Cyclohexane
- Formula: C6H12
- Molecular weight: 84.1595
- IUPAC Standard InChIKey: XDTMQSROBMDMFD-UHFFFAOYSA-N
- CAS Registry Number: 110-82-7
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Isotopologues:
- Other names: Benzene, hexahydro-; Hexahydrobenzene; Hexamethylene; Hexanaphthene; Cicloesano; Cykloheksan; Rcra waste number U056; UN 1145; NSC 406835
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Condensed phase thermochemistry data
Go To: Top, Phase change data, Reaction thermochemistry data, Henry's Law data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | -157.7 ± 1.8 | kJ/mol | Ccb | Spitzer and Huffman, 1947 | ALS |
ΔfH°liquid | -156.2 ± 0.79 | kJ/mol | Ccb | Prosen, Johnson, et al., 1946 | ALS |
ΔfH°liquid | -156.4 ± 1.3 | kJ/mol | Ccb | Moore, Renquist, et al., 1940 | Reanalyzed by Cox and Pilcher, 1970, Original value = -157.7 kJ/mol; ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -3930. ± 20. | kJ/mol | AVG | N/A | Average of 7 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
S°liquid | 203.89 | J/mol*K | N/A | Aston, Szasa, et al., 1943 | DH |
S°liquid | 204.35 | J/mol*K | N/A | Ruehrwein and Huffman, 1943 | DH |
S°liquid | 205.9 | J/mol*K | N/A | Parks, Huffman, et al., 1930 | Extrapolation below 90 K, 50.54 J/mol*K.; DH |
Constant pressure heat capacity of liquid
Cp,liquid (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
156.00 | 298.15 | Trejo, Costas, et al., 1991 | DH |
156.90 | 298.15 | Lainez, Rodrigo, et al., 1989 | DH |
143.9 | 326.5 | Voss and Sloan, 1989 | T = 326.5 to 450.0 K. Unsmoothed experimental datum.; DH |
155.96 | 298.15 | Saito and Tanaka, 1988 | DH |
154.32 | 298.15 | Shiohama, Ogawa, et al., 1988 | DH |
155.13 | 293.15 | Kalali, Kohler, et al., 1987 | T = 293.15, 313.15 K.; DH |
157.06 | 298.15 | Jimenez, Romani, et al., 1986 | DH |
155.85 | 298.15 | Ortega, 1986 | DH |
156.5 | 298.15 | Nkinamubanzi, Charlet, et al., 1985 | DH |
155.96 | 298.15 | Tanaka, Nakamichi, et al., 1985 | DH |
154.81 | 293.15 | Siddiqi, Svejda, et al., 1983 | DH |
156.4 | 298.15 | Grolier, Inglese, et al., 1982 | DH |
156.0 | 298.15 | Tanaka, 1982 | T = 293.15, 298.15, 303.15 K. Data at three temperatures.; DH |
156.149 | 298.15 | Fortier, D'Arcy, et al., 1979 | DH |
156.12 | 298.15 | Vesely, Zabransky, et al., 1979 | DH |
156.4 | 298.15 | Wilhelm, Grolier, et al., 1979 | DH |
156.35 | 298.15 | Grolier, Wilhelm, et al., 1978 | DH |
156.7 | 298. | Safir, 1978 | T = 298 to 313 K. Data calculated from equation Cp = 1.7493 + 0.00452 T kJ/kg*K.; DH |
156.12 | 298.15 | Vesely, Svoboda, et al., 1977 | T = 298 to 318 K.; DH |
156.07 | 298.15 | Fortier, Benson, et al., 1976 | DH |
156.070 | 298.15 | Fortier and Benson, 1976 | DH |
156.20 | 298.15 | Jolicoeur, Boileau, et al., 1975 | DH |
154.80 | 293.15 | Wilhelm, Zettler, et al., 1974 | T = 273 to 323 K.; DH |
159.6 | 298.15 | Subrahmanyam and Rajagopal, 1973 | T = 298 to 323 K.; DH |
155.2 | 298.15 | Wilhelm, Schano, et al., 1969 | Temperature 20, 30, and 40°C.; DH |
155.5 | 298. | Recko, 1968 | T = 24 to 40°C, equation only.; DH |
152.93 | 298. | Nikolaev, Rabinovich, et al., 1966 | T = 10 to 50°C.; DH |
155.31 | 298.00 | Moelwyn-Hughes and Thorpe, 1964 | T = 297 to 327 K.; DH |
155.2 | 311. | Swietoslawski and Zielenkiewicz, 1960 | Mean value 20 to 56°C.; DH |
154.2 | 300. | Auerbach, Sage, et al., 1950 | T = 300 to 366 K. Cp given as 0.4378 Btu/lb*R at 80°F.; DH |
155.85 | 295. | Aston, Szasa, et al., 1943 | T = 12 to 293 K.; DH |
156.31 | 298.15 | Ruehrwein and Huffman, 1943 | T = 13 to 302 K.; DH |
100.4 | 304.2 | Phillip, 1939 | DH |
143.9 | 298.9 | Parks, Huffman, et al., 1930 | T = 92 to 299 K. Value is unsmoothed experimental datum.; DH |
176.1 | 298. | Dejardin, 1919 | T = 22 to 50°C.; DH |
Phase change data
Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
BS - Robert L. Brown and Stephen E. Stein
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
DH - Eugene S. Domalski and Elizabeth D. Hearing
CAL - James S. Chickos, William E. Acree, Jr., Joel F. Liebman, Students of Chem 202 (Introduction to the Literature of Chemistry), University of Missouri -- St. Louis
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 353.9 ± 0.2 | K | AVG | N/A | Average of 93 out of 116 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 279.6 ± 0.3 | K | AVG | N/A | Average of 38 out of 47 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Ttriple | 279.7 ± 0.4 | K | AVG | N/A | Average of 8 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 554. ± 1. | K | AVG | N/A | Average of 18 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Pc | 40.7 ± 0.5 | bar | AVG | N/A | Average of 8 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Vc | 0.308 | l/mol | N/A | Daubert, 1996 | |
Vc | 0.309 | l/mol | N/A | Young, 1972 | Uncertainty assigned by TRC = 0.003 l/mol; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ρc | 3.24 ± 0.03 | mol/l | N/A | Daubert, 1996 | |
ρc | 3.26 | mol/l | N/A | Teja and Anselme, 1990 | Uncertainty assigned by TRC = 0.07 mol/l; TRC |
ρc | 3.230 | mol/l | N/A | Simon, 1957 | Uncertainty assigned by TRC = 0.04 mol/l; TRC |
ρc | 3.250 | mol/l | N/A | Young, 1910 | Uncertainty assigned by TRC = 0.02 mol/l; TRC |
ρc | 3.247 | mol/l | N/A | Young and Fortey, 1899 | Uncertainty assigned by TRC = 0.06 mol/l; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 33.1 ± 0.4 | kJ/mol | AVG | N/A | Average of 19 out of 21 values; Individual data points |
Enthalpy of vaporization
ΔvapH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
29.97 | 353.9 | N/A | Majer and Svoboda, 1985 | |
33.334 | 298.15 | N/A | Aston, Szasa, et al., 1943 | P = 13.18 kPa; DH |
33.1 | 315. | EB | Gierycz, Kosowski, et al., 2009 | Based on data from 296. to 353. K.; AC |
32.7 | 315. | N/A | Lubomska, Banas, et al., 2002 | Based on data from 300. to 345. K.; AC |
31.9 | 324. | EB | Diogo, Santos, et al., 1995 | Based on data from 313. to 336. K.; AC |
32.2 | 375. | N/A | Lee and Holder, 1993 | Based on data from 360. to 470. K.; AC |
32.3 | 314. | C | Dong, Lin, et al., 1988 | AC |
31.1 | 332. | C | Dong, Lin, et al., 1988 | AC |
30.3 | 345. | C | Dong, Lin, et al., 1988 | AC |
30.0 | 355. | C | Dong, Lin, et al., 1988 | AC |
30.9 | 368. | A | Stephenson and Malanowski, 1987 | Based on data from 353. to 414. K.; AC |
29.6 | 427. | A | Stephenson and Malanowski, 1987 | Based on data from 412. to 491. K.; AC |
29.6 | 504. | A | Stephenson and Malanowski, 1987 | Based on data from 489. to 553. K.; AC |
32.9 | 308. | A,MM | Stephenson and Malanowski, 1987 | Based on data from 293. to 355. K. See also Willingham, Taylor, et al., 1945.; AC |
32.3 ± 0.1 | 313. | C | Majer, Svoboda, et al., 1979 | AC |
31.2 ± 0.1 | 333. | C | Majer, Svoboda, et al., 1979 | AC |
31.0 ± 0.1 | 338. | C | Majer, Svoboda, et al., 1979 | AC |
30.4 ± 0.1 | 348. | C | Majer, Svoboda, et al., 1979 | AC |
30.1 ± 0.1 | 353. | C | Majer, Svoboda, et al., 1979 | AC |
32.2 ± 0.1 | 313. | C | Svoboda, Veselý, et al., 1973 | AC |
31.9 ± 0.1 | 323. | C | Svoboda, Veselý, et al., 1973 | AC |
31.1 ± 0.1 | 333. | C | Svoboda, Veselý, et al., 1973 | AC |
30.6 ± 0.1 | 343. | C | Svoboda, Veselý, et al., 1973 | AC |
30.1 ± 0.1 | 354. | C | Svoboda, Veselý, et al., 1973 | AC |
32.5 | 318. | N/A | Gaw and Swinton, 1968 | Based on data from 303. to 343. K.; AC |
32.9 | 313. | N/A | Cruickshank and Cutler, 1967 | Based on data from 298. to 348. K.; AC |
32.8 | 331. | N/A | Marinichev and Susarev, 1965 | Based on data from 316. to 354. K.; AC |
31.4 ± 0.1 | 324. | C | McCullough, Person, et al., 1951 | AC |
30.4 ± 0.1 | 346. | C | McCullough, Person, et al., 1951 | AC |
30.1 | 354. | N/A | Spitzer and Pitzer, 1946 | AC |
Enthalpy of vaporization
ΔvapH = A exp(-αTr)
(1 − Tr)β
ΔvapH =
Enthalpy of vaporization (at saturation pressure)
(kJ/mol)
Tr = reduced temperature (T / Tc)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | 292. to 422. |
---|---|
A (kJ/mol) | 43.32 |
α | -0.1437 |
β | 0.4512 |
Tc (K) | 553.4 |
Reference | Majer and Svoboda, 1985 |
Entropy of vaporization
ΔvapS (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
111.80 | 298.15 | Aston, Szasa, et al., 1943 | P; DH |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (bar)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
323. to 523. | 4.13983 | 1316.554 | -35.581 | Kerns, Anthony, et al., 1974 | Coefficents calculated by NIST from author's data. |
303. to 343. | 3.9920 | 1216.93 | -48.621 | Gaw and Swinton, 1968, 2 | Coefficents calculated by NIST from author's data. |
315.70 to 353.90 | 3.17125 | 780.637 | -107.29 | Marinichev and Susarev, 1965, 2 | Coefficents calculated by NIST from author's data. |
293.06 to 354.73 | 3.96988 | 1203.526 | -50.287 | Williamham, Taylor, et al., 1945 |
Enthalpy of sublimation
ΔsubH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
27.6 | 265. | A | Stephenson and Malanowski, 1987 | Based on data from 223. to 280. K.; AC |
46.6 | 186. | B | Bondi, 1963 | AC |
37.2 | 273. | N/A | Jones, 1960 | Based on data from 268. to 278. K.; AC |
37.7 | 248. | A | Stull, 1947 | Based on data from 228. to 268. K.; AC |
36.5 | 274. | A | Rotinjanz and Nagornow, 1934 | Based on data from 269. to 279. K.; AC |
Enthalpy of fusion
ΔfusH (kJ/mol) | Temperature (K) | Reference | Comment |
---|---|---|---|
2.68 | 279.8 | Domalski and Hearing, 1996 | AC |
Entropy of fusion
ΔfusS (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
36.2 | 186.1 | Domalski and Hearing, 1996 | CAL |
9.57 | 279.8 |
Enthalpy of phase transition
ΔHtrs (kJ/mol) | Temperature (K) | Initial Phase | Final Phase | Reference | Comment |
---|---|---|---|---|---|
6.686 | 186.09 | crystaline, II | crystaline, I | Aston, Szasa, et al., 1943 | DH |
2.628 | 279.84 | crystaline, I | liquid | Aston, Szasa, et al., 1943 | DH |
6.7396 | 186.1 | crystaline, II | crystaline, I | Ruehrwein and Huffman, 1943 | DH |
2.6769 | 279.82 | crystaline, I | liquid | Ruehrwein and Huffman, 1943 | DH |
6.820 | 186.4 | crystaline, II | crystaline, I | Ziegler and Andrews, 1942 | DH |
2.728 | 279.4 | crystaline, I | liquid | Ziegler and Andrews, 1942 | DH |
6.234 | 185.9 | crystaline, II | crystaline, I | Parks, Huffman, et al., 1930 | DH |
2.423 | 279.3 | crystaline, I | liquid | Parks, Huffman, et al., 1930 | DH |
Entropy of phase transition
ΔStrs (J/mol*K) | Temperature (K) | Initial Phase | Final Phase | Reference | Comment |
---|---|---|---|---|---|
35.93 | 186.09 | crystaline, II | crystaline, I | Aston, Szasa, et al., 1943 | DH |
9.39 | 279.84 | crystaline, I | liquid | Aston, Szasa, et al., 1943 | DH |
36.21 | 186.1 | crystaline, II | crystaline, I | Ruehrwein and Huffman, 1943 | DH |
9.57 | 279.82 | crystaline, I | liquid | Ruehrwein and Huffman, 1943 | DH |
36.59 | 186.4 | crystaline, II | crystaline, I | Ziegler and Andrews, 1942 | DH |
9.76 | 279.4 | crystaline, I | liquid | Ziegler and Andrews, 1942 | DH |
33.53 | 185.9 | crystaline, II | crystaline, I | Parks, Huffman, et al., 1930 | DH |
8.68 | 279.3 | crystaline, I | liquid | Parks, Huffman, et al., 1930 | DH |
Reaction thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Phase change data, Henry's Law data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
By formula: C6H10 + H2 = C6H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -118. ± 6. | kJ/mol | AVG | N/A | Average of 8 values; Individual data points |
By formula: H4N+ + C6H12 = (H4N+ • C6H12)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 40. | kJ/mol | PHPMS | Deakyne and Meot-Ner (Mautner), 1985 | gas phase; Entropy change calculated or estimated, DG<, ΔrH<; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 84. | J/mol*K | N/A | Deakyne and Meot-Ner (Mautner), 1985 | gas phase; Entropy change calculated or estimated, DG<, ΔrH<; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
12. | 317. | PHPMS | Deakyne and Meot-Ner (Mautner), 1985 | gas phase; Entropy change calculated or estimated, DG<, ΔrH<; M |
By formula: C6H6+ + C6H12 = (C6H6+ • C6H12)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 46.9 | kJ/mol | PHPMS | Meot-Ner (Mautner), Hamlet, et al., 1978 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 110. | J/mol*K | N/A | Meot-Ner (Mautner), Hamlet, et al., 1978 | gas phase; Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
13. | 295. | PHPMS | Meot-Ner (Mautner), Hamlet, et al., 1978 | gas phase; Entropy change calculated or estimated; M |
C6H11- + =
By formula: C6H11- + H+ = C6H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1750. ± 8.4 | kJ/mol | Bran | Peerboom, Rademaker, et al., 1992 | gas phase; B |
ΔrH° | 1702.1 ± 3.8 | kJ/mol | G+TS | Bohme, Lee-Ruff, et al., 1972 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1713. ± 9.2 | kJ/mol | H-TS | Peerboom, Rademaker, et al., 1992 | gas phase; B |
ΔrG° | >1665.2 | kJ/mol | IMRB | Bohme, Lee-Ruff, et al., 1972 | gas phase; B |
By formula: 2H2 + C6H8 = C6H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -224.4 ± 1.2 | kJ/mol | Chyd | Turner, Mallon, et al., 1973 | liquid phase; solvent: Glacial acetic acid; ALS |
ΔrH° | -229.6 ± 0.42 | kJ/mol | Chyd | Kistiakowsky, Ruhoff, et al., 1936 | gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -231.7 ± 0.4 kJ/mol; At 355 °K; ALS |
By formula: 2H2 + C6H8 = C6H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -233. | kJ/mol | Chyd | Roth, Adamczak, et al., 1991 | liquid phase; ALS |
ΔrH° | -225.5 ± 1.4 | kJ/mol | Chyd | Turner, Mallon, et al., 1973 | liquid phase; solvent: Glacial acetic acid; ALS |
By formula: C3H9Si+ + C6H12 = (C3H9Si+ • C6H12)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 159. | kJ/mol | PHPMS | Li and Stone, 1989 | gas phase; condensation; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 201. | J/mol*K | PHPMS | Li and Stone, 1989 | gas phase; condensation; M |
By formula: 3H2 + C6H6 = C6H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -205.3 ± 0.63 | kJ/mol | Chyd | Kistiakowsky, Ruhoff, et al., 1936 | gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -208.4 ± 0.63 kJ/mol; At 355 °K; ALS |
By formula: HI + C6H11I = C6H12 + I2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -32.6 ± 8.4 | kJ/mol | Cm | Brennan and Ubbelohde, 1956 | gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -28. ± 4.2 kJ/mol; ALS |
By formula: Li+ + C6H12 = (Li+ • C6H12)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 100. | kJ/mol | ICR | Staley and Beauchamp, 1975 | gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 extrapolated; M |
By formula: C6H12 = C6H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -14.69 | kJ/mol | Eqk | Glasebrook and Lovell, 1939 | liquid phase; Heat of isomerization; ALS |
By formula: 2H2 + C6H8 = C6H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -426.8 ± 7.9 | kJ/mol | Chyd | Roth, Adamczak, et al., 1991 | liquid phase; ALS |
By formula: C6H12O = C6H12 + H2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 63.4 ± 2.3 | kJ/mol | Eqk | Fedoseenko, Yursha, et al., 1983 | gas phase; At 502 K; ALS |
By formula: C6H11Cl + HCl = C6H12 + Cl2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -143.1 | kJ/mol | Cm | Kirkbride, 1956 | liquid phase; ALS |
By formula: C6H12 = C6H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 18.1 ± 1.2 | kJ/mol | Eqk | Kabo and Andreevskii, 1973 | liquid phase; ALS |
Henry's Law data
Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Rolf Sander
Henry's Law constant (water solution)
kH(T) = k°H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
k°H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)
k°H (mol/(kg*bar)) | d(ln(kH))/d(1/T) (K) | Method | Reference | Comment |
---|---|---|---|---|
0.0051 | Q | N/A | missing citation give several references for the Henry's law constants but don't assign them to specific species. | |
0.0055 | 3200. | X | N/A | |
0.0062 | 710. | X | N/A | |
0.0056 | L | N/A | ||
0.0051 | V | N/A |
References
Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Spitzer and Huffman, 1947
Spitzer, R.; Huffman, H.M.,
The heats of combustion of cyclopentane, cyclohexane, cycloheptane and cyclooctane,
J. Am. Chem. Soc., 1947, 69, 211-213. [all data]
Prosen, Johnson, et al., 1946
Prosen, E.J.; Johnson, W.H.; Rossini, F.D.,
Heats of formation and combustion of the normal alkylcyclopentanes and cyclohexanes and the increment per CH2 group for several homologous series of hydrocarbons,
J. Res. NBS, 1946, 37, 51-56. [all data]
Moore, Renquist, et al., 1940
Moore, G.E.; Renquist, M.L.; Parks, G.S.,
Thermal data on organic compounds. XX. Modern combustion data for two methylnonanes, methyl ethyl ketone, thiophene and six cycloparaffins,
J. Am. Chem. Soc., 1940, 62, 1505-1507. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]
Aston, Szasa, et al., 1943
Aston, J.G.; Szasa, G.J.; Fink, H.L.,
The heat capacity and entropy, heats of transition, fusion and vaporization and the vapor pressures of cyclohexane. The vibrational frequencies of alicyclic ring systems,
J. Am. Chem. Soc., 1943, 65, 1135-1139. [all data]
Ruehrwein and Huffman, 1943
Ruehrwein, R.A.; Huffman, H.M.,
Thermal data. XVII. The heat capacity, entropy and free energy of formation of cyclohexane. A new method of heat transfer in low temperature calorimetry,
J. Am. Chem. Soc., 1943, 65, 1620-1625. [all data]
Parks, Huffman, et al., 1930
Parks, G.S.; Huffman, H.M.; Thomas, S.B.,
Thermal data on organic compounds. VI. The heat capacities, entropies and free energies of some saturated, non-benzenoid hydrocarbons,
J. Am. Chem. Soc., 1930, 52, 1032-1041. [all data]
Trejo, Costas, et al., 1991
Trejo, L.M.; Costas, M.; Patterson, D.,
Excess heat capacity of organic mixtures, Internat. DATA Series,
Selected Data Mixt., 1991, Ser. [all data]
Lainez, Rodrigo, et al., 1989
Lainez, A.; Rodrigo, M.M.; Wilhelm, E.; Grolier, J.-P.E.,
Excess volumes and excess heaat capacitiies of some mixtures with trans,trans,cis-1,5,9-cyclododecatriene at 298.15K,
J. Chem. Eng. Data, 1989, 34, 332-335. [all data]
Voss and Sloan, 1989
Voss, S.F.; Sloan, E.D.,
Thermal conductivity and heat capacity of synthetic fuel components,
Int. J. Thermophys., 1989, 10(5), 1029-1040. [all data]
Saito and Tanaka, 1988
Saito, A.; Tanaka, R.,
Excess volumes and heat capacities of binary mixtures formed from cyclohexane, hexane and heptane at 298.15 K,
J. Chem. Thermodynam., 1988, 20, 859-865. [all data]
Shiohama, Ogawa, et al., 1988
Shiohama, Y.; Ogawa, H.; Murakami, S.; Fujihara, I.,
Excess thermodynamic properties of (cis-decalin or trans-decalin + cyclohexane or methylcyclohexane or cyclooctane) at 298.15 K,
J. Chem. Thermodynam., 1988, 20, 1307-1314. [all data]
Kalali, Kohler, et al., 1987
Kalali, H.; Kohler, F.; Svejda, P.,
Excess properties of the mixture bis(2-dichlorethyl)ether (chlorex) + 2,2,4-trimethylpentane (isooctane),
Monatsh. Chem., 1987, 118, 1-18. [all data]
Jimenez, Romani, et al., 1986
Jimenez, E.; Romani, L.; Paz Andrade, M.I.; Roux-Desgranges, G.; Grolier, J.-P.E.,
Molar excess heat capacities and volumes for mixtures of alkanoates with cyclohexane at 25°C,
J. Solution Chem., 1986, 15(11), 879-890. [all data]
Ortega, 1986
Ortega, J.,
Excess molar heat capacities of the binary mixtures of cyclohexane with isomers of hexanol at 298.15 K,
Rev. Latinoam. Ing. Quim. Quim. Apl., 1986, 16, 307-315. [all data]
Nkinamubanzi, Charlet, et al., 1985
Nkinamubanzi, P.; Charlet, G.; Delmas, G.,
Excess enthalpies, excess heat capacities and excess volumes of tetraalkoxysilanes with cyclohexane and carbon tetrachloride,
Fluid Phase Equilibria, 1985, 20, 57-73. [all data]
Tanaka, Nakamichi, et al., 1985
Tanaka, R.; Nakamichi, T.; Murakami, S.,
Molar excess heat capacities and volumes for mixtures of benzomitrile with cyclohexane between 10 and 45°C,
J. Solution Chem., 1985, 14(11), 795-803. [all data]
Siddiqi, Svejda, et al., 1983
Siddiqi, M.A.; Svejda, P.; Kohler, F.,
A generalized van der Waals equation of state II. Excess heat capacities of mixtures containing cycloalkanes (C5,C6), methylcycloalkanes (C5,C6) and n-decane,
Ber. Bunsenges. Phys. Chem., 1983, 87, 1176-1181. [all data]
Grolier, Inglese, et al., 1982
Grolier, J.-P.E.; Inglese, A.; Wilhelm, E.,
Excess volumes and excess heat capacities of tetrachloroethene + cyclohexane, + methylcyclohexane, + benzene, and + toluene at 298.15 K,
J. Chem. Thermodynam., 1982, 14, 523-529. [all data]
Tanaka, 1982
Tanaka, R.,
Determination of excess heat capacities of (benzene + tetrachloromethane and + cyclohexane) between 293.15 and 303.15 K by use of a Picker flow calorimeter,
J. Chem. Thermodynam., 1982, 14, 259-268. [all data]
Fortier, D'Arcy, et al., 1979
Fortier, J.-L.; D'Arcy, P.J.; Benson, G.C.,
Heat capacities of binary cycloalkane mixtures at 298.15 K,
Thermochim. Acta, 1979, 28, 37-43. [all data]
Vesely, Zabransky, et al., 1979
Vesely, F.; Zabransky, M.; Svoboda, V.; Pick, J.,
The use of mixing calorimeter for measuring heat capacities of liquids,
Coll. Czech. Chem. Commun., 1979, 44, 3529-3532. [all data]
Wilhelm, Grolier, et al., 1979
Wilhelm, E.; Grolier, G.-P.E.; Karbalai Ghassemi, M.H.,
Molar heat capacity of binary liquid mixtures: 1,2-dichloroethane + cyclohexane and 1,2-dichloroethane + methylcyclohexane,
Thermochim. Acta, 1979, 28, 59-69. [all data]
Grolier, Wilhelm, et al., 1978
Grolier, J.-P.E.; Wilhelm, E.; Hamedi, M.H.,
Molar heat capacities and isothermal compressibility of binary liquid mixtures: carbon tetrachloride + benzene, carbon tetrachloride + cyclohexane and benzene + cyclohexane,
Ber. Bunsenges. Phys. Chem., 1978, 82, 1282-1290. [all data]
Safir, 1978
Safir, L.I.,
Experimental determination of the isobaric heat capacity of cyclohexane at atmospheric pressure,
Izv. Vyssh. Uchebn. Zaved. Neft. Gaz 21, 1978, (12), 81-82. [all data]
Vesely, Svoboda, et al., 1977
Vesely, F.; Svoboda, V.; Pick, J.,
Heat capacities of some organic liquids determined with the mixing calorimeter,
1st Czech. Conf. Calorimetry (Lect. Short Commun.), 1977, C9-1-C9-4. [all data]
Fortier, Benson, et al., 1976
Fortier, J.-L.; Benson, G.C.; Picker, P.,
Heat capacities of some organic liquids determined with the Picker flow calorimeter,
J. Chem. Thermodynam., 1976, 8, 289-299. [all data]
Fortier and Benson, 1976
Fortier, J.-L.; Benson, G.C.,
Excess heat capacities of binary liquid mixtures determined with a Picker flow calorimeter,
J. Chem. Thermodynam., 1976, 8, 411-423. [all data]
Jolicoeur, Boileau, et al., 1975
Jolicoeur, C.; Boileau, J.; Bazinet, S.; Picker, P.,
Thermodynamic properties of aqueous organic solutes in relation to their structure. Part II. Apparent molal volumes and heat capacities of c-alkylamine hydrobromides in water,
Can. J. Chem., 1975, 53, 716-722. [all data]
Wilhelm, Zettler, et al., 1974
Wilhelm, E.; Zettler, M.; Sackmann, H.,
Molar heat capacities for the binary systems cyclohexane, carbon tetrachloride,
silicon tetrachloride and tin tetrachloride Ber. Bunsenges. Phys. Chem., 1974, 78, 795-804. [all data]
Subrahmanyam and Rajagopal, 1973
Subrahmanyam, S.V.; Rajagopal, E.,
Excess thermodynamic functions of the systems isooctane + carbon tetrachloride and isooctane + cyclohexane,
Z. Phys. Chem. [NF], 1973, 85, 256-268. [all data]
Wilhelm, Schano, et al., 1969
Wilhelm, E.; Schano, R.; Becker, G.; Findenegg, G.H.; Kohler, F.,
Molar heat capacity at constant volume. Binary mixtures of 1,2-dichloroethane and 1,2-dibromoethane with cyclohexane,
Trans. Faraday Soc., 1969, 65, 1443-1455. [all data]
Recko, 1968
Recko, W.M.,
Excess heat capacity of the binary systems formed by n-propyl alcohol with benzene, mesitylene and cyclohexane,
Bull. Acad. Pol. Sci. Ser. Sci. Chim., 1968, 16, 549-552. [all data]
Nikolaev, Rabinovich, et al., 1966
Nikolaev, P.N.; Rabinovich, I.B.; Gal'perin, V.A.; Tsvetkov, V.G.,
Isotopic effect on the specific heat and compressibility of deuterocyclohexane,
Zhur. Fiz. Khim., 1966, 40, 1091-1097. [all data]
Moelwyn-Hughes and Thorpe, 1964
Moelwyn-Hughes, E.A.; Thorpe, P.L.,
The physical and thermodynamic properties of some associated solutions. II. Heat capacities and compressibilities,
Proc. Roy. Soc. (London), 1964, 278A, 574-587. [all data]
Swietoslawski and Zielenkiewicz, 1960
Swietoslawski, W.; Zielenkiewicz, A.,
Mean specific heat in homologous series of binary and ternary positive azeotropes,
Bull. Acad. Pol. Sci. Ser. Sci. Chim., 1960, 8, 651-653. [all data]
Auerbach, Sage, et al., 1950
Auerbach, C.E.; Sage, B.H.; Lacey, W.N.,
Isobaric heat capacities at bubble point,
Ind. Eng. Chem., 1950, 42, 110-113. [all data]
Phillip, 1939
Phillip, N.M.,
Adiabatic and isothermal compressibilities of liquids,
Proc. Indian Acad. Sci., 1939, A9, 109-120. [all data]
Dejardin, 1919
Dejardin, G.,
Pressions maxima des vapeurs du benzene et du cyclohexane aux temperatures moyennes et calcul de leurs chaleurs specifiques principales,
Ann. phys. [9], 1919, 11, 253-291. [all data]
Daubert, 1996
Daubert, T.E.,
Vapor-Liquid Critical Properties of Elements and Compounds. 5. Branched Alkanes and Cycloalkanes,
J. Chem. Eng. Data, 1996, 41, 365-372. [all data]
Young, 1972
Young, C.L.,
Gas-liquid critical properties of the cycloalkanes and their mixtures,
Aust. J. Chem., 1972, 25, 1625-30. [all data]
Teja and Anselme, 1990
Teja, A.S.; Anselme, M.J.,
The critical properties of thermally stable and unstable fluids. II. 1986 results,
AIChE Symp. Ser., 1990, 86, 279, 122-7. [all data]
Simon, 1957
Simon, M.,
Methods and Apparatus Used at the Bureau of Physicochemical Standards XV. Critical Constants and Straight-Line Diameters of Ten Hydrocarbons,
Bull. Soc. Chim. Belg., 1957, 66, 375-81. [all data]
Young, 1910
Young, S.,
The Internal Heat of Vaporization constants of thirty pure substances,
Sci. Proc. R. Dublin Soc., 1910, 12, 374. [all data]
Young and Fortey, 1899
Young, S.; Fortey, E.C.,
The Vapour Pressures, Specific Volumes and Critical Constants of Hexamethylene.,
J. Chem. Soc., Trans., 1899, 75, 873. [all data]
Majer and Svoboda, 1985
Majer, V.; Svoboda, V.,
Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]
Gierycz, Kosowski, et al., 2009
Gierycz, Pawel; Kosowski, Andrzej; Swietlik, Ryszard,
Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols,
J. Chem. Eng. Data, 2009, 54, 11, 2996-3001, https://doi.org/10.1021/je900050z
. [all data]
Lubomska, Banas, et al., 2002
Lubomska, Monika; Banas, Agnieszka; Malanowski, Stanislaw K.,
Vapor-Liquid Equilibrium in Binary Systems Formed by Allyl Alcohol with Benzene and with Cyclohexane,
J. Chem. Eng. Data, 2002, 47, 6, 1466-1471, https://doi.org/10.1021/je025540l
. [all data]
Diogo, Santos, et al., 1995
Diogo, Hermínio P.; Santos, Rui C.; Nunes, Paulo M.; Minas da Piedade, Manuel E.,
Ebulliometric apparatus for the measurement of enthalpies of vaporization,
Thermochimica Acta, 1995, 249, 113-120, https://doi.org/10.1016/0040-6031(95)90678-9
. [all data]
Lee and Holder, 1993
Lee, Chang Ha; Holder, Gerald D.,
Vapor-liquid equilibria in the systems toluene/naphthalene and cyclohexane/naphthalene,
J. Chem. Eng. Data, 1993, 38, 2, 320-323, https://doi.org/10.1021/je00010a034
. [all data]
Dong, Lin, et al., 1988
Dong, Jin-Quan; Lin, Rui-Sen; Yen, Wen-Hsing,
Heats of vaporization and gaseous molar heat capacities of ethanol and the binary mixture of ethanol and benzene,
Can. J. Chem., 1988, 66, 4, 783-790, https://doi.org/10.1139/v88-136
. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Willingham, Taylor, et al., 1945
Willingham, C.B.; Taylor, W.J.; Pignocco, J.M.; Rossini, F.D.,
Vapor pressures and boiling points of some paraffin, alkylcyclopentane, alkylcyclohexane, and alkylbenzene hydrocarbons,
J. RES. NATL. BUR. STAN., 1945, 35, 3, 219-17, https://doi.org/10.6028/jres.035.009
. [all data]
Majer, Svoboda, et al., 1979
Majer, Vladimír; Svoboda, Václav; Hála, Slavoj; Pick, Jirí,
Temperature dependence of heats of vaporization of saturated hydrocarbons C5-C8; Experimental data and an estimation method,
Collect. Czech. Chem. Commun., 1979, 44, 3, 637-651, https://doi.org/10.1135/cccc19790637
. [all data]
Svoboda, Veselý, et al., 1973
Svoboda, V.; Veselý, F.; Holub, R.; Pick, J.,
Enthalpy data of liquids. II. The dependence of heats of vaporization of methanol, propanol, butanol, cyclohexane, cyclohexene, and benzene on temperature,
Collect. Czech. Chem. Commun., 1973, 38, 12, 3539-3543, https://doi.org/10.1135/cccc19733539
. [all data]
Gaw and Swinton, 1968
Gaw, W.J.; Swinton, F.L.,
Thermodynamic properties of binary systems containing hexafluorobenzene. Part 3.?Excess Gibbs free energy of the system hexafluorobenzene + cyclohexane,
Trans. Faraday Soc., 1968, 64, 637, https://doi.org/10.1039/tf9686400637
. [all data]
Cruickshank and Cutler, 1967
Cruickshank, Austin J.B.; Cutler, A.J.B.,
Vapor pressure of cyclohexane, 25 to 75.degree.,
J. Chem. Eng. Data, 1967, 12, 3, 326-329, https://doi.org/10.1021/je60034a010
. [all data]
Marinichev and Susarev, 1965
Marinichev, A.N.; Susarev, M.P.,
Zh. Prikl. Khim. (S.-Peterburg), 1965, 38, 378. [all data]
McCullough, Person, et al., 1951
McCullough, J.P.; Person, W.B.; Spitzer, Ralph,
The Heats of Vaporization and Vapor Heat Capacities of Some Dimethylcyclohexanes 1,
J. Am. Chem. Soc., 1951, 73, 9, 4069-4071, https://doi.org/10.1021/ja01153a003
. [all data]
Spitzer and Pitzer, 1946
Spitzer, Ralph; Pitzer, Kenneth S.,
The Heat Capacity of Gaseous Cyclopentane, Cyclohexane and Methylcyclohexane,
J. Am. Chem. Soc., 1946, 68, 12, 2537-2538, https://doi.org/10.1021/ja01216a032
. [all data]
Kerns, Anthony, et al., 1974
Kerns, W.J.; Anthony, R.G.; Eubank, P.T.,
Volumetric Properties of Cyclohexane Vapor,
AIChE Symp. Ser., 1974, 70, 140, 14-21. [all data]
Gaw and Swinton, 1968, 2
Gaw, W.J.; Swinton, F.L.,
Thermodynamic Properties of Binary Systems Containing Hexafluorobenzene. Part 3. Excess Gibbs Free Energy of the System Hexafluorobenzene + Cyclohexane,
Trans. Faraday Soc., 1968, 64, 637-647, https://doi.org/10.1039/tf9686400637
. [all data]
Marinichev and Susarev, 1965, 2
Marinichev, A.N.; Susarev, M.P.,
Study of a Liquid-Vapor Equilibrium in the Systems of Acetone/Methanol and Acetone/Cyclohexane at Temperatures 35, 45, 55 ºC and Pressure 760 Torr,
Zh. Prikl. Khim. (Moscow), 1965, 38, 378-383. [all data]
Williamham, Taylor, et al., 1945
Williamham, C.B.; Taylor, W.J.; Pignocco, J.M.; Rossini, F.D.,
Vapor Pressures and Boiling Points of Some Paraffin, Alkylcyclopentane, Alkylcyclohexane, and Alkylbenzene Hydrocarbons,
J. Res. Natl. Bur. Stand. (U.S.), 1945, 35, 3, 219-244, https://doi.org/10.6028/jres.035.009
. [all data]
Bondi, 1963
Bondi, A.,
Heat of Siblimation of Molecular Crystals: A Catalog of Molecular Structure Increments.,
J. Chem. Eng. Data, 1963, 8, 3, 371-381, https://doi.org/10.1021/je60018a027
. [all data]
Jones, 1960
Jones, A.H.,
Sublimation Pressure Data for Organic Compounds.,
J. Chem. Eng. Data, 1960, 5, 2, 196-200, https://doi.org/10.1021/je60006a019
. [all data]
Stull, 1947
Stull, Daniel R.,
Vapor Pressure of Pure Substances. Organic and Inorganic Compounds,
Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022
. [all data]
Rotinjanz and Nagornow, 1934
Rotinjanz, L.; Nagornow, N.,
Z. Phys. Chem. Abt. A, 1934, 169, 20. [all data]
Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D.,
Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III,
J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985
. [all data]
Ziegler and Andrews, 1942
Ziegler, W.T.; Andrews, D.H.,
The heat capacity of benzene-d6,
J. Am. Chem. Soc., 1942, 64, 2482-2485. [all data]
Deakyne and Meot-Ner (Mautner), 1985
Deakyne, C.A.; Meot-Ner (Mautner), M.,
Unconventional Ionic Hydrogen Bonds. 2. NH+ pi. Complexes of Onium Ions with Olefins and Benzene Derivatives,
J. Am. Chem. Soc., 1985, 107, 2, 474, https://doi.org/10.1021/ja00288a034
. [all data]
Meot-Ner (Mautner), Hamlet, et al., 1978
Meot-Ner (Mautner), M.; Hamlet, P.; Hunter, E.P.; Field, F.H.,
Bonding Energies in Association Ions of Aromatic Molecules. Correlations with Ionization Energies,
J. Am. Chem. Soc., 1978, 100, 17, 5466, https://doi.org/10.1021/ja00485a034
. [all data]
Peerboom, Rademaker, et al., 1992
Peerboom, R.A.L.; Rademaker, G.J.; Dekoning, L.J.; Nibbering, N.M.M.,
Stabilization of Cycloalkyl Carbanions in the Gas Phase,
Rapid Commun. Mass Spectrom., 1992, 6, 6, 394, https://doi.org/10.1002/rcm.1290060608
. [all data]
Bohme, Lee-Ruff, et al., 1972
Bohme, D.K.; Lee-Ruff, E.; Young, L.B.,
Acidity order of selected bronsted acids in the gas phase at 300K,
J. Am. Chem. Soc., 1972, 94, 5153. [all data]
Turner, Mallon, et al., 1973
Turner, R.B.; Mallon, B.J.; Tichy, M.; Doering, W.v.E.; Roth, W.R.; Schroder, G.,
Heats of hydrogenation. X. Conjugative interaction in cyclic dienes and trienes,
J. Am. Chem. Soc., 1973, 95, 8605-8610. [all data]
Kistiakowsky, Ruhoff, et al., 1936
Kistiakowsky, G.B.; Ruhoff, J.R.; Smith, H.A.; Vaughan, W.E.,
Heats of organic reactions. IV. Hydrogenation of some dienes and of benzene,
J. Am. Chem. Soc., 1936, 58, 146-153. [all data]
Roth, Adamczak, et al., 1991
Roth, W.R.; Adamczak, O.; Breuckmann, R.; Lennartz, H.-W.; Boese, R.,
Die Berechnung von Resonanzenergien; das MM2ERW-Kraftfeld,
Chem. Ber., 1991, 124, 2499-2521. [all data]
Li and Stone, 1989
Li, X.; Stone, J.A.,
Determination of the beta silicon effect from a mass spectrometric study of the association of trimethylsilylium ion with alkenes,
J. Am. Chem. Soc., 1989, 111, 15, 5586, https://doi.org/10.1021/ja00197a013
. [all data]
Brennan and Ubbelohde, 1956
Brennan, D.; Ubbelohde, A.R.,
A thermochemical evaluation of bond strengths in some carbon compounds. Part IV. Bond-strength differences based on the reaction: RI + HI = RH + I2, where R = p-methoxyphenyl and cyclohexyl,
J. Chem. Soc., 1956, 3011-3016. [all data]
Staley and Beauchamp, 1975
Staley, R.H.; Beauchamp, J.L.,
Intrinsic Acid - Base Properties of Molecules. Binding Energies of Li+ to pi - and n - Donor Bases,
J. Am. Chem. Soc., 1975, 97, 20, 5920, https://doi.org/10.1021/ja00853a050
. [all data]
Dzidic and Kebarle, 1970
Dzidic, I.; Kebarle, P.,
Hydration of the Alkali Ions in the Gas Phase. Enthalpies and Entropies of Reactions M+(H2O)n-1 + H2O = M+(H2O)n,
J. Phys. Chem., 1970, 74, 7, 1466, https://doi.org/10.1021/j100702a013
. [all data]
Glasebrook and Lovell, 1939
Glasebrook, A.L.; Lovell, W.G.,
The isomerization of cyclohexane and methylcyclopentane,
J. Am. Chem. Soc., 1939, 61, 1717-1720. [all data]
Fedoseenko, Yursha, et al., 1983
Fedoseenko, V.I.; Yursha, I.A.; Kabo, G.Ya.,
Equilibrium and thermodynamics of cyclohexanol dehydrogenation reactions,
Dokl. Akad. Nauk BSSR, 1983, 27, 926-929. [all data]
Kirkbride, 1956
Kirkbride, F.W.,
The heats of chlorination of some hydrocarbons and their chloro-derivatives,
J. Appl. Chem., 1956, 6, 11-21. [all data]
Kabo and Andreevskii, 1973
Kabo, G.Ya.; Andreevskii, D.N.,
Thermodynamic characteristics of the cyclohexane = methylcyclopentane isomerization,
Zh. Fiz. Khim., 1973, 47, 272-273. [all data]
Notes
Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, References
- Symbols used in this document:
Cp,liquid Constant pressure heat capacity of liquid Pc Critical pressure S°liquid Entropy of liquid at standard conditions T Temperature Tboil Boiling point Tc Critical temperature Tfus Fusion (melting) point Ttriple Triple point temperature Vc Critical volume d(ln(kH))/d(1/T) Temperature dependence parameter for Henry's Law constant k°H Henry's Law constant at 298.15K ΔHtrs Enthalpy of phase transition ΔStrs Entropy of phase transition ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔfusH Enthalpy of fusion ΔfusS Entropy of fusion ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions ΔsubH Enthalpy of sublimation ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions ΔvapS Entropy of vaporization ρc Critical density - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.