Tetrahydrofuran

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-44.03 ± 0.17kcal/molCmPell and Pilcher, 1965ALS
Quantity Value Units Method Reference Comment
Δcgas-605.44 ± 0.16kcal/molCmPell and Pilcher, 1965Corresponding Δfgas = -44.02 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
gas72.11 ± 0.41cal/mol*KN/AClegg G.A., 1968Other third-law entropy values at 298.15 K evaluated from calorimetric data are 299.1 J/mol*K [ Chao J., 1986] and 288(1) J/mol*K [ Lebedev B.V., 1978].; GT

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
9.15950.Dorofeeva O.V., 1992p=1 bar. Selected thermodynamic functions agree well with results of other statistical calculations [ Scott D.W., 1970, Chao J., 1986].; GT
9.641100.
10.67150.
12.46200.
16.61273.15
18.32 ± 0.24298.15
18.45300.
25.590400.
32.130500.
37.639600.
42.225700.
46.071800.
49.321900.
52.0841000.
54.4411100.
56.4581200.
58.1911300.
59.6821400.
60.9731500.

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
20.35 ± 0.041328.15Hossenlopp I.A., 1981GT
21.84 ± 0.043349.15
25.363 ± 0.050399.15
28.774 ± 0.057449.15
31.950 ± 0.065500.15

Phase change data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DH - Eugene S. Domalski and Elizabeth D. Hearing
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
BS - Robert L. Brown and Stephen E. Stein
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Quantity Value Units Method Reference Comment
Tboil339. ± 1.KAVGN/AAverage of 16 out of 17 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus165.1KN/AHayduk, Laudie, et al., 1973Uncertainty assigned by TRC = 0.5 K; TRC
Tfus164.15KN/ABrooks and Pilcher, 1959Uncertainty assigned by TRC = 1. K; TRC
Tfus164.63KN/ABoord, Greenlee, et al., 1946Uncertainty assigned by TRC = 0.2 K; TRC
Tfus164.05KN/ADolliver, Gresham, et al., 1938Uncertainty assigned by TRC = 0.4 K; TRC
Quantity Value Units Method Reference Comment
Ttriple164.76KN/AWilhoit, Chao, et al., 1985Uncertainty assigned by TRC = 0.05 K; TRC
Ttriple164.76KN/ALebedev, Lityagov, et al., 1979Uncertainty assigned by TRC = 0.02 K; TRC
Ttriple164.76KN/ALebedev, Rabinovich, et al., 1978Uncertainty assigned by TRC = 0.02 K; TRC
Quantity Value Units Method Reference Comment
Tc540.2KN/AMajer and Svoboda, 1985 
Tc540.1KN/ACheng, McCoubrey, et al., 1962Uncertainty assigned by TRC = 0.3 K; Visual (5-cm 2-mm bore tubes) in nitrate-nitrite bath, TE or TH cal. vs NPL thermometer.; TRC
Tc541.KN/AKobe, Ravicz, et al., 1956Uncertainty assigned by TRC = 1.5 K; TRC
Quantity Value Units Method Reference Comment
Pc51.22atmN/AKobe, Ravicz, et al., 1956Uncertainty assigned by TRC = 0.5000 atm; TRC
Quantity Value Units Method Reference Comment
Vc0.225l/molN/AKobe, Ravicz, et al., 1956Uncertainty assigned by TRC = 0.003 l/mol; TRC
Quantity Value Units Method Reference Comment
Δvap7.686kcal/molN/AMajer and Svoboda, 1985 
Δvap7.6kcal/molCHossenlopp and Scott, 1981AC
Δvap7.86kcal/molN/AMoiseev and Antonova, 1970Based on data from 224. to 360. K.; AC
Δvap7.6kcal/molVCass, Fletcher, et al., 1958ALS

Enthalpy of vaporization

ΔvapH (kcal/mol) Temperature (K) Method Reference Comment
7.125339.1N/AMajer and Svoboda, 1985 
7.72305.N/ALoras, Aucejo, et al., 2001Based on data from 290. to 339. K.; AC
7.91288.AStephenson and Malanowski, 1987Based on data from 273. to 339. K.; AC
6.9414.AStephenson and Malanowski, 1987Based on data from 399. to 479. K.; AC
7.07482.AStephenson and Malanowski, 1987Based on data from 467. to 541. K.; AC
7.77 ± 0.05288.N/ABorisov and Chugunova, 1976Based on data from 235. to 340. K.; AC
7.36320.N/ARivenq, 1975Based on data from 302. to 339. K.; AC
7.84288.N/AKoizumi and Ouchi, 1970Based on data from 273. to 308. K. See also Boublik, Fried, et al., 1984.; AC
7.62311.N/AScott D.W., 1970Based on data from 296. to 373. K. See also Boublik, Fried, et al., 1984.; AC
7.8293.VSkuratov, Strepikheev, et al., 1957Combustion at 293 K; ALS
7.60313.N/AKlages and Möhler, 1948Based on data from 293. to 313. K. See also Cass, Fletcher, et al., 1958, 2.; AC

Enthalpy of vaporization

ΔvapH = A exp(-βTr) (1 − Tr)β
    ΔvapH = Enthalpy of vaporization (at saturation pressure) (kcal/mol)
    Tr = reduced temperature (T / Tc)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A (kcal/mol) β Tc (K) Reference Comment
302. to 339.11.020.2699540.2Majer and Svoboda, 1985 

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (atm)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
296.29 to 372.84.115471202.942-46.818Scott D.W., 1970Coefficents calculated by NIST from author's data.

Enthalpy of fusion

ΔfusH (kcal/mol) Temperature (K) Reference Comment
2.041164.76Lebedev, Rabinovich, et al., 1978, 2DH
2.041164.76Lebedev and Lityagov, 1977DH
2.04164.8Acree, 1991AC

Entropy of fusion

ΔfusS (cal/mol*K) Temperature (K) Reference Comment
12.4164.76Lebedev, Rabinovich, et al., 1978, 2DH
12.39164.76Lebedev and Lityagov, 1977DH

Enthalpy of phase transition

ΔHtrs (kcal/mol) Temperature (K) Initial Phase Final Phase Reference Comment
2.041164.76crystaline, IliquidLebedev, Lityagov, et al., 1979DH

Entropy of phase transition

ΔStrs (cal/mol*K) Temperature (K) Initial Phase Final Phase Reference Comment
12.39164.76crystaline, IliquidLebedev, Lityagov, et al., 1979DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Gas phase ion energetics data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
MS - José A. Martinho Simões

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C4H9O+ + Tetrahydrofuran = (C4H9O+ • Tetrahydrofuran)

By formula: C4H9O+ + C4H8O = (C4H9O+ • C4H8O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr29.9kcal/molPHPMSHiraoka and Takimoto, 1986gas phase; M
Δr32.5kcal/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr29.1cal/mol*KPHPMSHiraoka and Takimoto, 1986gas phase; M
Δr32.2cal/mol*KN/ALarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr22.9kcal/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M

C4H11O+ + Tetrahydrofuran = (C4H11O+ • Tetrahydrofuran)

By formula: C4H11O+ + C4H8O = (C4H11O+ • C4H8O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr30.4kcal/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr29.5cal/mol*KN/ALarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr21.6kcal/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M

C5H11O+ + Tetrahydrofuran = (C5H11O+ • Tetrahydrofuran)

By formula: C5H11O+ + C4H8O = (C5H11O+ • C4H8O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr30.1kcal/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, 86 KEE/CAS; M
Quantity Value Units Method Reference Comment
Δr29.4cal/mol*KN/ALarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, 86 KEE/CAS; M
Quantity Value Units Method Reference Comment
Δr21.3kcal/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, 86 KEE/CAS; M

(C4H9O+ • Tetrahydrofuran) + Tetrahydrofuran = (C4H9O+ • 2Tetrahydrofuran)

By formula: (C4H9O+ • C4H8O) + C4H8O = (C4H9O+ • 2C4H8O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr7.6kcal/molPHPMSHiraoka, Takimoto, et al., 1987gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr18.cal/mol*KN/AHiraoka, Takimoto, et al., 1987gas phase; Entropy change calculated or estimated; M

C6H5NO2- + Tetrahydrofuran = (C6H5NO2- • Tetrahydrofuran)

By formula: C6H5NO2- + C4H8O = (C6H5NO2- • C4H8O)

Quantity Value Units Method Reference Comment
Δr3.2 ± 1.6kcal/molIMREChowdhury, Grimsrud, et al., 1987gas phase; Free energy affinity at 35°C.; B

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
3.2308.PHPMSChowdhury, 1987gas phase; M

C7H4N2O2- + Tetrahydrofuran = (C7H4N2O2- • Tetrahydrofuran)

By formula: C7H4N2O2- + C4H8O = (C7H4N2O2- • C4H8O)

Quantity Value Units Method Reference Comment
Δr1.4 ± 1.6kcal/molIMREChowdhury, Grimsrud, et al., 1987gas phase; Free energy affinity at 35°C.; B

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
1.4308.PHPMSChowdhury, 1987gas phase; M

C6H4FNO2- + Tetrahydrofuran = (C6H4FNO2- • Tetrahydrofuran)

By formula: C6H4FNO2- + C4H8O = (C6H4FNO2- • C4H8O)

Quantity Value Units Method Reference Comment
Δr3.2 ± 1.6kcal/molIMREChowdhury, Grimsrud, et al., 1987gas phase; Free energy affinity at 35°C.; B

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
3.2308.PHPMSChowdhury, 1987gas phase; M

C6H4FNO2- + Tetrahydrofuran = (C6H4FNO2- • Tetrahydrofuran)

By formula: C6H4FNO2- + C4H8O = (C6H4FNO2- • C4H8O)

Quantity Value Units Method Reference Comment
Δr2.9 ± 1.6kcal/molIMREChowdhury, Grimsrud, et al., 1987gas phase; Free energy affinity at 35°C.; B

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
2.9308.PHPMSChowdhury, 1987gas phase; M

C6H4FNO2- + Tetrahydrofuran = (C6H4FNO2- • Tetrahydrofuran)

By formula: C6H4FNO2- + C4H8O = (C6H4FNO2- • C4H8O)

Quantity Value Units Method Reference Comment
Δr2.8 ± 1.6kcal/molIMREChowdhury, Grimsrud, et al., 1987gas phase; Free energy affinity at 35°C.; B

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
2.8308.PHPMSChowdhury, 1987gas phase; M

C7H7NO2- + Tetrahydrofuran = (C7H7NO2- • Tetrahydrofuran)

By formula: C7H7NO2- + C4H8O = (C7H7NO2- • C4H8O)

Quantity Value Units Method Reference Comment
Δr3.0 ± 1.6kcal/molIMREChowdhury, Grimsrud, et al., 1987gas phase; Free energy affinity at 35°C.; B

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
3.0308.PHPMSChowdhury, 1987gas phase; M

C7H7NO2- + Tetrahydrofuran = (C7H7NO2- • Tetrahydrofuran)

By formula: C7H7NO2- + C4H8O = (C7H7NO2- • C4H8O)

Quantity Value Units Method Reference Comment
Δr3.1 ± 1.6kcal/molIMREChowdhury, Grimsrud, et al., 1987gas phase; Free energy affinity at 35°C.; B

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
3.1308.PHPMSChowdhury, 1987gas phase; M

C7H7NO2- + Tetrahydrofuran = (C7H7NO2- • Tetrahydrofuran)

By formula: C7H7NO2- + C4H8O = (C7H7NO2- • C4H8O)

Quantity Value Units Method Reference Comment
Δr3.1 ± 1.6kcal/molIMREChowdhury, Grimsrud, et al., 1987gas phase; Free energy affinity at 35°C.; B

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
3.1308.PHPMSChowdhury, 1987gas phase; M

C7H4N2O2- + Tetrahydrofuran = (C7H4N2O2- • Tetrahydrofuran)

By formula: C7H4N2O2- + C4H8O = (C7H4N2O2- • C4H8O)

Quantity Value Units Method Reference Comment
Δr3.7 ± 1.6kcal/molIMREChowdhury, Grimsrud, et al., 1987gas phase; Free energy affinity at 35°C.; B

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
3.7308.PHPMSChowdhury, 1987gas phase; M

C7H4N2O2- + Tetrahydrofuran = (C7H4N2O2- • Tetrahydrofuran)

By formula: C7H4N2O2- + C4H8O = (C7H4N2O2- • C4H8O)

Quantity Value Units Method Reference Comment
Δr2.1 ± 1.6kcal/molIMREChowdhury, Grimsrud, et al., 1987gas phase; Free energy affinity at 35°C.; B

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
2.1308.PHPMSChowdhury, 1987gas phase; M

Furan + 2Hydrogen = Tetrahydrofuran

By formula: C4H4O + 2H2 = C4H8O

Quantity Value Units Method Reference Comment
Δr-36.12 ± 0.12kcal/molChydDolliver, Gresham, et al., 1938, 2gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -36.63 ± 0.12 kcal/mol; At 355 °K; ALS

Magnesium ion (1+) + Tetrahydrofuran = (Magnesium ion (1+) • Tetrahydrofuran)

By formula: Mg+ + C4H8O = (Mg+ • C4H8O)

Quantity Value Units Method Reference Comment
Δr66. ± 5.kcal/molICROperti, Tews, et al., 1988gas phase; switching reaction,Thermochemical ladder(Mg+)CH3OH; M

Tetrahydrofuran (solution) + Tungsten hexacarbonyl (solution) = C9H8O6W (solution) + Carbon monoxide (solution)

By formula: C4H8O (solution) + C6O6W (solution) = C9H8O6W (solution) + CO (solution)

Quantity Value Units Method Reference Comment
Δr14.5 ± 1.0kcal/molPCNakashima and Adamson, 1982solvent: Tetrahydrofuran; MS

C14H21MnO2 (solution) + Tetrahydrofuran (solution) = C11H13MnO3 (solution) + Heptane (solution)

By formula: C14H21MnO2 (solution) + C4H8O (solution) = C11H13MnO3 (solution) + C7H16 (solution)

Quantity Value Units Method Reference Comment
Δr-16.1 ± 1.4kcal/molPACKlassen, Selke, et al., 1990solvent: Heptane; MS

C12H16CrO5 (solution) + Tetrahydrofuran (solution) = C9H8CrO6 (solution) + Heptane (solution)

By formula: C12H16CrO5 (solution) + C4H8O (solution) = C9H8CrO6 (solution) + C7H16 (solution)

Quantity Value Units Method Reference Comment
Δr-12.4 ± 1.2kcal/molPACYang, Peters, et al., 1986solvent: Heptane; MS

Furan, 2,3-dihydro- + Hydrogen = Tetrahydrofuran

By formula: C4H6O + H2 = C4H8O

Quantity Value Units Method Reference Comment
Δr-25.57 ± 0.30kcal/molChydAllinger, Glaser, et al., 1981liquid phase; solvent: Hexane; ALS

Hydrogen + Furan, 2,5-dihydro- = Tetrahydrofuran

By formula: H2 + C4H6O = C4H8O

Quantity Value Units Method Reference Comment
Δr-27.98 ± 0.31kcal/molChydAllinger, Glaser, et al., 1981liquid phase; solvent: Hexane; ALS

Tetrahydrofuran (solution) + C20H30Sm (solution) = C24H38OSm (solution)

By formula: C4H8O (solution) + C20H30Sm (solution) = C24H38OSm (solution)

Quantity Value Units Method Reference Comment
Δr-7.29 ± 0.41kcal/molRSCNolan, Stern, et al., 1989solvent: Toluene; MS

C24H38OSm (solution) + Tetrahydrofuran (solution) = C28H46O2Sm (solution)

By formula: C24H38OSm (solution) + C4H8O (solution) = C28H46O2Sm (solution)

Quantity Value Units Method Reference Comment
Δr-4.9 ± 1.0kcal/molRSCNolan, Stern, et al., 1989solvent: Toluene; MS

C24H39Si3U (solution) + Tetrahydrofuran (solution) = C28H47OSi3U (solution)

By formula: C24H39Si3U (solution) + C4H8O (solution) = C28H47OSi3U (solution)

Quantity Value Units Method Reference Comment
Δr-9.8 ± 0.2kcal/molRSCSchock, Seyam, et al., 1988solvent: Toluene; MS

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
LL - Sharon G. Lias and Joel F. Liebman
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to C4H8O+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)9.40 ± 0.02eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)196.5kcal/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity189.9kcal/molN/AHunter and Lias, 1998HL

Ionization energy determinations

IE (eV) Method Reference Comment
9.38 ± 0.05EIHolmes and Lossing, 1991LL
9.38PEBehan, Dean, et al., 1976LLK
9.41SDoucet, Sauvageau, et al., 1972LLK
9.42 ± 0.01SHernandez, 1963RDSH
9.54PIWatanabe, Nakayama, et al., 1962RDSH
9.74PEKimura, Katsumata, et al., 1981Vertical value; LLK
9.71PEGerson, Worley, et al., 1978Vertical value; LLK
9.65PESchmidt and Schweig, 1974Vertical value; LLK
9.53PEPignataro and Distefano, 1974Vertical value; LLK
9.57 ± 0.02PEBain, Bunzli, et al., 1973Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
C2H2+17.3 ± 0.3?EIGallegos and Kiser, 1962RDSH
C2H3+16.1 ± 0.3?EIGallegos and Kiser, 1962RDSH
C2H3O+12.8 ± 0.2?EIGallegos and Kiser, 1962RDSH
C2H4O+12.27C2H4EICollin and Conde-Caprace, 1966RDSH
C2H5+15.8 ± 0.2?EIGallegos and Kiser, 1962RDSH
C3H3+18.7 ± 0.6?EIGallegos and Kiser, 1962RDSH
C3H4+15.2 ± 0.3?EIGallegos and Kiser, 1962RDSH
C3H5+13.72?EICollin and Conde-Caprace, 1966RDSH
C3H6+11.54?EICollin and Conde-Caprace, 1966RDSH
C4H7O+10.44HEICollin and Conde-Caprace, 1966RDSH

Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, UV/Visible spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin Japan AIST/NIMC Database- Spectrum MS-NW- 76
NIST MS number 227725

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


UV/Visible spectrum

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Victor Talrose, Eugeny B. Stern, Antonina A. Goncharova, Natalia A. Messineva, Natalia V. Trusova, Margarita V. Efimkina

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

UVVis spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Source Pickett, Hoeflich, et al., 1951
Owner INEP CP RAS, NIST OSRD
Collection (C) 2007 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin INSTITUTE OF ENERGY PROBLEMS OF CHEMICAL PHYSICS, RAS
Source reference RAS UV No. 21
Instrument Hilger fluorite prism spectrograph
Melting point -108.3
Boiling point 65

Gas Chromatography

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Kovats' RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
PackedC78, Branched paraffin130.609.9Dallos, Sisak, et al., 2000He; Column length: 3.3 m
PackedC78, Branched paraffin130.609.8Reddy, Dutoit, et al., 1992Chromosorb G HP; Column length: 3.3 m
PackedApolane130.611.Dutoit, 1991Column length: 3.7 m
PackedSE-30150.630.Tiess, 1984Ar, Gas Chrom Q (80-100 mesh); Column length: 3. m
PackedSE-30100.626.Winskowski, 1983Gaschrom Q; Column length: 2. m
PackedApiezon L120.620.Bogoslovsky, Anvaer, et al., 1978Celite 545
PackedApiezon L160.631.Bogoslovsky, Anvaer, et al., 1978Celite 545
PackedApiezon L70.618.Bogoslovsky, Anvaer, et al., 1978 
PackedApolane130.612.9Riedo, Fritz, et al., 1976He, Chromosorb; Column length: 2.4 m
PackedApolane190.623.2Riedo, Fritz, et al., 1976He, Chromosorb; Column length: 2.4 m
PackedSilicon High Vacuum Grease (obsolete)170.640.Jonas, Janák, et al., 1966H2
PackedSilicon High Vacuum Grease (obsolete)170.640.Janák, Jonas, et al., 1965H2, Celite
PackedApiezon L130.631.Wehrli and Kováts, 1959Celite; Column length: 2.25 m
PackedApiezon L70.618.Wehrli and Kováts, 1959Celite; Column length: 2.25 m

Kovats' RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryCBP-1617.Shimadzu, 200325. m/0.2 mm/0.25 μm, He, 50. C @ 5. min, 4. K/min; Tend: 200. C
CapillarySE-54621.Rembold, Wallner, et al., 198930. m/0.25 mm/0.25 μm, He, 0. C @ 12. min, 12. K/min; Tend: 250. C
CapillaryOV-101609.Yamaguchi and Shibamoto, 1979N2, 2. K/min; Column length: 70. m; Column diameter: 0.28 mm; Tstart: 80. C; Tend: 200. C
CapillaryOV-101610.Yamaguchi and Shibamoto, 1979N2, 2. K/min; Column length: 70. m; Column diameter: 0.28 mm; Tstart: 80. C; Tend: 200. C

Kovats' RI, polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryCarbowax 20M70.868.Annino and Villalobos, 199931.3 m/0.53 mm/0.54 μm
PackedCarbowax 20M75.895.Goebel, 1982N2, Kieselgur (60-100 mesh); Column length: 2. m
PackedPEG-2000150.888.Anderson, Jurel, et al., 1973He, Celite 545 (44-60 mesh); Column length: 3. m
PackedPEG-2000152.907.Anderson, Jurel, et al., 1973He, Celite 545 (44-60 mesh); Column length: 3. m
PackedPEG-2000179.915.Anderson, Jurel, et al., 1973He, Celite 545 (44-60 mesh); Column length: 3. m
PackedPEG-2000180.900.Anderson, Jurel, et al., 1973He, Celite 545 (44-60 mesh); Column length: 3. m
PackedPEG-2000200.903.Anderson, Jurel, et al., 1973He, Celite 545 (44-60 mesh); Column length: 3. m

Kovats' RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryCBP-20868.Shimadzu, 200325. m/0.2 mm/0.25 μm, He, 50. C @ 5. min, 4. K/min; Tend: 200. C
CapillaryDB-Wax861.Umano, Hagi, et al., 1994He, 40. C @ 2. min, 2. K/min; Column length: 60. m; Column diameter: 0.25 mm; Tend: 200. C
CapillaryCarbowax 20M866.Yamaguchi and Shibamoto, 1979N2, 2. K/min; Column length: 50. m; Column diameter: 0.28 mm; Tstart: 80. C; Tend: 200. C
CapillaryCarbowax 20M867.Yamaguchi and Shibamoto, 1979N2, 2. K/min; Column length: 50. m; Column diameter: 0.28 mm; Tstart: 80. C; Tend: 200. C

Van Den Dool and Kratz RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryCP Sil 8 CB632.Elmore, Campo, et al., 200260. m/0.25 mm/0.25 μm, He, 40. C @ 2. min, 4. K/min; Tend: 280. C
CapillaryCP Sil 8 CB629.Elmore, Mottram, et al., 200060. m/0.25 mm/0.25 μm, He, 40. C @ 2. min, 4. K/min; Tend: 280. C

Van Den Dool and Kratz RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryHP-5623.Engel, Baty, et al., 200230. m/0.25 mm/0.25 μm, He; Program: 5C(5min) => 3C/min => 20C => 5C/min => 100C 15C/min => 150C (5min)

Van Den Dool and Kratz RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryCP-Wax 52CB854.Alasalvar, Taylor, et al., 200560. m/0.25 mm/0.25 μm, 35. C @ 4. min, 3. K/min; Tend: 203. C
CapillarySupelcowax-10857.Elmore, Nisyrios, et al., 200560. m/0.25 mm/0.25 μm, He, 40. C @ 2. min, 4. K/min; Tend: 280. C

Normal alkane RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryMethyl Silicone100.622.Lebrón-Aguilar, Quintanilla-López, et al., 2007 
CapillaryMethyl Silicone120.626.Lebrón-Aguilar, Quintanilla-López, et al., 2007 
CapillaryMethyl Silicone140.629.Lebrón-Aguilar, Quintanilla-López, et al., 2007 
CapillaryMethyl Silicone80.620.Lebrón-Aguilar, Quintanilla-López, et al., 2007 
CapillaryDB-160.620.Shimadzu, 2003, 260. m/0.32 mm/1. μm, He
PackedApieson L120.624.Kurdina, Markovich, et al., 1969not specified, not specified
PackedDC-400150.630.Anderson, 1968Helium, Gas-Pak (60-80 mesh); Column length: 3.0 m

Normal alkane RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryVF-5 MS614.Leffingwell and Alford, 201160. m/0.32 mm/0.25 μm, Helium, 2. K/min, 260. C @ 28. min; Tstart: 30. C
CapillaryVF-5 MS618.Leffingwell and Alford, 201160. m/0.32 mm/0.25 μm, Helium, 2. K/min, 260. C @ 28. min; Tstart: 30. C
CapillaryMDN-5620.van Loon, Linssen, et al., 200560. m/0.25 mm/0.25 μm, He, 40. C @ 4. min, 4. K/min, 270. C @ 5. min
CapillaryHP-5633.Jung, Wichmann, et al., 199925. m/0.20 mm/0.33 μm, 50. C @ 3. min, 5. K/min; Tend: 180. C
CapillaryDB-1615.Habu, Flath, et al., 19853. K/min; Column length: 50. m; Column diameter: 0.32 mm; Tstart: 0. C; Tend: 250. C
CapillarySF-96618.Donetzhuber, Johansson, et al., 1976Nitrogen, 3. K/min, 130. C @ 40. min; Column length: 111. m; Column diameter: 0.76 mm; Initial hold: 8. min

Normal alkane RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryMethyl Silicone619.Farkas, Héberger, et al., 2004Program: not specified
CapillarySE-30636.Vinogradov, 2004Program: not specified
CapillarySPB-1615.Flanagan, Streete, et al., 199760. m/0.53 mm/5. μm, He; Program: 40C(6min) => 5C/min => 80C => 10C/min => 200C
CapillaryDB-5624.Mateo and Zumalacárregui, 199650. m/0.32 mm/0.25 μm, He; Program: 40C (10min) => 3C/min => 95C => 10C/min => 270C (10min)
CapillarySPB-1615.Strete, Ruprah, et al., 199260. m/0.53 mm/5.0 μm, Helium; Program: 40 0C (6 min) 5 0C/min -> 80 0C 10 0C/min -> 200 0C
CapillarySPB-1638.Strete, Ruprah, et al., 199260. m/0.53 mm/5.0 μm, Helium; Program: not specified
CapillaryDB-1608.Kawai, Ishida, et al., 199160. m/0.25 mm/0.25 μm; Program: not specified
CapillaryDB-1612.Kawai, Ishida, et al., 199160. m/0.25 mm/0.25 μm; Program: not specified
CapillaryCP Sil 8 CB629.Weller and Wolf, 198940. m/0.25 mm/0.25 μm, He; Program: 30 0C (1 min) 15 0C/min -> 45 0C 3 0C/min -> 120 0C
CapillarySE-30627.P'yanova, Zvereva, et al., 1987Column length: 25. m; Column diameter: 0.25 mm; Program: not specified
CapillaryOV-1638.Ramsey and Flanagan, 1982Program: not specified

Normal alkane RI, polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryDB-Wax60.887.Shimadzu, 2003, 250. m/0.32 mm/1. μm, He

Normal alkane RI, polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-Wax829.Welke, Manfroi, et al., 201230. m/0.25 mm/0.25 μm, Helium; Program: not specified
CapillarySOLGel-Wax854.Johanningsmeier and McFeeters, 201130. m/0.25 mm/0.25 μm, Helium; Program: 40 0C (2 min) 5 0C/min -> 140 0C 10 0C/min -> 250 0C (3 min)
CapillaryCarbowax 20M898.Vinogradov, 2004Program: not specified
CapillaryCarbowax 20M872.Ramsey and Flanagan, 1982Program: not specified

References

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Pell and Pilcher, 1965
Pell, A.S.; Pilcher, G., Measurements of heats of combustion by flame calorimetry. Part 3.-Ethylene oxide, trimethylene oxide, tetrahydrofuran and tetrahydropy, Trans. Faraday Soc., 1965, 61, 71-77. [all data]

Clegg G.A., 1968
Clegg G.A., Thermodynamics of polymerization of heterocyclic compounds. II. The heat capacity, entropy, enthalpy and free energy of polytetrahydrofuran, Polymer, 1968, 9, 501-511. [all data]

Chao J., 1986
Chao J., Thermodynamic properties of key organic oxygen compounds in the carbon range C1 to C4. Part 2. Ideal gas properties, J. Phys. Chem. Ref. Data, 1986, 15, 1369-1436. [all data]

Lebedev B.V., 1978
Lebedev B.V., Thermodynamic properties of tetrahydrofuran from 8 to 322 K, J. Chem. Thermodyn., 1978, 10, 321-329. [all data]

Dorofeeva O.V., 1992
Dorofeeva O.V., Ideal gas thermodynamic properties of oxygen heterocyclic compounds. Part 1. Three-membered, four-membered and five-membered rings, Thermochim. Acta, 1992, 194, 9-46. [all data]

Scott D.W., 1970
Scott D.W., Tetrahydrofuran: vibrational assignment, chemical thermodynamic properties, and vapor pressure, J. Chem. Thermodyn., 1970, 2, 833-837. [all data]

Hossenlopp I.A., 1981
Hossenlopp I.A., Vapor heat capacities and enthalpies of vaporization of six organic compounds, J. Chem. Thermodyn., 1981, 13, 405-414. [all data]

Hayduk, Laudie, et al., 1973
Hayduk, W.; Laudie, H.; Smith, O.H., Viscosity, Freezing Point, Vapor-Liquid Equilibria, and Other Properties of Aqueous-Tetrahydrofuran Solutions, J. Chem. Eng. Data, 1973, 18, 373-6. [all data]

Brooks and Pilcher, 1959
Brooks, J.H.; Pilcher, G., A Simple Melting Point Calorimeter for Moderately Precise Determination of Purity, J. Chem. Soc., 1959, 1959, 1535. [all data]

Boord, Greenlee, et al., 1946
Boord, C.E.; Greenlee, K.W.; Perilstein, W.L., The Synthesis, Purification and Prop. of Hydrocarbons of Low Mol. Weight, Am. Pet. Inst. Res. Proj. 45, Eighth Annu. Rep., Ohio State Univ., June 30, 1946. [all data]

Dolliver, Gresham, et al., 1938
Dolliver, M.A.; Gresham, T.L.; Kistiakowsky, G.B.; Smith, E.A.; Vaughan, W.E., Heats of Organic Reactions VI. Heats of Hydrogenation of Some Oxygen- Containing Compounds, J. Am. Chem. Soc., 1938, 60, 440. [all data]

Wilhoit, Chao, et al., 1985
Wilhoit, R.C.; Chao, J.; Hall, K.R., Thermodynamic Properties of Key Organic Compounds in the Carbon Range C1 to C4. Part 1. Properties of Condensed Phases, J. Phys. Chem. Ref. Data, 1985, 14, 1. [all data]

Lebedev, Lityagov, et al., 1979
Lebedev, B.V.; Lityagov, V.Ya.; Krentsina, T.I.; Milov, V.I., Thermodynamic properties of tetrahydrofuran in the range 8-322 K, Zhur. Fiz. Khim., 1979, 53, 264-265. [all data]

Lebedev, Rabinovich, et al., 1978
Lebedev, B.V.; Rabinovich, I.B.; Milov, V.I.; Sladkov, A.M., Thermodynamic properties of tetrahydrofuran from 8 to 322 k polyaddition products with the bis-ethinyl derivatives of the same metals, J. Chem. Thermodyn., 1978, 10, 321-9. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Cheng, McCoubrey, et al., 1962
Cheng, D.C.H.; McCoubrey, J.C.; Phillips, D.G., Critical Temperatures of Some Organic Cyclic Compounds, Trans. Faraday Soc., 1962, 58, 224. [all data]

Kobe, Ravicz, et al., 1956
Kobe, K.A.; Ravicz, A.E.; Vohra, S.P., Critical Properties and Vapor Pressures of Some Ethers and Heterocyclic Compounds, J. Chem. Eng. Data, 1956, 1, 50. [all data]

Hossenlopp and Scott, 1981
Hossenlopp, I.A.; Scott, D.W., Vapor heat capacities and enthalpies of vaporizaiton of six organic compounds, J. Chem. Thermodyn., 1981, 13, 405-414. [all data]

Moiseev and Antonova, 1970
Moiseev, V.D.; Antonova, N.D., Zh. Fiz. Khim., 1970, 44, 11, 2912. [all data]

Cass, Fletcher, et al., 1958
Cass, R.C.; Fletcher, S.E.; Mortimer, C.T.; Springall, H.D.; White, T.R., Heats of combustion and molecular structure. Part V. The mean bond energy term for the C-O bond in ethers, and the structures of some cyclic ethers, J. Chem. Soc., 1958, 1406-1410. [all data]

Loras, Aucejo, et al., 2001
Loras, Sonia; Aucejo, Antonio; Montón, Juan B.; Wisniak, Jaime; Segura, Hugo, Polyazeotropic Behavior in the Binary System 1,1,1,2,3,4,4,5,5,5-Decafluoropentane + Oxolane, J. Chem. Eng. Data, 2001, 46, 6, 1351-1356, https://doi.org/10.1021/je0100793 . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Borisov and Chugunova, 1976
Borisov, G.K.; Chugunova, S.G., Russ. J. Phys. Chem., 1976, 50, 1791. [all data]

Rivenq, 1975
Rivenq, F., Bull. Soc. Chim. Fr., 1975, 1, 2433. [all data]

Koizumi and Ouchi, 1970
Koizumi, E.; Ouchi, S., Nippon Kagaku Kaishi, 1970, 91, 5, 501. [all data]

Boublik, Fried, et al., 1984
Boublik, T.; Fried, V.; Hala, E., The Vapour Pressures of Pure Substances: Selected Values of the Temperature Dependence of the Vapour Pressures of Some Pure Substances in the Normal and Low Pressure Region, 2nd ed., Elsevier, New York, 1984, 972. [all data]

Skuratov, Strepikheev, et al., 1957
Skuratov, S.M.; Strepikheev, A.A.; Kozina, M.P., About the reaction activity of five and six-membered heterocyclic compounds, Dokl. Akad. Nauk SSSR, 1957, 117, 452-454. [all data]

Klages and Möhler, 1948
Klages, Friedrich; Möhler, Klement, Über das anomale osmotische Verhalten von Kettenmolekülen, VI. Mitteil.: Bestimmung der Dampfdruckerniedrigung von Polydepsiden, Chem. Ber., 1948, 81, 5, 411-417, https://doi.org/10.1002/cber.19480810512 . [all data]

Cass, Fletcher, et al., 1958, 2
Cass, R.C.; Fletcher, S.E.; Mortimer, C.T.; Springall, H.D.; White, T.R., 281. Heats of combustion and molecular structure. Part V. The mean bond energy term for the C?O bond in ethers, and the structures of some cyclic ethers, J. Chem. Soc., 1958, 1406, https://doi.org/10.1039/jr9580001406 . [all data]

Lebedev, Rabinovich, et al., 1978, 2
Lebedev, B.V.; Rabinovich, I.B.; Milov, V.I.; Lityagov, V.Ya., Thermodynamic properties of tetrahydrofuran from 8 to 322 K, J. Chem. Thermodyn., 1978, 10, 321-329. [all data]

Lebedev and Lityagov, 1977
Lebedev, B.V.; Lityagov, V.Ya., Calorimetric study of tetrahydrofuran and its polymerization in the temperature range 0-400°K, Vysokomol. Soedin., 1977, A19, 2283-2290. [all data]

Acree, 1991
Acree, William E., Thermodynamic properties of organic compounds: enthalpy of fusion and melting point temperature compilation, Thermochimica Acta, 1991, 189, 1, 37-56, https://doi.org/10.1016/0040-6031(91)87098-H . [all data]

Hiraoka and Takimoto, 1986
Hiraoka, K.; Takimoto, H., Gas-Phase Stabilities of Symmetric Proton-Held Dimer Cations, J. Phys. Chem., 1986, 90, 22, 5910, https://doi.org/10.1021/j100280a090 . [all data]

Larson and McMahon, 1982
Larson, J.W.; McMahon, T.B., Formation, Thermochemistry, and Relative Stabilities of Proton - Bound dimers of Oxygen n - Donor Bases from Ion Cyclotron Resonance Solvent - Exchange Equilibria Measurements, J. Am. Chem. Soc., 1982, 104, 23, 6255, https://doi.org/10.1021/ja00387a016 . [all data]

Grimsrud and Kebarle, 1973
Grimsrud, E.P.; Kebarle, P., Gas Phase Ion Equilibria Studies of the Solvation of the Hydrogen Ion by Methanol, Dimethyl Ether and Water. Effect of Hydrogen Bonding, J. Am. Chem. Soc., 1973, 95, 24, 7939, https://doi.org/10.1021/ja00805a002 . [all data]

Lias, Liebman, et al., 1984
Lias, S.G.; Liebman, J.F.; Levin, R.D., Evaluated gas phase basicities and proton affinities of molecules heats of formation of protonated molecules, J. Phys. Chem. Ref. Data, 1984, 13, 695. [all data]

Keesee and Castleman, 1986
Keesee, R.G.; Castleman, A.W., Jr., Thermochemical data on Ggs-phase ion-molecule association and clustering reactions, J. Phys. Chem. Ref. Data, 1986, 15, 1011. [all data]

Hiraoka, Takimoto, et al., 1987
Hiraoka, K.; Takimoto, H.; Yamabe, S., Stabilities and Structures in Cluster Ions of Five-Membered Heterocyclic Compounds Containing O, N and S Atoms, J. Am. Chem. Soc., 1987, 109, 24, 7346, https://doi.org/10.1021/ja00258a018 . [all data]

Chowdhury, Grimsrud, et al., 1987
Chowdhury, S.; Grimsrud, E.P.; Kebarle, P., Bonding of Charged Delocalized Anions to Protic and Dipolar Aprotic Solvent Molecules, J. Phys. Chem., 1987, 91, 10, 2551, https://doi.org/10.1021/j100294a021 . [all data]

Chowdhury, 1987
Chowdhury, S. Grimsrud, Bonding of Charge Delocalized Anions to Protic and Dipolar Aprotic Solvents, J. Phys. Chem., 1987, 91, 10, 2551, https://doi.org/10.1021/j100294a021 . [all data]

Dolliver, Gresham, et al., 1938, 2
Dolliver, M.A.; Gresham, T.L.; Kistiakowsky, G.B.; Smith, E.A.; Vaughan, W.E., Heats of organic reactions. VI. Heats of hydrogenation of some oxygen-containing compounds, J. Am. Chem. Soc., 1938, 60, 440-450. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Operti, Tews, et al., 1988
Operti, L.; Tews, E.C.; Freiser, B.S., Determination of Gas-Phase Ligand Binding Energies to Mg+ by FTMS Techniques, J. Am. Chem. Soc., 1988, 110, 12, 3847, https://doi.org/10.1021/ja00220a020 . [all data]

Nakashima and Adamson, 1982
Nakashima, M.; Adamson, A.W., J. Phys. Chem., 1982, 86, 2905. [all data]

Klassen, Selke, et al., 1990
Klassen, J.K.; Selke, M.; Sorensen, A.A.; Yang, G.K., J. Am. Chem. Soc., 1990, 112, 1267. [all data]

Yang, Peters, et al., 1986
Yang, G.K.; Peters, K.S.; Vaida, V., Chem. Phys. Lett., 1986, 125, 566. [all data]

Allinger, Glaser, et al., 1981
Allinger, N.L.; Glaser, J.A.; Davis, H.E., Heats of hydrogenation of some vinyl ethers and related compounds, J. Org. Chem., 1981, 46, 658-661. [all data]

Nolan, Stern, et al., 1989
Nolan, S.P.; Stern, D.; Marks, T.J., J. Am. Chem. Soc., 1989, 111, 7844. [all data]

Schock, Seyam, et al., 1988
Schock, L.E.; Seyam, A.M.; Sabat, M.; Marks, T.J., Polyhedron, 1988, 7, 1517. [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Holmes and Lossing, 1991
Holmes, J.L.; Lossing, F.P., Ionization energies of homologous organic compounds and correlation with molecular size, Org. Mass Spectrom., 1991, 26, 537. [all data]

Behan, Dean, et al., 1976
Behan, J.M.; Dean, F.M.; Johnstone, R.A.W., Photoelectron spectra of cyclic aromatic ethers. The question of the Mills-Nixon effect, Tetrahedron, 1976, 32, 167. [all data]

Doucet, Sauvageau, et al., 1972
Doucet, J.; Sauvageau, P.; Sandorfy, C., The vacuum ultraviolet spectrum of tetrahydrofuran, Chem. Phys. Lett., 1972, 17, 316. [all data]

Hernandez, 1963
Hernandez, G.J., Vacuum-ultraviolet absorption spectra of the cyclic ethers: trimethylene oxide, tetrahydrofuran, and tetrahydropyran, J. Chem. Phys., 1963, 38, 2233. [all data]

Watanabe, Nakayama, et al., 1962
Watanabe, K.; Nakayama, T.; Mottl, J., Ionization potentials of some molecules, J. Quant. Spectry. Radiative Transfer, 1962, 2, 369. [all data]

Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S., Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]

Gerson, Worley, et al., 1978
Gerson, S.H.; Worley, S.D.; Bodor, N.; Kaminski, J.J.; Flechtner, T.W., The photoelectron spectra of some heterocyclic compounds which contain N, O, Cl, and Br, J. Electron Spectrosc. Relat. Phenom., 1978, 13, 421. [all data]

Schmidt and Schweig, 1974
Schmidt, H.; Schweig, A., Notiz zur transanularen n/π-Wechselwirkung in 2,5-Dihydrofuran, Chem. Ber., 1974, 107, 725. [all data]

Pignataro and Distefano, 1974
Pignataro, S.; Distefano, G., n-σ mixing in pentatomic heterocyclic compounds of sixth group by photoelectron spectroscopy, Chem. Phys. Lett., 1974, 26, 356. [all data]

Bain, Bunzli, et al., 1973
Bain, A.D.; Bunzli, J.C.; Frost, D.C.; Weiler, L., Photoelectron spectra of cyclic ethers, J. Am. Chem. Soc., 1973, 95, 291. [all data]

Gallegos and Kiser, 1962
Gallegos, E.J.; Kiser, R.W., Electron impact spectroscopy of the four- and five-membered, saturated heterocyclic compounds containing nitrogen, oxygen and sulfur, J. Phys. Chem., 1962, 66, 136. [all data]

Collin and Conde-Caprace, 1966
Collin, J.E.; Conde-Caprace, G., Ionization and dissociation of cyclic ethers by electron impact, Intern. J. Mass Spectrom. Ion Phys., 1966, 1, 213. [all data]

Pickett, Hoeflich, et al., 1951
Pickett, L.W.; Hoeflich, N.J.; Liu, T.-C., The vacuum ultraviolet absorption spectra of cyclic compounds. II. Tetrahydrofuran, tetrahydropyran, 1,4-dioxane and furan, J. Am. Chem. Soc., 1951, 73, 4865-4869. [all data]

Dallos, Sisak, et al., 2000
Dallos, A.; Sisak, A.; Kulcsár, Z.; Kováts, E., Pair-wise interactions by gas chromatography VII. Interaction free enthalpies of solutes with secondary alcohol groups, J. Chromatogr. A, 2000, 904, 2, 211-242, https://doi.org/10.1016/S0021-9673(00)00908-0 . [all data]

Reddy, Dutoit, et al., 1992
Reddy, K.S.; Dutoit, J.-Cl.; Kovats, E. sz., Pair-wise interactions by gas chromatography. I. Interaction free enthalpies of solutes with non-associated primary alcohol groups, J. Chromatogr., 1992, 609, 1-2, 229-259, https://doi.org/10.1016/0021-9673(92)80167-S . [all data]

Dutoit, 1991
Dutoit, J., Gas chromatographic retention behaviour of some solutes on structurally similar polar and non-polar stationary phases, J. Chromatogr., 1991, 555, 1-2, 191-204, https://doi.org/10.1016/S0021-9673(01)87179-X . [all data]

Tiess, 1984
Tiess, D., Gaschromatographische Retentionsindices von 125 leicht- bis mittelflüchtigen organischen Substanzen toxikologisch-analytischer Relevanz auf SE-30, Wiss. Z. Wilhelm-Pieck-Univ. Rostock Math. Naturwiss. Reihe, 1984, 33, 6-9. [all data]

Winskowski, 1983
Winskowski, J., Gaschromatographische Identifizierung von Stoffen anhand von Indexziffem und unterschiedlichen Detektoren, Chromatographia, 1983, 17, 3, 160-165, https://doi.org/10.1007/BF02271041 . [all data]

Bogoslovsky, Anvaer, et al., 1978
Bogoslovsky, Yu.N.; Anvaer, B.I.; Vigdergauz, M.S., Chromatographic constants in gas chromatography (in Russian), Standards Publ. House, Moscow, 1978, 192. [all data]

Riedo, Fritz, et al., 1976
Riedo, F.; Fritz, D.; Tarján, G.; Kováts, E.Sz., A tailor-made C87 hydrocarbon as a possible non-polar standard stationary phase for gas chromatography, J. Chromatogr., 1976, 126, 63-83, https://doi.org/10.1016/S0021-9673(01)84063-2 . [all data]

Jonas, Janák, et al., 1966
Jonas, J.; Janák, J.; Kratochvíl, M., Structural investigations with the aid of Kovats retention index system on one (nonpolar) stationary phase, J. Gas Chromatogr., 1966, 4, 9, 332-335, https://doi.org/10.1093/chromsci/4.9.332 . [all data]

Janák, Jonas, et al., 1965
Janák, J.; Jonas, J.; Kratochvíl, M., Identification of some acetals of the tetrahydrofurane sereis by gas chromatography with the aid of the Kováts indices, Collect. Czech. Chem. Commun., 1965, 30, 1, 265-276, https://doi.org/10.1135/cccc19650265 . [all data]

Wehrli and Kováts, 1959
Wehrli, A.; Kováts, E., Gas-chromatographische Charakterisierung ogranischer Verbindungen. Teil 3: Berechnung der Retentionsindices aliphatischer, alicyclischer und aromatischer Verbindungen, Helv. Chim. Acta, 1959, 7, 7, 2709-2736, https://doi.org/10.1002/hlca.19590420745 . [all data]

Shimadzu, 2003
Shimadzu, Gas chromatography analysis of organic solvents using capillary columns (No. 2), 2003, retrieved from http://www.shimadzu.com/apps/form.cfm. [all data]

Rembold, Wallner, et al., 1989
Rembold, H.; Wallner, P.; Nitz, S.; Kollmannsberger, H.; Drawert, F., Volatile components of chickpea (Cicer arietinum L.) seed, J. Agric. Food Chem., 1989, 37, 3, 659-662, https://doi.org/10.1021/jf00087a018 . [all data]

Yamaguchi and Shibamoto, 1979
Yamaguchi, K.; Shibamoto, T., Volatile constituents of Castanopsis flower, J. Agric. Food Chem., 1979, 27, 4, 847-850, https://doi.org/10.1021/jf60224a025 . [all data]

Annino and Villalobos, 1999
Annino, R.; Villalobos, R., A strategy for the simplification and solution of complex chromatographic analysis problems utilizing two-dimensional mapping of retention indexes followed by computer modeling of heart cuts from serially coupled columns containing different stationary phases, J. Hi. Res. Chromatogr., 1999, 22, 10, 589-593. [all data]

Goebel, 1982
Goebel, K.-J., Gaschromatographische Identifizierung Niedrig Siedender Substanzen Mittels Retentionsindices und Rechnerhilfe, J. Chromatogr., 1982, 235, 1, 119-127, https://doi.org/10.1016/S0021-9673(00)95793-5 . [all data]

Anderson, Jurel, et al., 1973
Anderson, A.; Jurel, S.; Shymanska, M.; Golender, L., Gas-liquid chromatography of some aliphatic and heterocyclic mono- and pollyfunctional amines. VII. Retention indices of amines in some polar and unpolar stationary phases, Latv. PSR Zinat. Akad. Vestis Kim. Ser., 1973, 1, 51-63. [all data]

Umano, Hagi, et al., 1994
Umano, K.; Hagi, Y.; Tamura, T.; Shoji, A.; Shibamoto, T., Identification of volatile compounds isolated from round kumquat (Fortunella japonica Swingle), J. Agric. Food Chem., 1994, 42, 9, 1888-1890, https://doi.org/10.1021/jf00045a011 . [all data]

Elmore, Campo, et al., 2002
Elmore, J.S.; Campo, M.M.; Enser, M.; Mottram, D.S., Effect of lipid composition on meat-like model systems containing cysteine, ribose, and polyunsaturated fatty acids, J. Agric. Food Chem., 2002, 50, 5, 1126-1132, https://doi.org/10.1021/jf0108718 . [all data]

Elmore, Mottram, et al., 2000
Elmore, J.S.; Mottram, D.S.; Hierro, E., Two-fibre solid-phase microextraction combined with gas chromatography-mass spectrometry for the analysis of volatile aroma compounds in cooked pork, J. Chromatogr. A, 2000, 905, 1-2, 233-240, https://doi.org/10.1016/S0021-9673(00)00990-0 . [all data]

Engel, Baty, et al., 2002
Engel, E.; Baty, C.; le Corre, D.; Souchon, I.; Martin, N., Flavor-active compounds potentially implicated in cooked cauliflower acceptance, J. Agric. Food Chem., 2002, 50, 22, 6459-6467, https://doi.org/10.1021/jf025579u . [all data]

Alasalvar, Taylor, et al., 2005
Alasalvar, C.; Taylor, K.D.A.; Shahidi, F., Comparison of volatiles of cultured and wild sea bream (Sparus aurata) during storage in ice by dynamic headspace analysis/gas chromatography-mass spectrometry, J. Agric. Food Chem., 2005, 53, 7, 2616-2622, https://doi.org/10.1021/jf0483826 . [all data]

Elmore, Nisyrios, et al., 2005
Elmore, J.S.; Nisyrios, I.; Mottram, D.S., Analysis of the headspace aroma compounds of walnuts (Juglans regia L.), Flavour Fragr. J., 2005, 20, 5, 501-506, https://doi.org/10.1002/ffj.1477 . [all data]

Lebrón-Aguilar, Quintanilla-López, et al., 2007
Lebrón-Aguilar, R.; Quintanilla-López, J.E.; Tello, A.M.; Santiuste, J.M., Isothermal retention indices on poly (3,3,3-trifluoropropylmethylsiloxane) stationary phases, J. Chromatogr. A, 2007, 1160, 1-2, 276-288, https://doi.org/10.1016/j.chroma.2007.05.025 . [all data]

Shimadzu, 2003, 2
Shimadzu, Gas chromatography analysis of organic solvents using capillary columns (No. 3), 2003, retrieved from http://www.shimadzu.com/apps/form.cfm. [all data]

Kurdina, Markovich, et al., 1969
Kurdina, Z.G.; Markovich, V.E.; Sakharov, V.M., Gas chromatography of cyclic O-containing compounds in Gas chromatography, Issue # 10, NIITEKhim, Moscow, 1969, 128-133. [all data]

Anderson, 1968
Anderson, D.G., USe of Kovats retention indices and response factors for the qualitative and quantitative analysis of coating solvents, J. Paint Technol., 1968, 40, 527, 549-557. [all data]

Leffingwell and Alford, 2011
Leffingwell, J.; Alford, E.D., Volatile constituents of the giant pufball mushroom (Calvatia gigantea), Leffingwell Rep., 2011, 4, 1-17. [all data]

van Loon, Linssen, et al., 2005
van Loon, W.A.M.; Linssen, J.P.H.; Legger, A.; Posthumus, M.A.; Voragen, A.G.J., Identification and olfactometry of French fries flavour extracted at mouth conditions, Food Chem., 2005, 90, 3, 417-425, https://doi.org/10.1016/j.foodchem.2004.05.005 . [all data]

Jung, Wichmann, et al., 1999
Jung, A.; Wichmann, K.-H.; Kolb, M., VOC emission of polymeric packaging materials, LaborPraxis, 1999, 23, 9, 20-22. [all data]

Habu, Flath, et al., 1985
Habu, T.; Flath, R.A.; Mon, T.R.; Morton, J.F., Volatile components of Rooibos tea (Aspalathus linearis), J. Agric. Food Chem., 1985, 33, 2, 249-254, https://doi.org/10.1021/jf00062a024 . [all data]

Donetzhuber, Johansson, et al., 1976
Donetzhuber, A.; Johansson, K.; Sandstroem, C., Gas phase characterization of wood, pulp, and paper, Appl. Polymer Symp., 1976, 28, 889-901. [all data]

Farkas, Héberger, et al., 2004
Farkas, O.; Héberger, K.; Zenkevich, I.G., Quantitative structure-retention relationships. XIV. Prediction of gas chromatographic retention indices for saturated O-, N-, and S-heterocyclic compounds, Chemom. Intell. Lab. Syst., 2004, 72, 2, 173-184, https://doi.org/10.1016/j.chemolab.2004.01.012 . [all data]

Vinogradov, 2004
Vinogradov, B.A., Production, composition, properties and application of essential oils, 2004, retrieved from http://viness.narod.ru. [all data]

Flanagan, Streete, et al., 1997
Flanagan, R.J.; Streete, P.J.; Ramsey, J.D., Volatile Substance Abuse, UNODC Technical Series, No 5, United Nations, Office on Drugs and Crime, Vienna International Centre, PO Box 500, A-1400 Vienna, Austria, 1997, 56, retrieved from http://www.odccp.org/pdf/technicalseries1997-01-011.pdf. [all data]

Mateo and Zumalacárregui, 1996
Mateo, J.; Zumalacárregui, J.M., Volatile compounds in chorizo and their changes during ripening, Meat Sci., 1996, 44, 4, 255-273, https://doi.org/10.1016/S0309-1740(96)00028-9 . [all data]

Strete, Ruprah, et al., 1992
Strete, P.J.; Ruprah, M.; Ramsey, J.D.; Flanagan, R.J., Detection and identification of volatile substances by headspace capillary gas chromatography to aid the diagnosis of acute poisoning, Analyst, 1992, 117, 7, 1111-1127, https://doi.org/10.1039/an9921701111 . [all data]

Kawai, Ishida, et al., 1991
Kawai, T.; Ishida, Y.; Kakiuchi, H.; Ikeda, N.; Higashida, T.; Nakamura, S., Flavor components of dried squid, J. Agric. Food Chem., 1991, 39, 4, 770-777, https://doi.org/10.1021/jf00004a031 . [all data]

Weller and Wolf, 1989
Weller, J.-P.; Wolf, M., Massenspektroskopie und Headspace-GC, Beitr. Gerichtl. Med., 1989, 47, 525-532. [all data]

P'yanova, Zvereva, et al., 1987
P'yanova, V.P.; Zvereva, M.N.; Tsypysheva, LG.; Portnova, T.V.; Kruglov, E.A., Investigating the products of thiophane synthesis, Abstr. IX All-Union Conference on Gas Chromatography, Kuibyshev State University, Kuibyshev, 1987, 308. [all data]

Ramsey and Flanagan, 1982
Ramsey, J.D.; Flanagan, R.J., Detection and Identification of Volatile Organic Compounds in Blood by Headspace Gas Chromatography as an Aid to the Diagnosis of Solvent Abuse, J. Chromatogr., 1982, 240, 2, 423-444, https://doi.org/10.1016/S0021-9673(00)99622-5 . [all data]

Welke, Manfroi, et al., 2012
Welke, J.E.; Manfroi, V.; Zanus, M.; Lazarotto, M.; Zini, C.A., Characterization of the volatile profile of Brazilian merlot wines through comprehensive two dimensional gas chromatography time-of-flight mass spectrometric detection, J. Chromatogr. A, 2012, 1226, 124-139, https://doi.org/10.1016/j.chroma.2012.01.002 . [all data]

Johanningsmeier and McFeeters, 2011
Johanningsmeier, S.D.; McFeeters, R.F., Detection of volatile spoilage metabolites in fermented cucumbers using nontargeted, comprehensive 2-dimensional gas chromatography-time-of-flight mass spectrometry (GCxGCxTOFMS), J. Food Sci., 2011, 76, 1, c168-c177, https://doi.org/10.1111/j.1750-3841.2010.01918.x . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References