Piperidine

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Reaction thermochemistry data

Go To: Top, Henry's Law data, Gas phase ion energetics data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

Pyridine + 3Hydrogen = Piperidine

By formula: C5H5N + 3H2 = C5H11N

Quantity Value Units Method Reference Comment
Δr-46.31 ± 0.18kcal/molEqkHales and Herington, 1957gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -48.32 ± 0.18 kcal/mol; At 400-550 K
Δr-46.12 ± 0.50kcal/molEqkBurrows and King, 1935liquid phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -45.00 kcal/mol; At 423-443 K

3Hydrogen + Dodecahydro-1H,6H,11H-tripyrido[1,2-a:1',2'-c:1",2"-e][1,3,5]triazine = 3Piperidine

By formula: 3H2 + C15H27N3 = 3C5H11N

Quantity Value Units Method Reference Comment
Δr-30.2 ± 0.5kcal/molChydWiberg, Nakaji, et al., 1993liquid phase; solvent: Acetic acid

Henry's Law data

Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference
220.7900.MN/A

Gas phase ion energetics data

Go To: Top, Reaction thermochemistry data, Henry's Law data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

Quantity Value Units Method Reference Comment
IE (evaluated)8.03 ± 0.11eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)228.0kcal/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity220.kcal/molN/AHunter and Lias, 1998HL

Ionization energy determinations

IE (eV) Method Reference Comment
8.20 ± 0.05PERozeboom and Houk, 1982LBLHLM
8.05 ± 0.05PEPesterev, Gabdrakipov, et al., 1979LLK
7.8PEAue and Bowers, 1979LLK
7.9 ± 0.1PEAue, Webb, et al., 1976LLK
8.7EIKiser and Gallegos, 1962RDSH
9.15CTSCollin, 1960RDSH
8.65 ± 0.10PEGan and Peel, 1979Vertical value; LLK
8.67PEDaamen and Oskam, 1978Vertical value; LLK
8.64 ± 0.05PEMorishima, Yoshikawa, et al., 1975Vertical value; LLK
8.66 ± 0.03PEColonna, Distefano, et al., 1975Vertical value; LLK
8.660PEAue, Webb, et al., 1975Vertical value; LLK
8.64 ± 0.02PEYoshikawa, Hashimoto, et al., 1974Vertical value; LLK

Mass spectrum (electron ionization)

Go To: Top, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin Japan AIST/NIMC Database- Spectrum MS-NW- 539
NIST MS number 228351

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


References

Go To: Top, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Mass spectrum (electron ionization), Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Hales and Herington, 1957
Hales, J.L.; Herington, E.F.G., Equilibrium between pyridine and piperidine, Trans. Faraday Soc., 1957, 53, 616-622. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Burrows and King, 1935
Burrows, G.H.; King, L.A., Jr., The free energy change that accompanies hydrogenation of pyridine to piperidine, J. Am. Chem. Soc., 1935, 57, 1789-1791. [all data]

Wiberg, Nakaji, et al., 1993
Wiberg, K.B.; Nakaji, D.Y.; Morgan, K.M., Heat of hydrogenation of a cis imine. An experimental and theoretical study, J. Am. Chem. Soc., 1993, 115, 3527-3532. [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Rozeboom and Houk, 1982
Rozeboom, M.D.; Houk, K.N., Stereospecific alkyl group effects on amine lone-pair ionization potentials: Photoelectron spectra of alkylpiperidines, J. Am. Chem. Soc., 1982, 104, 1189. [all data]

Pesterev, Gabdrakipov, et al., 1979
Pesterev, V.I.; Gabdrakipov, V.Z.; Artyukhin, V.I.; Agashkin, O.V., The ionisation and excitation of the conformers of piperidine and its alkyl derivatives, Russ. J. Phys. Chem., 1979, 53, 845. [all data]

Aue and Bowers, 1979
Aue, D.H.; Bowers, M.T., Chapter 9. Stabilities of positive ions from equilibrium gas phase basicity measurements in Ions Chemistry,, ed. M.T. Bowers, 1979. [all data]

Aue, Webb, et al., 1976
Aue, D.H.; Webb, H.M.; Bowers, M.T., Quantitative proton affinities, ionization potentials, and hydrogen affinities of alkylamines, J. Am. Chem. Soc., 1976, 98, 311. [all data]

Kiser and Gallegos, 1962
Kiser, R.W.; Gallegos, E.J., A technique for the rapid determination of ionization and appearance potentials, J. Phys. Chem., 1962, 66, 947. [all data]

Collin, 1960
Collin, J.E., Relations between charge-transfer spectra and ionization potentials of some electron-donor organic molecules, Z. Elektrochem., 1960, 64, 936. [all data]

Gan and Peel, 1979
Gan, T.-H.; Peel, J.B., Photoelectron spectroscopic studies of piperidine and its N-halo derivatives, Aust. J. Chem., 1979, 32, 475. [all data]

Daamen and Oskam, 1978
Daamen, H.; Oskam, A., Bonding properties of some monosubstituted chromium and tungsten hexacarbonyls M(CO)5L (L=amine, substituted pyridine, azine), Inorg. Chim. Acta, 1978, 26, 81. [all data]

Morishima, Yoshikawa, et al., 1975
Morishima, I.; Yoshikawa, K.; Hashimoto, M.; Bekki, K., Homoallylic interaction between the nitrogen lone pair and the nonadjacent π bond in cyclic and bicyclic amines. I. Photoelectron spectroscopic study, J. Am. Chem. Soc., 1975, 97, 4283. [all data]

Colonna, Distefano, et al., 1975
Colonna, F.P.; Distefano, G.; Pignataro, S.; Pitacco, G.; Valentin, E., Ionization energies of some amines and enamines and an estimation of their relative basicity in gaseous phase, J. Chem. Soc. Faraday Trans. 2, 1975, 71, 1572. [all data]

Aue, Webb, et al., 1975
Aue, D.H.; Webb, H.M.; Bowers, M.T., Proton affinities, ionization potentials, and hydrogen affinities of nitrogen and oxygen bases. Hybridization effects, J. Am. Chem. Soc., 1975, 97, 4137. [all data]

Yoshikawa, Hashimoto, et al., 1974
Yoshikawa, K.; Hashimoto, M.; Morishima, I., Photoelectron spectroscopic study of cyclic amines. The relation between ionization potentials, basicities, and s character of the nitrogen lone pair electrons, J. Am. Chem. Soc., 1974, 96, 288. [all data]


Notes

Go To: Top, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Mass spectrum (electron ionization), References