harris, et al., 1960
Bralsford, R.; Harris, P.V.; Price, W.C., The effect of fluorine on the electronic spectra and ionization potentials of molecules, Proc. Roy. Soc. (London), 1960, A258, 459. [all data]

Watanabe, 1957
Watanabe, K., Ionization potentials of some molecules, J. Chem. Phys., 1957, 26, 542. [all data]

Krause, Taylor, et al., 1978
Krause, D.A.; Taylor, J.W.; Fenske, R.F., An analysis of the effects of alkyl substituents on the ionization potentials of n-alkenes, J. Am. Chem. Soc., 1978, 100, 718. [all data]

Kobayashi, 1978
Kobayashi, T., A simple general tendency in photoelectron angular distributions of some monosubstituted benzenes, Phys. Lett., 1978, 69, 105. [all data]

Kimura, Katsumata, et al., 1975
Kimura, K.; Katsumata, S.; Yamazaki, T.; Wakabayashi, H., UV photoelectron spectra and sum rule consideration; out-of-plane orbitals of unsaturated compounds with planar-skeleton structure, J. Electron Spectrosc. Relat. Phenom., 1975, 6, 41. [all data]

White, Carlson, et al., 1974
White, R.M.; Carlson, T.A.; Spears, D.P., Angular distribution of the photoelectron spectra for ethylene, propylene, butene and butadiene, J. Electron Spectrosc. Relat. Phenom., 1974, 3, 59. [all data]

Hentrich, Gunkel, et al., 1974
Hentrich, G.; Gunkel, E.; Klessinger, M., Photoelektronenspektren organischer verbindungen. 4. Photoelektronenspektren ungesattigter carbonylverbindungen, J. Mol. Struct., 1974, 21, 231. [all data]

Weidner and Schweig, 1972
Weidner, U.; Schweig, A., Theory and application of photoelectron spectroscopy. V. The nature of bonding in vinyl- and allylsilanes: the effects of σ-π (hyperconjugation) pπ-dπ conjugation in these compounds, J. Organomet. Chem., 1972, 39, 261. [all data]

Mollere, Bock, et al., 1972
Mollere, P.; Bock, H.; Becker, G.; Fritz, G., Photoelectron spectra and molecular properties. XV. The effects of α- and β-silyl substituents on π-systems, J. Organomet. Chem., 1972, 46, 89. [all data]

Peers and Vigny, 1968
Peers, A.M.; Vigny, P., Reactions molecule-ion dans le propylene, J. Chim. Phys., 1968, 65, 805. [all data]

Haney and Franklin, 1968
Haney, M.A.; Franklin, J.L., Correlation of excess energies of electron-impact dissociations with the translational energies of the products, J.Chem. Phys., 1968, 48, 4093. [all data]

Harrison and Tait, 1962
Harrison, A.G.; Tait, J.M.S., Concurrent ion-molecule reactions leading to the same product ion, Can. J. Chem., 1962, 40, 1986. [all data]

Omura, 1962
Omura, I., Study on unimolecular decomposition of excited olefin ions, Bull. Chem. Soc. Japan, 1962, 35, 1845. [all data]

Omura, 1961
Omura, I., Mass spectra at low ionizing voltage and bond dissociation energies of molecular ions from hydrocarbons, Bull. Chem. Soc. Japan, 1961, 34, 1227. [all data]

Buttrill, Williamson, et al., 1975
Buttrill, S.E., Jr.; Williamson, A.D.; LeBreton, P., Photoionization measurement of the heat of formation of allyl cations, J. Chem. Phys., 1975, 62, 1586. [all data]

Lossing, 1971
Lossing, F.P., Free radicals by mass spectrometry. XLIII. Ionization potentials and ionic heats of formation for vinyl, allyl, and benzyl radicals, Can. J. Chem., 1971, 49, 357. [all data]

Ji, Majors, et al., 1999
Ji, Z.; Majors, R.E.; Guthrie, E.J., Review. Porous layer open-tubular capillary columns: preparations, applications, and future directions, J. Chromatogr. A, 1999, 842, 1-2, 115-142, https://doi.org/10.1016/S0021-9673(99)00126-0 . [all data]

Do and Raulin, 1992
Do, L.; Raulin, F., Gas chromatography of Titan's atmosphere. III. Analysis of low-molecular-weight hydrocarbons and nitriles with a CP-Sil-5 CB WCOT capillary column, J. Chromatogr., 1992, 591, 1-2, 297-301, https://doi.org/10.1016/0021-9673(92)80247-R . [all data]

Do and Raulin, 1989
Do, L.; Raulin, F., Gas chromatography of Titan's atmosphere. I. Analysis of low-molecular-weight hydrocarbons and nitriles with a PoraPLOT Q porous polymer coated open-tubular capillary column, J. Chromatogr., 1989, 481, 45-54, https://doi.org/10.1016/S0021-9673(01)96751-2 . [all data]

Nijs and Jacobs, 1981
Nijs, H.H.; Jacobs, P.A., On-Line Single Run Analysis of Effluents from a Fischer-Tropsch Reactor, J. Chromatogr. Sci., 1981, 19, 1, 40-45, https://doi.org/10.1093/chromsci/19.1.40 . [all data]

Schröder, 1980
Schröder, I.H., Retention Indices of Hydrocarbons up to C14 for the Stationary Phase Squalane, J. Hi. Res. Chromatogr. Chromatogr. Comm., 1980, 3, 1, 38-44, https://doi.org/10.1002/jhrc.1240030115 . [all data]

Chrétien and Dubois, 1977
Chrétien, J.R.; Dubois, J.E., Topological analysis of gas-liquid chromatographic behavior of alkenes, Anal. Chem., 1977, 49, 6, 747-756, https://doi.org/10.1021/ac50014a021 . [all data]

Matukuma, 1969
Matukuma, A., Retention indices of alkanes through C10 and alkenes through C8 and relation between boiling points and retention data, Gas Chromatogr., Int. Symp. Anal. Instrum. Div Instrum Soc. Amer., 1969, 7, 55-75. [all data]

Hively and Hinton, 1968
Hively, R.A.; Hinton, R.E., Variation of the retention index with temperature on squalane substrates, J. Gas Chromatogr., 1968, 6, 4, 203-217, https://doi.org/10.1093/chromsci/6.4.203 . [all data]

Zulaïca and Guiochon, 1966
Zulaïca, J.; Guiochon, G., Analyse des hauts polymères par chromatographie en phase gazeuse de leurs produits de pyrolyse. II. Application à quelques hydrocarbures macromoléculaires purs, Bull. Soc. Chim. Fr., 1966, 4, 1351-1363. [all data]

Haagen-Smit Laboratory, 1997
Haagen-Smit Laboratory, Procedure for the detailed hydrocarbon analysis of gasolines by single column high efficiency (capillary) column gas chromatography, SOP NO. MLD 118, Revision No. 1.1, California Environmental Protection Agency, Air Resources Board, El Monte, California, 1997, 22. [all data]

Hoekman, 1993
Hoekman, S.K., Improved gas chromatography procedure for speciated hydrocarbon measurements of vehicle emissions, J. Chromatogr., 1993, 639, 2, 239-253, https://doi.org/10.1016/0021-9673(93)80260-F . [all data]

Voorhees, Hileman, et al., 1975
Voorhees, K.J.; Hileman, F.D.; Einhorn, I.N., Generation of retention index standards by pyrolysis of hydrocarbons, Anal. Chem., 1975, 47, 14, 2385-2389, https://doi.org/10.1021/ac60364a035 . [all data]

Peng, Ding, et al., 1988
Peng, C.T.; Ding, S.F.; Hua, R.L.; Yang, Z.C., Prediction of Retention Indexes I. Structure-Retention Index Relationship on Apolar Columns, J. Chromatogr., 1988, 436, 137-172, https://doi.org/10.1016/S0021-9673(00)94575-8 . [all data]

Bramston-Cook, 2013
Bramston-Cook, R., Kovats indices for C2-C13 hydrocarbons and selected oxygenated/halocarbons with 100 % dimethylpolysiloxane columns, 2013, retrieved from http://lotusinstruments.com/monographs/List .... [all data]

Supelco, 2012
Supelco, CatalogNo. 24160-U, Petrocol DH Columns. Catalog No. 24160-U, 2012, retrieved from http://www.sigmaaldrich.com/etc/medialib/docs/Supelco/Datasheet/1/w97949.Par.0001.File.tmp/w97949.pdf. [all data]

Tsuge, Ohtan, et al., 2011
Tsuge, S.; Ohtan, H.; Watanabe, C., Pyrolysis - GC/MS Data Book of Synthetic Polymers, Elsevier, 2011, 420. [all data]

Chupalov and Zenkevich, 1996
Chupalov, A.A.; Zenkevich, I.G., Chromatographic Characterization of Structural Transformations of Organic Compounds in Diels-Alder Reaction. Aliphatic Dienes and Dienophyls, Zh. Org. Khim., 1996, 32, 6, 675-684. [all data]

Chen and Feng, 2007
Chen, Y.; Feng, C., QSPR study on gas chromatography retention index of some organic pollutants, Comput. Appl. Chem. (China), 2007, 24, 10, 1404-1408. [all data]

Blunden, Aneja, et al., 2005
Blunden, J.; Aneja, V.P.; Lonneman, W.A., Characterization of non-methane volatile organic compounds at swine facilities in eastern North Carolina, Atm. Environ., 2005, 39, 36, 6707-6718, https://doi.org/10.1016/j.atmosenv.2005.03.053 . [all data]

Zenkevich, 2000
Zenkevich, I.G., Mutual Correlation between Gas Chromatographic Retention Indices of Unsaturated and Saturated Hydrocarbons found by Molecular Dynamics, Z. Anal. Chem., 2000, 55, 10, 1091-1097. [all data]

Flanagan, Streete, et al., 1997
Flanagan, R.J.; Streete, P.J.; Ramsey, J.D., Volatile Substance Abuse, UNODC Technical Series, No 5, United Nations, Office on Drugs and Crime, Vienna International Centre, PO Box 500, A-1400 Vienna, Austria, 1997, 56, retrieved from http://www.odccp.org/pdf/technicalseries1997-01-011.pdf. [all data]

Zenkevich, Chupalov, et al., 1996
Zenkevich, I.G.; Chupalov, A.A.; Herzschuh, R., Correlation of the Increments of Gas Chromatographic Retention Indices with the Differences of Innermolecular Energies of Reagents and Products of Chemical Reactions, Zh. Org. Khim. (Rus.), 1996, 32, 11, 1685-1691. [all data]

Zenkevich and Chupalov, 1996
Zenkevich, I.G.; Chupalov, A.A., New Possibilities of Chromato Mass Pectrometric Identification of Organic Compounds Using Increments of Gas Chromatographic Retention Indices of Molecular Structural Fragments, Zh. Org. Khim. (Rus.), 1996, 32, 5, 656-666. [all data]

Strete, Ruprah, et al., 1992
Strete, P.J.; Ruprah, M.; Ramsey, J.D.; Flanagan, R.J., Detection and identification of volatile substances by headspace capillary gas chromatography to aid the diagnosis of acute poisoning, Analyst, 1992, 117, 7, 1111-1127, https://doi.org/10.1039/an9921701111 . [all data]

Kojima, Fujii, et al., 1980
Kojima, T.; Fujii, T.; Hosaka, Y., Thermal decomposition products of sterepisomeric polypropylenes, Mass Spectrometry, 1980, 28, 4, 335-341. [all data]

Robinson and Odell, 1971
Robinson, P.G.; Odell, A.L., A system of standard retention indices and its uses. The characterisation of stationary phases and the prediction of retention indices, J. Chromatogr., 1971, 57, 1-10, https://doi.org/10.1016/0021-9673(71)80001-8 . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References