Propyl sulfide

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Donald R. Burgess, Jr.

Quantity Value Units Method Reference Comment
Δfgas-29.92kcal/molN/AMcCullough, Finke, et al., 1961Value computed using ΔfHliquid° value of -169.8±0.88 kj/mol from McCullough, Finke, et al., 1961 and ΔvapH° value of 44.6 kj/mol from missing citation.

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-40.59 ± 0.21kcal/molCcrMcCullough, Finke, et al., 1961ALS
Quantity Value Units Method Reference Comment
Δcliquid-1145.86 ± 0.18kcal/molCcrMcCullough, Finke, et al., 1961Reanalyzed by Cox and Pilcher, 1970, Original value = -1145.74 ± 0.18 kcal/mol; ALS
Quantity Value Units Method Reference Comment
liquid80.851cal/mol*KN/AMcCullough, Finke, et al., 1961DH

Constant pressure heat capacity of liquid

Cp,liquid (cal/mol*K) Temperature (K) Reference Comment
56.859300.Tutubalina, Gabdrakhmanov, et al., 1982T = 273 to 373 K. Cp = 221.21 + 3.060x10-2T + 8.343x10-5T2.; DH
53.891298.15McCullough, Finke, et al., 1961T = 11 to 370 K.; DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Tboil415. ± 2.KAVGN/AAverage of 11 values; Individual data points
Quantity Value Units Method Reference Comment
Ttriple170.430KN/AMcCullough, Finke, et al., 1961, 2Uncertainty assigned by TRC = 0.05 K; TRC
Ttriple170.44KN/AMcCullough, Finke, et al., 1961, 2Uncertainty assigned by TRC = 0.03 K; TRC
Quantity Value Units Method Reference Comment
Δvap10.4 ± 0.9kcal/molAVGN/AAverage of 6 values; Individual data points

Enthalpy of vaporization

ΔvapH (kcal/mol) Temperature (K) Method Reference Comment
10.3328.N/ADykyj, Svoboda, et al., 1999Based on data from 313. to 411. K.; AC
9.70368.A,EBStephenson and Malanowski, 1987Based on data from 353. to 427. K. See also White, Barnard--Smith, et al., 1952.; AC
8.75416.N/AMajer and Svoboda, 1985 

Enthalpy of fusion

ΔfusH (kcal/mol) Temperature (K) Reference Comment
2.9020170.44McCullough, Finke, et al., 1961DH
2.899170.4Domalski and Hearing, 1996AC

Entropy of fusion

ΔfusS (cal/mol*K) Temperature (K) Reference Comment
17.03170.44McCullough, Finke, et al., 1961DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Michael M. Meot-Ner (Mautner) and Sharon G. Lias

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C6H14S+ + Propyl sulfide = (C6H14S+ • Propyl sulfide)

By formula: C6H14S+ + C6H14S = (C6H14S+ • C6H14S)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr28.4kcal/molDTJames and Illies, 1996gas phase; ΔrH(0K) = 29.4 kcal/mol
Quantity Value Units Method Reference Comment
Δr40.2cal/mol*KDTJames and Illies, 1996gas phase; ΔrH(0K) = 29.4 kcal/mol

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Ion clustering data, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias

Data compiled as indicated in comments:
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

Quantity Value Units Method Reference Comment
Proton affinity (review)206.7kcal/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity199.5kcal/molN/AHunter and Lias, 1998HL

Ionization energy determinations

IE (eV) Method Reference Comment
8.45 ± 0.05EIKhvostenko and Furlei, 1968RDSH
10.9EIGowenlock, Kay, et al., 1963RDSH
8.30 ± 0.02PIWatanabe, Nakayama, et al., 1962RDSH
8.34PEWagner and Bock, 1974Vertical value; LLK
8.34PEBock, Wagner, et al., 1972Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
CH3S+12.65?EIGowenlock, Kay, et al., 1963RDSH
C2H5S+12.2?EIGowenlock, Kay, et al., 1963RDSH
C3H7+12.0?EIGowenlock, Kay, et al., 1963RDSH
C3H7S+11.55?EIGowenlock, Kay, et al., 1963RDSH
C3H8S+10.4?EIGowenlock, Kay, et al., 1963RDSH
C5H11S+11.55CH3EIGowenlock, Kay, et al., 1963RDSH

Ion clustering data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Michael M. Meot-Ner (Mautner) and Sharon G. Lias

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

C6H14S+ + Propyl sulfide = (C6H14S+ • Propyl sulfide)

By formula: C6H14S+ + C6H14S = (C6H14S+ • C6H14S)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr28.4kcal/molDTJames and Illies, 1996gas phase; ΔrH(0K) = 29.4 kcal/mol
Quantity Value Units Method Reference Comment
Δr40.2cal/mol*KDTJames and Illies, 1996gas phase; ΔrH(0K) = 29.4 kcal/mol

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Coblentz Society, Inc.

Condensed Phase Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

IR spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Notice: Except where noted, spectra from this collection were measured on dispersive instruments, often in carefully selected solvents, and hence may differ in detail from measurements on FTIR instruments or in other chemical environments. More information on the manner in which spectra in this collection were collected can be found here.

Notice: Concentration information is not available for this spectrum and, therefore, molar absorptivity values cannot be derived.

Additional Data

View scan of original (hardcopy) spectrum.

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Owner COBLENTZ SOC.
Collection (C) 2018 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin DOW CHEMICAL COMPANY
Source reference COBLENTZ NO. 05797
Date 1951/12/12
Name(s) dipropyl sulfide
1-(propylsulfanyl)propane
State SOLUTION (10% CCl4 FOR 2-7.6, 10% CS2 FOR 7.5-16 CM-1)
Instrument BAIRD (GRATING)
Instrument parameters NaCl PRISM
Path length 0.021 CM, 0.011 CM
SPECTRAL CONTAMINATION DUE TO CCl4 AROUND 850 AND 1550 CM-1
Resolution 2
Sampling procedure TRANSMISSION
Data processing DIGITIZED BY COBLENTZ SOCIETY (BATCH I) FROM HARD COPY

This IR spectrum is from the Coblentz Society's evaluated infrared reference spectra collection.


References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

McCullough, Finke, et al., 1961
McCullough, J.P.; Finke, H.L.; Hubbard, W.N.; Todd, S.S.; Messerly, J.F.; Douslin, D.R.; Waddington, G., Thermodynamic properties of four linear thiaalkanes, J. Phys. Chem., 1961, 65, 784-791. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Tutubalina, Gabdrakhmanov, et al., 1982
Tutubalina, V.P.; Gabdrakhmanov, F.G.; Konyukhova, T.M., Study of the heat capacity of n-sulfides, 1982, Teplo-Massoobmen Khim. [all data]

McCullough, Finke, et al., 1961, 2
McCullough, J.P.; Finke, H.L.; Hubbard, W.N.; Todd, S.S.; Messerly, J.F.; Douslin, D.R.; Waddington, G., Thermodynamic Properties of Four Linear Thiaalkanes, J. Phys. Chem., 1961, 65, 784-91. [all data]

Dykyj, Svoboda, et al., 1999
Dykyj, J.; Svoboda, J.; Wilhoit, R.C.; Frenkel, M.L.; Hall, K.R., Vapor Pressure of Chemicals: Part A. Vapor Pressure and Antoine Constants for Hydrocarbons and Sulfur, Selenium, Tellurium and Hydrogen Containing Organic Compounds, Springer, Berlin, 1999, 373. [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

White, Barnard--Smith, et al., 1952
White, P.T.; Barnard--Smith, D.G.; Fidler, F.A., Vapor Pressure--Temperature Relationships of Sulfur Compounds Related to Petroleum, Ind. Eng. Chem., 1952, 44, 6, 1430-1438, https://doi.org/10.1021/ie50510a064 . [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

James and Illies, 1996
James, M.A.; Illies, A.J., Studies of two-center three-electron S...S bonds in [n-Pr2S...Sn-Pr2]+ and [i-Pr2S...Si-Pr2]+: Thermochemistry of adduct formation and MS/MS metastable and collision-induced dissociation spectra of the adducts, J. Phys. Chem., 1996, 100, 39, 15794, https://doi.org/10.1021/jp9612487 . [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Khvostenko and Furlei, 1968
Khvostenko, V.I.; Furlei, I.I., Ionisation potentials of sulphides, Zh. Fiz. Khim., 1968, 42, 13, In original 5. [all data]

Gowenlock, Kay, et al., 1963
Gowenlock, B.G.; Kay, J.; Majer, J.R., Electron impact studies of some sulphides and disulphides, J. Chem. Soc. Faraday Trans., 1963, 59, 2463. [all data]

Watanabe, Nakayama, et al., 1962
Watanabe, K.; Nakayama, T.; Mottl, J., Ionization potentials of some molecules, J. Quant. Spectry. Radiative Transfer, 1962, 2, 369. [all data]

Wagner and Bock, 1974
Wagner, G.; Bock, H., Photoelektronenspektren und molekuleigenschaften, XXVI. Die delokalisation von schwefel-elektronenpaaren in alkylsulfiden und -disulfiden, Chem. Ber., 1974, 107, 68. [all data]

Bock, Wagner, et al., 1972
Bock, H.; Wagner, G.; Kroner, J., Photoelektronenspektren und molekuleigenschaften, XIV. Die delokalisation des schwefel-elektronenpaar in CH3S-substituierten aromaten, Chem. Ber., 1972, 105, 3850. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, References