Cyclohexane

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Reaction thermochemistry data, Henry's Law data, Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-124.6kJ/molN/ASpitzer and Huffman, 1947Value computed using ΔfHliquid° value of -157.7±1.8 kj/mol from Spitzer and Huffman, 1947 and ΔvapH° value of 33.1 kj/mol from Prosen, Johnson, et al., 1946.; DRB
Δfgas-123.1 ± 0.79kJ/molCcbProsen, Johnson, et al., 1946ALS
Δfgas-123.3kJ/molN/AMoore, Renquist, et al., 1940Value computed using ΔfHliquid° value of -156.4±1.3 kj/mol from Moore, Renquist, et al., 1940 and ΔvapH° value of 33.1 kj/mol from Prosen, Johnson, et al., 1946.; DRB
Quantity Value Units Method Reference Comment
gas298.19J/mol*KN/ABeckett C.W., 1947Close value of S(298.15 K)=298.78(0.75) J/mol*K was obtained by [43ASTSZA] from calorimetric data.; GT

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
34.0750.Dorofeeva O.V., 1986There is an appreciable difference (up to 3.0-4.5 J/mol*K) between selected values of S(T) and Cp(T) and earlier statistically calculated values [ Brickwedde F.G., 1946, Beckett C.W., 1947, Kilpatrick J.E., 1947, Lippincott E.R., 1966] at high temperatures. It is due to using the most reliable molecular constants in [ Dorofeeva O.V., 1986].; GT
42.59100.
54.80150.
69.05200.
95.20273.15
105.3 ± 2.0298.15
106.11300.
148.64400.
188.68500.
223.38600.
252.62700.
277.05800.
297.42900.
314.421000.
328.661100.
340.651200.
350.791300.
359.441400.
366.851500.

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
138.07370.Spitzer R., 1946Please also see Montgomery J.B., 1942.; GT
143.1 ± 1.3384.
146.44390.
153.97410.
161.8 ± 1.7428.
174.5 ± 1.7460.
189.5 ± 2.1495.
196.7 ± 2.1521.
206.3 ± 2.1544.

Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Henry's Law data, Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

Cyclohexene + Hydrogen = Cyclohexane

By formula: C6H10 + H2 = C6H12

Quantity Value Units Method Reference Comment
Δr-118. ± 6.kJ/molAVGN/AAverage of 8 values; Individual data points

NH4+ + Cyclohexane = (NH4+ • Cyclohexane)

By formula: H4N+ + C6H12 = (H4N+ • C6H12)

Quantity Value Units Method Reference Comment
Δr40.kJ/molPHPMSDeakyne and Meot-Ner (Mautner), 1985gas phase; Entropy change calculated or estimated, DG<, ΔrH<; M
Quantity Value Units Method Reference Comment
Δr84.J/mol*KN/ADeakyne and Meot-Ner (Mautner), 1985gas phase; Entropy change calculated or estimated, DG<, ΔrH<; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
12.317.PHPMSDeakyne and Meot-Ner (Mautner), 1985gas phase; Entropy change calculated or estimated, DG<, ΔrH<; M

C6H6+ + Cyclohexane = (C6H6+ • Cyclohexane)

By formula: C6H6+ + C6H12 = (C6H6+ • C6H12)

Quantity Value Units Method Reference Comment
Δr46.9kJ/molPHPMSMeot-Ner (Mautner), Hamlet, et al., 1978gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr110.J/mol*KN/AMeot-Ner (Mautner), Hamlet, et al., 1978gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
13.295.PHPMSMeot-Ner (Mautner), Hamlet, et al., 1978gas phase; Entropy change calculated or estimated; M

C6H11- + Hydrogen cation = Cyclohexane

By formula: C6H11- + H+ = C6H12

Quantity Value Units Method Reference Comment
Δr1750. ± 8.4kJ/molBranPeerboom, Rademaker, et al., 1992gas phase; B
Δr1702.1 ± 3.8kJ/molG+TSBohme, Lee-Ruff, et al., 1972gas phase; B
Quantity Value Units Method Reference Comment
Δr1713. ± 9.2kJ/molH-TSPeerboom, Rademaker, et al., 1992gas phase; B
Δr>1665.2kJ/molIMRBBohme, Lee-Ruff, et al., 1972gas phase; B

2Hydrogen + 1,3-Cyclohexadiene = Cyclohexane

By formula: 2H2 + C6H8 = C6H12

Quantity Value Units Method Reference Comment
Δr-224.4 ± 1.2kJ/molChydTurner, Mallon, et al., 1973liquid phase; solvent: Glacial acetic acid; ALS
Δr-229.6 ± 0.42kJ/molChydKistiakowsky, Ruhoff, et al., 1936gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -231.7 ± 0.4 kJ/mol; At 355 °K; ALS

2Hydrogen + 1,4-Cyclohexadiene = Cyclohexane

By formula: 2H2 + C6H8 = C6H12

Quantity Value Units Method Reference Comment
Δr-233.kJ/molChydRoth, Adamczak, et al., 1991liquid phase; ALS
Δr-225.5 ± 1.4kJ/molChydTurner, Mallon, et al., 1973liquid phase; solvent: Glacial acetic acid; ALS

C3H9Si+ + Cyclohexane = (C3H9Si+ • Cyclohexane)

By formula: C3H9Si+ + C6H12 = (C3H9Si+ • C6H12)

Quantity Value Units Method Reference Comment
Δr159.kJ/molPHPMSLi and Stone, 1989gas phase; condensation; M
Quantity Value Units Method Reference Comment
Δr201.J/mol*KPHPMSLi and Stone, 1989gas phase; condensation; M

3Hydrogen + Benzene = Cyclohexane

By formula: 3H2 + C6H6 = C6H12

Quantity Value Units Method Reference Comment
Δr-205.3 ± 0.63kJ/molChydKistiakowsky, Ruhoff, et al., 1936gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -208.4 ± 0.63 kJ/mol; At 355 °K; ALS

Hydrogen iodide + Cyclohexane, iodo- = Cyclohexane + Iodine

By formula: HI + C6H11I = C6H12 + I2

Quantity Value Units Method Reference Comment
Δr-32.6 ± 8.4kJ/molCmBrennan and Ubbelohde, 1956gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -28. ± 4.2 kJ/mol; ALS

Lithium ion (1+) + Cyclohexane = (Lithium ion (1+) • Cyclohexane)

By formula: Li+ + C6H12 = (Li+ • C6H12)

Quantity Value Units Method Reference Comment
Δr100.kJ/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 extrapolated; M

Cyclopentane, methyl- = Cyclohexane

By formula: C6H12 = C6H12

Quantity Value Units Method Reference Comment
Δr-14.69kJ/molEqkGlasebrook and Lovell, 1939liquid phase; Heat of isomerization; ALS

2Hydrogen + Bicyclo[2.2.0]hex-1(4)-ene = Cyclohexane

By formula: 2H2 + C6H8 = C6H12

Quantity Value Units Method Reference Comment
Δr-426.8 ± 7.9kJ/molChydRoth, Adamczak, et al., 1991liquid phase; ALS

Cyclohexanol = Cyclohexane + Hydrogen

By formula: C6H12O = C6H12 + H2

Quantity Value Units Method Reference Comment
Δr63.4 ± 2.3kJ/molEqkFedoseenko, Yursha, et al., 1983gas phase; At 502 K; ALS

Cyclohexane, chloro- + Hydrogen chloride = Cyclohexane + Chlorine

By formula: C6H11Cl + HCl = C6H12 + Cl2

Quantity Value Units Method Reference Comment
Δr-143.1kJ/molCmKirkbride, 1956liquid phase; ALS

Cyclohexane = Cyclopentane, methyl-

By formula: C6H12 = C6H12

Quantity Value Units Method Reference Comment
Δr18.1 ± 1.2kJ/molEqkKabo and Andreevskii, 1973liquid phase; ALS

Henry's Law data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference Comment
0.0051 QN/A missing citation give several references for the Henry's law constants but don't assign them to specific species.
0.00553200.XN/A 
0.0062710.XN/A 
0.0056 LN/A 
0.0051 VN/A 

Vibrational and/or electronic energy levels

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Takehiko Shimanouchi

Symmetry:   D3d     Symmetry Number σ = 6


 Sym.   No   Approximate   Selected Freq.  Infrared   Raman   Comments 
 Species   type of mode   Value   Rating   Value  Phase  Value  Phase

a1g 1 CH2 a-str 2930  E  ia 2938 VS p liq. FR(2ν3)
a1g 1 CH2 a-str 2930  E  ia 2923 VS p liq. FR(2ν3)
a1g 2 CH2 s-str 2852  C  ia 2852 VS p liq.
a1g 3 CH2 scis 1465  C  ia 1465 M p liq.
a1g 4 CH2 rock 1157  C  ia 1157 S p liq.
a1g 5 CC str 802  C  ia 802 VS p liq.
a1g 6 CCC deform + CC torsion 383  C  ia 383 M p liq.
a1u 7 CH2 twist 1383  C 1383 gas  ia Observed in the crystalline state at about ν90 K
a1u 8 CH2 wag 1157  C 1157 gas  ia Observed in the crystalline state at about ν90 K
a1u 9 CC str + CC torsion 1057  C 1057 gas  ia Observed in the crystalline state at about ν90 K
a2g 10 CH2 wag 1437  C 1437 gas  ia Observed in the crystalline state at about ν90 K
a2g 11 CH2 twist 1090  C 1090 gas  ia Observed in the crystalline state at about ν90 K
a2u 12 CH2 a-str 2915  E 2915 M gas  ia
a2u 13 CH2 s-str 2860  E  ia SF21826)
a2u 14 CH2 scis 1437  C 1437 M gas  ia
a2u 15 CH2 rock 1030  D 1040 M gas  ia FR2332)
a2u 15 CH2 rock 1030  D 1016 M gas  ia FR2332)
a2u 16 CCC deform 523  A 523 W gas  ia
eg 17 CH2 a-str 2930  E  ia SF11225)
eg 18 CH2 s-str 2897  E  ia 2897 M vb
eg 19 CH2 scis 1443  C  ia 1443 S dp
eg 20 CH2 wag 1347  C  ia 1347 S dp
eg 21 CH2 twist 1266  C  ia 1266 VS dp
eg 22 CC str 1027  C  ia 1027 VS dp
eg 23 CH2 rock 785  C 785 gas 785 VW dp liq. Observed in the crystalline state at about ν90 K
eg 24 CCC deform + CC torsion 426  C  ia 426 S dp liq.
eu 25 CH2 a-str 2933  A 2933 VS gas  ia
eu 26 CH2 s-str 2863  A 2863 VS gas  ia
eu 27 CH2 scis 1457  A 1457 VS gas  ia
eu 28 CH2 wag 1355  B 1355 W gas  ia
eu 29 CH2 twist 1261  A 1261 S gas  ia
eu 30 CH2 rock 907  B 907 S gas  ia
eu 31 CC str 863  A 863 S gas  ia
eu 32 CCC deform + CC torsion 248  C 248 VW liq.  ia

Source: Shimanouchi, 1972

Notes

VSVery strong
SStrong
MMedium
WWeak
VWVery weak
iaInactive
vbVery broad
pPolarized
dpDepolarized
FRFermi resonance with an overtone or a combination tone indicated in the parentheses.
SFCalculation shows that the frequency approximately equals that of the vibration indicated in the parentheses.
A0~1 cm-1 uncertainty
B1~3 cm-1 uncertainty
C3~6 cm-1 uncertainty
D6~15 cm-1 uncertainty
E15~30 cm-1 uncertainty

References

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Vibrational and/or electronic energy levels, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Spitzer and Huffman, 1947
Spitzer, R.; Huffman, H.M., The heats of combustion of cyclopentane, cyclohexane, cycloheptane and cyclooctane, J. Am. Chem. Soc., 1947, 69, 211-213. [all data]

Prosen, Johnson, et al., 1946
Prosen, E.J.; Johnson, W.H.; Rossini, F.D., Heats of formation and combustion of the normal alkylcyclopentanes and cyclohexanes and the increment per CH2 group for several homologous series of hydrocarbons, J. Res. NBS, 1946, 37, 51-56. [all data]

Moore, Renquist, et al., 1940
Moore, G.E.; Renquist, M.L.; Parks, G.S., Thermal data on organic compounds. XX. Modern combustion data for two methylnonanes, methyl ethyl ketone, thiophene and six cycloparaffins, J. Am. Chem. Soc., 1940, 62, 1505-1507. [all data]

Beckett C.W., 1947
Beckett C.W., The thermodynamic properties and molecular structure of cyclohexane, methylcyclohexane, ethylcyclohexane, and seven dimethylcyclohexanes, J. Am. Chem. Soc., 1947, 69, 2488-2495. [all data]

Dorofeeva O.V., 1986
Dorofeeva O.V., Thermodynamic properties of twenty-one monocyclic hydrocarbons, J. Phys. Chem. Ref. Data, 1986, 15, 437-464. [all data]

Brickwedde F.G., 1946
Brickwedde F.G., Equilibrium constants of some reactions involved in the production of 1,3-butadiene, J. Res. Nat. Bur. Stand., 1946, 37, 263-279. [all data]

Kilpatrick J.E., 1947
Kilpatrick J.E., Heats, equilibrium constants, and free energies of formation of the alkylcyclopentanes and alkylcyclohexanes, J. Res. Nat. Bur. Stand., 1947, 39, 523-543. [all data]

Lippincott E.R., 1966
Lippincott E.R., Enthalpy, free energy, entropy, and heat capacity of cyclohexane and acetaldehyde, Bull. Soc. Chim. Belges., 1966, 75, 655-667. [all data]

Spitzer R., 1946
Spitzer R., The heat capacity of gaseous cyclopentane, cyclohexane and methylcyclohexane, J. Am. Chem. Soc., 1946, 68, 2537-2538. [all data]

Montgomery J.B., 1942
Montgomery J.B., The heat capacity of organic vapors. IV. Benzene, fluorobenzene, toluene, cyclohexane, methylcyclohexane and cyclohexene, J. Am. Chem. Soc., 1942, 64, 2375-2377. [all data]

Deakyne and Meot-Ner (Mautner), 1985
Deakyne, C.A.; Meot-Ner (Mautner), M., Unconventional Ionic Hydrogen Bonds. 2. NH+ pi. Complexes of Onium Ions with Olefins and Benzene Derivatives, J. Am. Chem. Soc., 1985, 107, 2, 474, https://doi.org/10.1021/ja00288a034 . [all data]

Meot-Ner (Mautner), Hamlet, et al., 1978
Meot-Ner (Mautner), M.; Hamlet, P.; Hunter, E.P.; Field, F.H., Bonding Energies in Association Ions of Aromatic Molecules. Correlations with Ionization Energies, J. Am. Chem. Soc., 1978, 100, 17, 5466, https://doi.org/10.1021/ja00485a034 . [all data]

Peerboom, Rademaker, et al., 1992
Peerboom, R.A.L.; Rademaker, G.J.; Dekoning, L.J.; Nibbering, N.M.M., Stabilization of Cycloalkyl Carbanions in the Gas Phase, Rapid Commun. Mass Spectrom., 1992, 6, 6, 394, https://doi.org/10.1002/rcm.1290060608 . [all data]

Bohme, Lee-Ruff, et al., 1972
Bohme, D.K.; Lee-Ruff, E.; Young, L.B., Acidity order of selected bronsted acids in the gas phase at 300K, J. Am. Chem. Soc., 1972, 94, 5153. [all data]

Turner, Mallon, et al., 1973
Turner, R.B.; Mallon, B.J.; Tichy, M.; Doering, W.v.E.; Roth, W.R.; Schroder, G., Heats of hydrogenation. X. Conjugative interaction in cyclic dienes and trienes, J. Am. Chem. Soc., 1973, 95, 8605-8610. [all data]

Kistiakowsky, Ruhoff, et al., 1936
Kistiakowsky, G.B.; Ruhoff, J.R.; Smith, H.A.; Vaughan, W.E., Heats of organic reactions. IV. Hydrogenation of some dienes and of benzene, J. Am. Chem. Soc., 1936, 58, 146-153. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Roth, Adamczak, et al., 1991
Roth, W.R.; Adamczak, O.; Breuckmann, R.; Lennartz, H.-W.; Boese, R., Die Berechnung von Resonanzenergien; das MM2ERW-Kraftfeld, Chem. Ber., 1991, 124, 2499-2521. [all data]

Li and Stone, 1989
Li, X.; Stone, J.A., Determination of the beta silicon effect from a mass spectrometric study of the association of trimethylsilylium ion with alkenes, J. Am. Chem. Soc., 1989, 111, 15, 5586, https://doi.org/10.1021/ja00197a013 . [all data]

Brennan and Ubbelohde, 1956
Brennan, D.; Ubbelohde, A.R., A thermochemical evaluation of bond strengths in some carbon compounds. Part IV. Bond-strength differences based on the reaction: RI + HI = RH + I2, where R = p-methoxyphenyl and cyclohexyl, J. Chem. Soc., 1956, 3011-3016. [all data]

Staley and Beauchamp, 1975
Staley, R.H.; Beauchamp, J.L., Intrinsic Acid - Base Properties of Molecules. Binding Energies of Li+ to pi - and n - Donor Bases, J. Am. Chem. Soc., 1975, 97, 20, 5920, https://doi.org/10.1021/ja00853a050 . [all data]

Dzidic and Kebarle, 1970
Dzidic, I.; Kebarle, P., Hydration of the Alkali Ions in the Gas Phase. Enthalpies and Entropies of Reactions M+(H2O)n-1 + H2O = M+(H2O)n, J. Phys. Chem., 1970, 74, 7, 1466, https://doi.org/10.1021/j100702a013 . [all data]

Glasebrook and Lovell, 1939
Glasebrook, A.L.; Lovell, W.G., The isomerization of cyclohexane and methylcyclopentane, J. Am. Chem. Soc., 1939, 61, 1717-1720. [all data]

Fedoseenko, Yursha, et al., 1983
Fedoseenko, V.I.; Yursha, I.A.; Kabo, G.Ya., Equilibrium and thermodynamics of cyclohexanol dehydrogenation reactions, Dokl. Akad. Nauk BSSR, 1983, 27, 926-929. [all data]

Kirkbride, 1956
Kirkbride, F.W., The heats of chlorination of some hydrocarbons and their chloro-derivatives, J. Appl. Chem., 1956, 6, 11-21. [all data]

Kabo and Andreevskii, 1973
Kabo, G.Ya.; Andreevskii, D.N., Thermodynamic characteristics of the cyclohexane = methylcyclopentane isomerization, Zh. Fiz. Khim., 1973, 47, 272-273. [all data]

Shimanouchi, 1972
Shimanouchi, T., Tables of Molecular Vibrational Frequencies Consolidated Volume I, National Bureau of Standards, 1972, 1-160. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Vibrational and/or electronic energy levels, References