Pyrrole
- Formula: C4H5N
- Molecular weight: 67.0892
- IUPAC Standard InChIKey: KAESVJOAVNADME-UHFFFAOYSA-N
- CAS Registry Number: 109-97-7
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: 1H-Pyrrole; Azole; Divinylenimine; Imidole; Monopyrrole; Pyrrol; 1-Aza-2,4-cyclopentadiene; Divinyleneimine; Parzate; NSC 62777
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | 34.23 | kcal/mol | N/A | Zaheeruddin and Lodhi, 1991 | Value computed using ΔfHliquid° value of 98.0 kj/mol from Zaheeruddin and Lodhi, 1991 and ΔvapH° value of 45.2 kj/mol from Scott, Berg, et al., 1967.; DRB |
ΔfH°gas | 25.88 ± 0.12 | kcal/mol | Ccb | Scott, Berg, et al., 1967 | ALS |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | Ccb | Zaheeruddin and Lodhi, 1991 | uncertain value: 23.43 kcal/mol; ALS | ||
ΔfH°liquid | 15.1 ± 0.1 | kcal/mol | Ccb | Scott, Berg, et al., 1967 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | Ccb | Zaheeruddin and Lodhi, 1991 | uncertain value: -570.425 kcal/mol; ALS | ||
ΔcH°liquid | -562.07 ± 0.08 | kcal/mol | Ccb | Scott, Berg, et al., 1967 | ALS |
ΔcH°liquid | -561.6 | kcal/mol | Ccb | Zimmerman and Geisenfelder, 1961 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°liquid | 37.390 | cal/mol*K | N/A | Scott, Berg, et al., 1967 | DH |
Constant pressure heat capacity of liquid
Cp,liquid (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
30.531 | 298.15 | Scott, Berg, et al., 1967 | T = 11 to 365 K.; DH |
Phase change data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
AC - William E. Acree, Jr., James S. Chickos
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 403. ± 1. | K | AVG | N/A | Average of 15 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 250.15 | K | N/A | Rosso and Carbonnel, 1973 | Uncertainty assigned by TRC = 0.6 K; TRC |
Tfus | 254.7 | K | N/A | Timmermans and Hennaut-Roland, 1955 | Uncertainty assigned by TRC = 0.5 K; TRC |
Tfus | 249.7 | K | N/A | Anonymous, 1942 | Uncertainty assigned by TRC = 0.2 K; TRC |
Tfus | 238.8 | K | N/A | Milazzo, 1941 | Uncertainty assigned by TRC = 0.4 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Ttriple | 249.7300 | K | N/A | Scott, Berg, et al., 1967, 2 | Uncertainty assigned by TRC = 0.07 K; by extrapolation of 1/f to zero; TRC |
Ttriple | 249.74 | K | N/A | Helm, Lanum, et al., 1958 | Uncertainty assigned by TRC = 0.03 K; measured in calorimeter at U.S. Bur. Mines, Bartlesville, OK; TRC |
Ttriple | 249.74 | K | N/A | McCullough and Waddington, 1957 | Uncertainty assigned by TRC = 0.06 K; IPTS-48, from freezing curve; TRC |
Ttriple | 249.74 | K | N/A | McCullough and Waddington, 1957 | Uncertainty assigned by TRC = 0.06 K; IPTS-48, from heating curve; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 639.8 | K | N/A | Majer and Svoboda, 1985 | |
Tc | 639.7 | K | N/A | Cheng, McCoubrey, et al., 1962 | Uncertainty assigned by TRC = 1.5 K; extrapolated to zero time to correct for decomposition cal. vs NPL thermometer.; TRC |
Tc | 625.15 | K | N/A | Glaser and Ruland, 1957 | Uncertainty assigned by TRC = 2. K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Pc | 56.000 | atm | N/A | Glaser and Ruland, 1957 | Uncertainty assigned by TRC = 3.0000 atm; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 10. ± 1. | kcal/mol | AVG | N/A | Average of 6 values; Individual data points |
Enthalpy of vaporization
ΔvapH (kcal/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
9.261 | 403. | N/A | Majer and Svoboda, 1985 | |
10.2 | 300. | N/A | Kimizuka and Szydlowski, 1992 | Based on data from 285. to 329. K.; AC |
10.2 | 353. | A,EB,IP | Stephenson and Malanowski, 1987 | Based on data from 338. to 440. K. See also Osborn and Douslin, 1968 and Scott, Berg, et al., 1967.; AC |
10.0 | 328. | I | Eon, Pommier, et al., 1971 | Based on data from 313. to 373. K.; AC |
10.0 | 348. | N/A | Stull, 1947 | Based on data from 333. to 373. K.; AC |
Enthalpy of vaporization
ΔvapH =
A exp(-βTr) (1 − Tr)β
ΔvapH =
Enthalpy of vaporization (at saturation pressure)
(kcal/mol)
Tr = reduced temperature (T / Tc)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A (kcal/mol) | β | Tc (K) | Reference | Comment |
---|---|---|---|---|---|
362. to 403. | 15.0 | 0.2964 | 639.8 | Majer and Svoboda, 1985 |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (atm)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
333.4 to 373.5 | 5.31520 | 2074.447 | -9.186 | Eon, Pommier, et al., 1971 | Coefficents calculated by NIST from author's data. |
338.82 to 439.26 | 4.42194 | 1506.877 | -62.155 | Osborn and Douslin, 1968 |
Enthalpy of fusion
ΔfusH (kcal/mol) | Temperature (K) | Reference | Comment |
---|---|---|---|
1.8900 | 249.74 | Scott, Berg, et al., 1967 | DH |
1.89 | 249.7 | Domalski and Hearing, 1996 | AC |
Entropy of fusion
ΔfusS (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
7.567 | 249.74 | Scott, Berg, et al., 1967 | DH |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
RCD - Robert C. Dunbar
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
By formula: C4H4N- + H+ = C4H5N
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 359.54 ± 0.25 | kcal/mol | D-EA | Gianola, Ichino, et al., 2004 | gas phase; B |
ΔrH° | 358.6 ± 2.2 | kcal/mol | G+TS | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
ΔrH° | 359.6 ± 2.9 | kcal/mol | G+TS | Cumming and Kebarle, 1978 | gas phase; B |
ΔrH° | 358.6 ± 5.0 | kcal/mol | EIAE | Muftakhov, Vasil'ev, et al., 1999 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 350.9 ± 2.0 | kcal/mol | IMRE | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
ΔrG° | 351.8 ± 2.0 | kcal/mol | IMRE | Cumming and Kebarle, 1978 | gas phase; B |
By formula: CN- + C4H5N = (CN- • C4H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 23.4 ± 1.0 | kcal/mol | TDAs | Meot-ner, 1988 | gas phase; B,M |
ΔrH° | 19.5 ± 3.5 | kcal/mol | IMRE | Larson and McMahon, 1987 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 27.1 | cal/mol*K | PHPMS | Meot-ner, 1988 | gas phase; M |
ΔrS° | 23.8 | cal/mol*K | N/A | Larson and McMahon, 1987 | gas phase; switching reaction,Thermochemical ladder(CN-)H2O, Entropy change calculated or estimated; Payzant, Yamdagni, et al., 1971; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 15.3 ± 1.0 | kcal/mol | TDAs | Meot-ner, 1988 | gas phase; B |
ΔrG° | 12.3 ± 2.3 | kcal/mol | IMRE | Larson and McMahon, 1987 | gas phase; B,M |
By formula: F- + C4H5N = (F- • C4H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 34.2 ± 2.0 | kcal/mol | IMRE | Larson and McMahon, 1983 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 25.5 | cal/mol*K | N/A | Larson and McMahon, 1983 | gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 26.6 ± 2.0 | kcal/mol | IMRE | Larson and McMahon, 1983 | gas phase; B,M |
By formula: Cl- + C4H5N = (Cl- • C4H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 18.8 ± 2.0 | kcal/mol | IMRE | Larson and McMahon, 1984 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 11.8 ± 2.0 | kcal/mol | IMRE | Larson and McMahon, 1984 | gas phase; B |
ΔrG° | 14.00 | kcal/mol | TDEq | French, Ikuta, et al., 1982 | gas phase; B |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
11.6 | 421. | PHPMS | French, Ikuta, et al., 1982 | gas phase; M |
By formula: HS- + C4H5N = (HS- • C4H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 23.0 ± 1.0 | kcal/mol | TDAs | Meot-ner, 1988 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 24.4 | cal/mol*K | PHPMS | Meot-ner, 1988 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 15.7 ± 1.0 | kcal/mol | TDAs | Meot-ner, 1988 | gas phase; B |
By formula: C4H4N- + C4H5N = (C4H4N- • C4H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 26.5 ± 1.0 | kcal/mol | TDAs | Meot-ner, 1988, 2 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 35.2 | cal/mol*K | PHPMS | Meot-ner, 1988, 2 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 16.3 ± 1.0 | kcal/mol | TDAs | Meot-ner, 1988, 2 | gas phase; B |
By formula: C2H3O2- + C4H5N = (C2H3O2- • C4H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 24.0 ± 1.0 | kcal/mol | TDAs | Meot-ner, 1988 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 25.1 | cal/mol*K | PHPMS | Meot-ner, 1988 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 16.5 ± 1.0 | kcal/mol | TDAs | Meot-ner, 1988 | gas phase; B |
By formula: (C4H5N+ • C4H5N) + C4H5N = (C4H5N+ • 2C4H5N)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 13.8 | kcal/mol | PHPMS | Hiraoka, Takimoto, et al., 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 29.2 | cal/mol*K | PHPMS | Hiraoka, Takimoto, et al., 1987 | gas phase; M |
By formula: C4H5N+ + C4H5N = (C4H5N+ • C4H5N)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 16.5 | kcal/mol | PHPMS | Hiraoka, Takimoto, et al., 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 20.3 | cal/mol*K | PHPMS | Hiraoka, Takimoto, et al., 1987 | gas phase; M |
By formula: (C4H6N+ • C4H5N) + C4H5N = (C4H6N+ • 2C4H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 12.3 | kcal/mol | PHPMS | Hiraoka, Takimoto, et al., 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 30.4 | cal/mol*K | PHPMS | Hiraoka, Takimoto, et al., 1987 | gas phase; M |
By formula: (C4H4N- • C4H5N) + C4H5N = (C4H4N- • 2C4H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 17.1 | kcal/mol | PHPMS | Meot-ner, 1988, 2 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 31.2 | cal/mol*K | PHPMS | Meot-ner, 1988, 2 | gas phase; M |
By formula: C4H6N+ + C4H5N = (C4H6N+ • C4H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 16.8 | kcal/mol | PHPMS | Hiraoka, Takimoto, et al., 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 24.7 | cal/mol*K | PHPMS | Hiraoka, Takimoto, et al., 1987 | gas phase; M |
By formula: (C2H3O2- • C4H5N) + C4H5N = (C2H3O2- • 2C4H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 17.9 | kcal/mol | PHPMS | Meot-ner, 1988 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 24.2 | cal/mol*K | PHPMS | Meot-ner, 1988 | gas phase; M |
By formula: CH6N+ + C4H5N = (CH6N+ • C4H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 18.6 | kcal/mol | PHPMS | Deakyne and Meot-Ner (Mautner), 1985 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 21.0 | cal/mol*K | PHPMS | Deakyne and Meot-Ner (Mautner), 1985 | gas phase; M |
By formula: C6H11NO3 + C4H5N = (C6H11NO3 • C4H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 24.0 | kcal/mol | PHPMS | Meot-Ner (Mautner), 1988 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 32.1 | cal/mol*K | PHPMS | Meot-Ner (Mautner), 1988 | gas phase; M |
By formula: (Fe+ • C4H5N) + C4H5N = (Fe+ • 2C4H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 41.6 | kcal/mol | RAK | Gapeev and Yang, 2000 | RCD |
By formula: (Cr+ • C4H5N) + C4H5N = (Cr+ • 2C4H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 34.9 | kcal/mol | RAK | Gapeev and Yang, 2000 | RCD |
By formula: (Mn+ • C4H5N) + C4H5N = (Mn+ • 2C4H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 27.0 | kcal/mol | RAK | Gapeev and Yang, 2000 | RCD |
By formula: (Ni+ • C4H5N) + C4H5N = (Ni+ • 2C4H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 47.0 | kcal/mol | RAK | Gapeev and Yang, 2000 | RCD |
By formula: (Co+ • C4H5N) + C4H5N = (Co+ • 2C4H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 46.4 | kcal/mol | RAK | Gapeev and Yang, 2000 | RCD |
By formula: (Cu+ • C4H5N) + C4H5N = (Cu+ • 2C4H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 44.0 | kcal/mol | RAK | Gapeev and Yang, 2000 | RCD |
By formula: Li+ + C4H5N = (Li+ • C4H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 42.3 ± 4.0 | kcal/mol | CIDT | Huang and Rodgers, 2002 | RCD |
By formula: Na+ + C4H5N = (Na+ • C4H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 24.3 ± 1.1 | kcal/mol | CIDT | Huang and Rodgers, 2002 | RCD |
By formula: K+ + C4H5N = (K+ • C4H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 20.0 ± 1.0 | kcal/mol | CIDT | Huang and Rodgers, 2002 | RCD |
By formula: V+ + C4H5N = (V+ • C4H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | >41. | kcal/mol | RAK | Gapeev and Yang, 2000 | RCD |
By formula: Ni+ + C4H5N = (Ni+ • C4H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | >68. | kcal/mol | RAK | Gapeev and Yang, 2000 | RCD |
By formula: W+ + C4H5N = (W+ • C4H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | >50. | kcal/mol | RAK | Gapeev and Yang, 2000 | RCD |
By formula: Co+ + C4H5N = (Co+ • C4H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | >66. | kcal/mol | RAK | Gapeev and Yang, 2000 | RCD |
By formula: Mo+ + C4H5N = (Mo+ • C4H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | >69. | kcal/mol | RAK | Gapeev and Yang, 2000 | RCD |
By formula: Fe+ + C4H5N = (Fe+ • C4H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 54.0 | kcal/mol | RAK | Gapeev and Yang, 2000 | RCD |
By formula: Cr+ + C4H5N = (Cr+ • C4H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 42.5 | kcal/mol | RAK | Gapeev and Yang, 2000 | RCD |
By formula: Mn+ + C4H5N = (Mn+ • C4H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 42.3 | kcal/mol | RAK | Gapeev and Yang, 2000 | RCD |
By formula: Mg+ + C4H5N = (Mg+ • C4H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 44.0 | kcal/mol | RAK | Gapeev and Yang, 2000 | RCD |
By formula: Al+ + C4H5N = (Al+ • C4H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 44.0 | kcal/mol | RAK | Gapeev and Yang, 2000 | RCD |
By formula: Cu+ + C4H5N = (Cu+ • C4H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 59.0 | kcal/mol | RAK | Gapeev and Yang, 2000 | RCD |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias
Data compiled as indicated in comments:
B - John E. Bartmess
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 8.207 ± 0.005 | eV | N/A | N/A | L |
Quantity | Value | Units | Method | Reference | Comment |
Proton affinity (review) | 209.2 | kcal/mol | N/A | Hunter and Lias, 1998 | HL |
Quantity | Value | Units | Method | Reference | Comment |
Gas basicity | 201.7 | kcal/mol | N/A | Hunter and Lias, 1998 | HL |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
8.02 | PE | Klasinc, Sabljic, et al., 1982 | LBLHLM |
8.02 | PE | Galasso, Klasinc, et al., 1981 | LLK |
8.21 | PE | Willett and Baer, 1980 | LLK |
8.4 ± 0.1 | CEMS | Tedder and Vidaud, 1980 | LLK |
8.207 ± 0.003 | PI | Cooper, Williamson, et al., 1980 | LLK |
8.208 ± 0.005 | PI | Williamson, Compton, et al., 1979 | LLK |
~8.1 | EI | Van Veen, 1976 | LLK |
8.22 ± 0.05 | EI | Thorstad and Undheim, 1974 | LLK |
8.40 ± 0.05 | EI | Linda, Marino, et al., 1971 | LLK |
8.209 | PE | Derrick, Asbrink, et al., 1971 | LLK |
8.209 | S | Derrick, Asbrink, et al., 1971 | LLK |
8.20 ± 0.01 | PI | Potapov and Yuzhakova, 1970 | RDSH |
8.20 ± 0.01 | PI | Potapov and Bazhenov, 1970 | RDSH |
8.20 ± 0.01 | PI | Watanabe, Nakayama, et al., 1962 | RDSH |
8.23 | PE | Cradock, Findlay, et al., 1973 | Vertical value; LLK |
Appearance energy determinations
Ion | AE (eV) | Other Products | Method | Reference | Comment |
---|---|---|---|---|---|
CH2N+ | 12.40 | ? | PI | Willett and Baer, 1980 | LLK |
CH2N+ | 12.1 ± 0.2 | C3H3 | CEMS | Tedder and Vidaud, 1980 | LLK |
C2H3+ | 13.60 | ? | PI | Willett and Baer, 1980 | LLK |
C2H3N+ | 11.75 | C2H2 | EI | Sakurai and Jennings, 1981 | LLK |
C2H3N+ | 11.75 | ? | PI | Willett and Baer, 1980 | LLK |
C3H2N+ | 12.50 | ? | PI | Willett and Baer, 1980 | LLK |
C3H3+ | 12.60 | ? | PI | Willett and Baer, 1980 | LLK |
C3H4+ | 12.00 | ? | PI | Willett and Baer, 1980 | LLK |
C3H4+ | 12.5 ± 0.2 | CHN | CEMS | Tedder and Vidaud, 1980 | LLK |
C4H4N+ | 12.85 | H | PI | Willett and Baer, 1980 | LLK |
De-protonation reactions
By formula: C4H4N- + H+ = C4H5N
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 359.54 ± 0.25 | kcal/mol | D-EA | Gianola, Ichino, et al., 2004 | gas phase; B |
ΔrH° | 358.6 ± 2.2 | kcal/mol | G+TS | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
ΔrH° | 359.6 ± 2.9 | kcal/mol | G+TS | Cumming and Kebarle, 1978 | gas phase; B |
ΔrH° | 358.6 ± 5.0 | kcal/mol | EIAE | Muftakhov, Vasil'ev, et al., 1999 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 350.9 ± 2.0 | kcal/mol | IMRE | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
ΔrG° | 351.8 ± 2.0 | kcal/mol | IMRE | Cumming and Kebarle, 1978 | gas phase; B |
Ion clustering data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
RCD - Robert C. Dunbar
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.
Clustering reactions
By formula: Al+ + C4H5N = (Al+ • C4H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 44.0 | kcal/mol | RAK | Gapeev and Yang, 2000 | RCD |
By formula: CH6N+ + C4H5N = (CH6N+ • C4H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 18.6 | kcal/mol | PHPMS | Deakyne and Meot-Ner (Mautner), 1985 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 21.0 | cal/mol*K | PHPMS | Deakyne and Meot-Ner (Mautner), 1985 | gas phase; M |
By formula: CN- + C4H5N = (CN- • C4H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 23.4 ± 1.0 | kcal/mol | TDAs | Meot-ner, 1988 | gas phase; B,M |
ΔrH° | 19.5 ± 3.5 | kcal/mol | IMRE | Larson and McMahon, 1987 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 27.1 | cal/mol*K | PHPMS | Meot-ner, 1988 | gas phase; M |
ΔrS° | 23.8 | cal/mol*K | N/A | Larson and McMahon, 1987 | gas phase; switching reaction,Thermochemical ladder(CN-)H2O, Entropy change calculated or estimated; Payzant, Yamdagni, et al., 1971; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 15.3 ± 1.0 | kcal/mol | TDAs | Meot-ner, 1988 | gas phase; B |
ΔrG° | 12.3 ± 2.3 | kcal/mol | IMRE | Larson and McMahon, 1987 | gas phase; B,M |
By formula: C2H3O2- + C4H5N = (C2H3O2- • C4H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 24.0 ± 1.0 | kcal/mol | TDAs | Meot-ner, 1988 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 25.1 | cal/mol*K | PHPMS | Meot-ner, 1988 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 16.5 ± 1.0 | kcal/mol | TDAs | Meot-ner, 1988 | gas phase; B |
By formula: (C2H3O2- • C4H5N) + C4H5N = (C2H3O2- • 2C4H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 17.9 | kcal/mol | PHPMS | Meot-ner, 1988 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 24.2 | cal/mol*K | PHPMS | Meot-ner, 1988 | gas phase; M |
By formula: C4H4N- + C4H5N = (C4H4N- • C4H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 26.5 ± 1.0 | kcal/mol | TDAs | Meot-ner, 1988, 2 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 35.2 | cal/mol*K | PHPMS | Meot-ner, 1988, 2 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 16.3 ± 1.0 | kcal/mol | TDAs | Meot-ner, 1988, 2 | gas phase; B |
By formula: (C4H4N- • C4H5N) + C4H5N = (C4H4N- • 2C4H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 17.1 | kcal/mol | PHPMS | Meot-ner, 1988, 2 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 31.2 | cal/mol*K | PHPMS | Meot-ner, 1988, 2 | gas phase; M |
By formula: C4H5N+ + C4H5N = (C4H5N+ • C4H5N)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 16.5 | kcal/mol | PHPMS | Hiraoka, Takimoto, et al., 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 20.3 | cal/mol*K | PHPMS | Hiraoka, Takimoto, et al., 1987 | gas phase; M |
By formula: (C4H5N+ • C4H5N) + C4H5N = (C4H5N+ • 2C4H5N)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 13.8 | kcal/mol | PHPMS | Hiraoka, Takimoto, et al., 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 29.2 | cal/mol*K | PHPMS | Hiraoka, Takimoto, et al., 1987 | gas phase; M |
By formula: C4H6N+ + C4H5N = (C4H6N+ • C4H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 16.8 | kcal/mol | PHPMS | Hiraoka, Takimoto, et al., 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 24.7 | cal/mol*K | PHPMS | Hiraoka, Takimoto, et al., 1987 | gas phase; M |
By formula: (C4H6N+ • C4H5N) + C4H5N = (C4H6N+ • 2C4H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 12.3 | kcal/mol | PHPMS | Hiraoka, Takimoto, et al., 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 30.4 | cal/mol*K | PHPMS | Hiraoka, Takimoto, et al., 1987 | gas phase; M |
By formula: Cl- + C4H5N = (Cl- • C4H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 18.8 ± 2.0 | kcal/mol | IMRE | Larson and McMahon, 1984 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 11.8 ± 2.0 | kcal/mol | IMRE | Larson and McMahon, 1984 | gas phase; B |
ΔrG° | 14.00 | kcal/mol | TDEq | French, Ikuta, et al., 1982 | gas phase; B |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
11.6 | 421. | PHPMS | French, Ikuta, et al., 1982 | gas phase; M |
By formula: Co+ + C4H5N = (Co+ • C4H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | >66. | kcal/mol | RAK | Gapeev and Yang, 2000 | RCD |
By formula: (Co+ • C4H5N) + C4H5N = (Co+ • 2C4H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 46.4 | kcal/mol | RAK | Gapeev and Yang, 2000 | RCD |
By formula: Cr+ + C4H5N = (Cr+ • C4H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 42.5 | kcal/mol | RAK | Gapeev and Yang, 2000 | RCD |
By formula: (Cr+ • C4H5N) + C4H5N = (Cr+ • 2C4H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 34.9 | kcal/mol | RAK | Gapeev and Yang, 2000 | RCD |
By formula: Cu+ + C4H5N = (Cu+ • C4H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 59.0 | kcal/mol | RAK | Gapeev and Yang, 2000 | RCD |
By formula: (Cu+ • C4H5N) + C4H5N = (Cu+ • 2C4H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 44.0 | kcal/mol | RAK | Gapeev and Yang, 2000 | RCD |
By formula: F- + C4H5N = (F- • C4H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 34.2 ± 2.0 | kcal/mol | IMRE | Larson and McMahon, 1983 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 25.5 | cal/mol*K | N/A | Larson and McMahon, 1983 | gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 26.6 ± 2.0 | kcal/mol | IMRE | Larson and McMahon, 1983 | gas phase; B,M |
By formula: Fe+ + C4H5N = (Fe+ • C4H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 54.0 | kcal/mol | RAK | Gapeev and Yang, 2000 | RCD |
By formula: (Fe+ • C4H5N) + C4H5N = (Fe+ • 2C4H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 41.6 | kcal/mol | RAK | Gapeev and Yang, 2000 | RCD |
By formula: HS- + C4H5N = (HS- • C4H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 23.0 ± 1.0 | kcal/mol | TDAs | Meot-ner, 1988 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 24.4 | cal/mol*K | PHPMS | Meot-ner, 1988 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 15.7 ± 1.0 | kcal/mol | TDAs | Meot-ner, 1988 | gas phase; B |
By formula: K+ + C4H5N = (K+ • C4H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 20.0 ± 1.0 | kcal/mol | CIDT | Huang and Rodgers, 2002 | RCD |
By formula: Li+ + C4H5N = (Li+ • C4H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 42.3 ± 4.0 | kcal/mol | CIDT | Huang and Rodgers, 2002 | RCD |
By formula: Mg+ + C4H5N = (Mg+ • C4H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 44.0 | kcal/mol | RAK | Gapeev and Yang, 2000 | RCD |
By formula: Mn+ + C4H5N = (Mn+ • C4H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 42.3 | kcal/mol | RAK | Gapeev and Yang, 2000 | RCD |
By formula: (Mn+ • C4H5N) + C4H5N = (Mn+ • 2C4H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 27.0 | kcal/mol | RAK | Gapeev and Yang, 2000 | RCD |
By formula: Mo+ + C4H5N = (Mo+ • C4H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | >69. | kcal/mol | RAK | Gapeev and Yang, 2000 | RCD |
By formula: Na+ + C4H5N = (Na+ • C4H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 24.3 ± 1.1 | kcal/mol | CIDT | Huang and Rodgers, 2002 | RCD |
By formula: Ni+ + C4H5N = (Ni+ • C4H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | >68. | kcal/mol | RAK | Gapeev and Yang, 2000 | RCD |
By formula: (Ni+ • C4H5N) + C4H5N = (Ni+ • 2C4H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 47.0 | kcal/mol | RAK | Gapeev and Yang, 2000 | RCD |
By formula: V+ + C4H5N = (V+ • C4H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | >41. | kcal/mol | RAK | Gapeev and Yang, 2000 | RCD |
By formula: W+ + C4H5N = (W+ • C4H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | >50. | kcal/mol | RAK | Gapeev and Yang, 2000 | RCD |
IR Spectrum
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes
Data compiled by: Coblentz Society, Inc.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Mass spectrum (electron ionization)
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, UV/Visible spectrum, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
Due to licensing restrictions, this spectrum cannot be downloaded.
Owner | NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | U.S. BUREAU OF MINES, LARAMIE, WYO, USA |
NIST MS number | 34529 |
UV/Visible spectrum
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Victor Talrose, Eugeny B. Stern, Antonina A. Goncharova, Natalia A. Messineva, Natalia V. Trusova, Margarita V. Efimkina
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
View spectrum image in SVG format.
Download spectrum in JCAMP-DX format.
Source | missing citation |
---|---|
Owner | INEP CP RAS, NIST OSRD Collection (C) 2007 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
Origin | INSTITUTE OF ENERGY PROBLEMS OF CHEMICAL PHYSICS, RAS |
Source reference | RAS UV No. 17 |
Instrument | Beckman DU |
Melting point | -23.4 |
Boiling point | 129.7 |
Gas Chromatography
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Kovats' RI, non-polar column, isothermal
Column type | Active phase | Temperature (C) | I | Reference | Comment |
---|---|---|---|---|---|
Capillary | OV-101 | 110. | 747. | Zhuravleva, 2000 | 50. m/0.3 mm/0.4 μm, He |
Capillary | OV-101 | 110. | 747. | Golovnya, Kuz'menko, et al., 1999 | 50. m/0.3 mm/0.4 μm, He |
Packed | PMS-100 | 130. | 706. | Anderson, Jurel, et al., 1973 | He, Celite 545 (44-60 mesh); Column length: 3. m |
Packed | SE-30 | 110. | 740. | Tibor and Anna, 1971 | N2, Chromosorb W-AW; Column length: 2. m |
Packed | SE-30 | 90. | 733. | Tibor and Anna, 1971 | N2, Chromosorb W-AW; Column length: 2. m |
Kovats' RI, polar column, isothermal
Column type | Active phase | Temperature (C) | I | Reference | Comment |
---|---|---|---|---|---|
Packed | Carbowax 20M | 160. | 1516. | Kurbatova, Finkelstein, et al., 2004 | Chromaton N-AW; Column length: 1. m |
Packed | PEG-2000 | 150. | 1492. | Anderson, Jurel, et al., 1973 | He, Celite 545 (44-60 mesh); Column length: 3. m |
Packed | PEG-2000 | 152. | 1520. | Anderson, Jurel, et al., 1973 | He, Celite 545 (44-60 mesh); Column length: 3. m |
Packed | PEG-2000 | 179. | 1530. | Anderson, Jurel, et al., 1973 | He, Celite 545 (44-60 mesh); Column length: 3. m |
Packed | PEG-2000 | 180. | 1514. | Anderson, Jurel, et al., 1973 | He, Celite 545 (44-60 mesh); Column length: 3. m |
Packed | PEG-2000 | 200. | 1520. | Anderson, Jurel, et al., 1973 | He, Celite 545 (44-60 mesh); Column length: 3. m |
Packed | PEG-2000 | 200. | 1545. | Anderson, Jurel, et al., 1973 | He, Celite 545 (44-60 mesh); Column length: 3. m |
Packed | PEG-20M | 110. | 1502. | Tibor and Anna, 1971 | N2, Chromosorb W-AW; Column length: 2. m |
Packed | PEG-20M | 90. | 1498. | Tibor and Anna, 1971 | N2, Chromosorb W-AW; Column length: 2. m |
Van Den Dool and Kratz RI, non-polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | DB-5 | 751. | Methven L., Tsoukka M., et al., 2007 | 60. m/0.32 mm/1. μm, 40. C @ 2. min, 4. K/min, 260. C @ 10. min |
Capillary | HP-5 | 771. | Solina, Baumgartner, et al., 2005 | 25. m/0.2 mm/1. μm, He, 5. K/min, 280. C @ 5. min; Tstart: 40. C |
Capillary | HP-5 | 771. | Solina, Baumgartner, et al., 2005 | 25. m/0.2 mm/1. μm, He, 5. K/min, 280. C @ 5. min; Tstart: 40. C |
Capillary | SPB-5 | 757. | Pino, Marbot, et al., 2004 | 30. m/0.25 mm/0.25 μm, He, 60. C @ 2. min, 4. K/min, 250. C @ 20. min |
Capillary | SPB-5 | 751. | Pino, Marbot, et al., 2004, 2 | 30. m/0.25 mm/0.25 μm, He, 60. C @ 2. min, 4. K/min, 250. C @ 20. min |
Capillary | BPX-5 | 774. | Bredie, Mottram, et al., 2002 | 50. m/0.32 mm/0.5 μm, 60. C @ 5. min, 4. K/min, 250. C @ 20. min |
Capillary | BPX-5 | 744. | Ames, Guy, et al., 2001 | 50. m/0.32 mm/0.5 μm, He, 60. C @ 5. min, 4. K/min, 250. C @ 10. min |
Capillary | BPX-5 | 760. | Ames, Guy, et al., 2001, 2 | 50. m/0.32 mm/0.25 μm, He, 60. C @ 5. min, 4. K/min, 250. C @ 10. min |
Capillary | DB-1 | 731. | Kim, 2001 | 60. m/0.32 mm/1. μm, He, 40. C @ 5. min, 2. K/min; Tend: 220. C |
Capillary | DB-1 | 733. | Izzo and Ho, 1991 | 50. m/0.32 mm/1.05 μm, He, 2. K/min, 260. C @ 40. min; Tstart: 40. C |
Packed | SE-30 | 739. | Peng, Ding, et al., 1988 | He, Supelcoport and Chromosorb, 40. C @ 4. min, 10. K/min, 250. C @ 60. min; Column length: 3.05 m |
Capillary | DB-1 | 727. | Zhang, Chien, et al., 1988 | 60. m/0.25 mm/0.25 μm, He, 2. K/min, 220. C @ 10. min; Tstart: 40. C |
Van Den Dool and Kratz RI, non-polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | CP-Sil 8CB-MS | 759. | Elmore, Mottram, et al., 2000 | 60. m/0.25 mm/0.25 μm, He; Program: 0C(5min) => 40C/min => 40C (2min) => 4C/min => 280C |
Capillary | DB-5 | 765. | Parker, Hassell, et al., 2000 | 50. m/0.32 mm/0.5 μm, He; Program: oC(5min) => 60C/min => 60C (5min) => 4C/min => 250C |
Van Den Dool and Kratz RI, polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | DB-Wax | 1521. | Lopez-Galilea I., Fournier N., et al., 2006 | 30. m/0.32 mm/0.5 μm, He, 5. K/min, 240. C @ 10. min; Tstart: 40. C |
Capillary | CP-Wax 52CB | 1507. | Mahadevan and Farmer, 2006 | 60. C @ 5. min, 4. K/min, 220. C @ 30. min; Column length: 50. m; Column diameter: 0.32 mm |
Capillary | Supelcowax-10 | 1523. | Chung, Yung, et al., 2002 | 60. m/0.25 mm/0.25 μm, He, 35. C @ 5. min, 2. K/min, 195. C @ 90. min |
Capillary | Supelcowax-10 | 1523. | Chung, Yung, et al., 2001 | 60. m/0.25 mm/0.25 μm, He, 35. C @ 5. min, 2. K/min, 195. C @ 90. min |
Capillary | DB-Wax | 1513. | Kim, 2001 | 60. m/0.25 mm/0.25 μm, He, 40. C @ 5. min, 2. K/min, 200. C @ 30. min |
Capillary | Supelcowax-10 | 1524. | Chung, 2000 | 60. m/0.25 mm/0.25 μm, He, 2. K/min, 195. C @ 90. min; Tstart: 35. C |
Capillary | Supelcowax-10 | 1525. | Chung, 1999 | 60. m/0.25 mm/0.25 μm, He, 35. C @ 5. min, 2. K/min, 195. C @ 90. min |
Capillary | FFAP | 1547. | Ott, Fay, et al., 1997 | 30. m/0.25 mm/0.25 μm, He, 20. C @ 1. min, 4. K/min, 200. C @ 1. min |
Capillary | PEG-20M | 1505. | Shimoda, Nakada, et al., 1997 | 60. m/0.25 mm/0.25 μm, He, 2. K/min, 230. C @ 60. min; Tstart: 50. C |
Capillary | DB-Wax | 1505. | Shimoda, Shiratsuchi, et al., 1996 | 60. m/0.25 mm/0.25 μm, He, 2. K/min, 230. C @ 60. min; Tstart: 50. C |
Capillary | DB-Wax | 1490. | Shimoda, Shigematsu, et al., 1995 | 60. m/0.25 mm/0.25 μm, 2. K/min; Tstart: 50. C; Tend: 230. C |
Capillary | DB-Wax | 1538. | Chung, Eiserich, et al., 1994 | He, 60. C @ 4. min, 3. K/min, 220. C @ 30. min; Column length: 60. m; Column diameter: 0.25 mm |
Capillary | DB-Wax | 1512. | Shiratsuchi, Shimoda, et al., 1994 | 60. m/0.25 mm/0.25 μm, 2. K/min, 230. C @ 60. min; Tstart: 50. C |
Capillary | DB-Wax | 1512. | Shiratsuchi, Shimoda, et al., 1994, 2 | 60. m/0.25 mm/0.25 μm, He, 2. K/min, 230. C @ 60. min; Tstart: 50. C |
Capillary | Supelcowax-10 | 1514. | Chung and Cadwallader, 1993 | 60. m/0.25 mm/0.25 μm, He, 40. C @ 5. min, 2. K/min, 195. C @ 40. min |
Capillary | Supelcowax-10 | 1530. | Matiella and Hsieh, 1990 | 60. m/0.25 mm/0.25 μm, 40. C @ 5. min, 2. K/min, 175. C @ 20. min |
Capillary | Supelcowax-10 | 1521. | Tanchotikul and Hsieh, 1989 | 60. m/0.25 mm/0.25 μm, 40. C @ 5. min, 2. K/min, 175. C @ 20. min |
Capillary | Supelcowax-10 | 1523. | Tanchotikul and Hsieh, 1989 | 60. m/0.25 mm/0.25 μm, 40. C @ 5. min, 2. K/min, 175. C @ 20. min |
Capillary | Supelcowax-10 | 1524. | Vejaphan, Hsieh, et al., 1988 | 60. m/0.25 mm/0.25 μm, 40. C @ 5. min, 2. K/min, 175. C @ 20. min |
Capillary | Supelcowax-10 | 1526. | Vejaphan, Hsieh, et al., 1988 | 60. m/0.25 mm/0.25 μm, 40. C @ 5. min, 2. K/min, 175. C @ 20. min |
Van Den Dool and Kratz RI, polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | Supelcowax-10 | 1525. | Bianchi, Careri, et al., 2007 | 30. m/0.25 mm/0.25 μm, He; Program: 35C(8min) => 4C/min => 60C => 6C/min => 160C => 20C/min => 200C(1min) |
Capillary | CP-Wax 52CB | 1513. | Alasalvar, Shahidi, et al., 2003 | 60. m/0.25 mm/0.25 μm, He; Program: 40C => 5C/min => 60C => 2.5C/min => 155C |
Capillary | Supelcowax-10 | 1514. | Baek and Cadwallader, 1996 | 60. m/0.25 mm/0.25 μm; Program: 40C => (6C/min) => 80C(6min) => (15C/min) => 200C(10min) |
Normal alkane RI, non-polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | VF-5 MS | 750. | Leffingwell and Alford, 2011 | 60. m/0.32 mm/0.25 μm, Helium, 2. K/min, 260. C @ 28. min; Tstart: 30. C |
Capillary | VF-5 MS | 757. | Leffingwell and Alford, 2011 | 60. m/0.32 mm/0.25 μm, Helium, 2. K/min, 260. C @ 28. min; Tstart: 30. C |
Capillary | HP-5 | 755. | Piyachaiseth, Jirapakkul, et al., 2011 | 60. m/0.25 mm/0.25 μm, Helium, 35. C @ 1. min, 10. K/min, 220. C @ 15. min |
Capillary | ZB-5 | 751. | Harrison and Priest, 2009 | 30. m/0.25 mm/0.25 μm, Helium, 40. C @ 1. min, 6. K/min, 280. C @ 9. min |
Capillary | SLB-5MS | 768. | Risticevic, Carasek, et al., 2008 | 10. m/0.18 mm/0.18 μm, Helium, 40. C @ 1.5 min, 10. K/min; Tend: 295. C |
Capillary | MDN-5 | 748. | van Loon, Linssen, et al., 2005 | 60. m/0.25 mm/0.25 μm, He, 40. C @ 4. min, 4. K/min, 270. C @ 5. min |
Capillary | MDN-5 | 755. | van Loon, Linssen, et al., 2005 | 60. m/0.25 mm/0.25 μm, He, 40. C @ 4. min, 4. K/min, 270. C @ 5. min |
Capillary | RTX-5 | 750. | Sies A., Hirsch R., et al., 2002 | 20. m/0.18 mm/0.4 μm, He, 20. C @ 3.5 min, 40. K/min, 290. C @ 0.5 min |
Capillary | SPB-5 | 755. | Poligné, Collignan, et al., 2001 | 60. m/0.32 mm/1. μm, He, 3. K/min; Tstart: 40. C; Tend: 200. C |
Capillary | DB-1 | 725. | Buttery, Ling, et al., 1997 | 30. C @ 25. min, 4. K/min, 200. C @ 20. min; Column length: 60. m; Column diameter: 0.25 mm |
Capillary | SE-54 | 765. | Bellesia, Pinetti, et al., 1996 | 25. m/0.2 mm/0.5 μm, He, 35. C @ 2. min, 5. K/min; Tend: 250. C |
Capillary | DB-1 | 730. | Buttery and Ling, 1995 | He, 30. C @ 25. min, 4. K/min, 200. C @ 20. min; Column length: 60. m; Column diameter: 0.25 mm |
Capillary | DB-5 | 762. | Macku and Shibamoto, 1991 | He, 40. C @ 5. min, 2. K/min; Column length: 60. m; Column diameter: 0.25 mm; Tend: 160. C |
Capillary | DB-5 | 762. | Macku and Shibamoto, 1991, 2 | He, 40. C @ 5. min, 2. K/min; Column length: 60. m; Column diameter: 0.25 mm; Tend: 160. C |
Capillary | OV-101 | 768. | del Rosario, de Lumen, et al., 1984 | He, 0. C @ 1. min, 3. K/min; Column length: 50. m; Column diameter: 0.31 mm; Tend: 225. C |
Normal alkane RI, non-polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | SLB-5MS | 739. | Risticevic, Carasek, et al., 2008 | 10. m/0.18 mm/0.18 μm, Helium; Program: not specified |
Capillary | DB-5 MS | 758. | Liu, Xu, et al., 2007 | 60. m/0.32 mm/1.0 μm, Helium; Program: 40 0C (2 min) 6 0C/min -> 100 0C 4 0C/min -> 180 0C 8 0C/min -> 250 0C (12 min) |
Capillary | Polydimethyl siloxane with 5 % Ph groups | 751. | Pino, Marbot, et al., 2005 | Program: not specified |
Capillary | SPB-5 | 749. | Begnaud, Pérès, et al., 2003 | 60. m/0.32 mm/1. μm; Program: not specified |
Capillary | RTX-5 MS | 758. | Machiels and Istasse, 2003 | 60. m/0.25 mm/0.5 μm, He; Program: 35C (3min) => 10C/min => 50C => 4C/min => 200C => 50C/min => 250C (10min) |
Capillary | BPX-5 | 749. | Machiels, van Ruth, et al., 2003 | 60. m/0.32 mm/1. μm, He; Program: 40C (4min) => 2C/min => 90C => 4C/min => 130C => 8C/min => 250 C (10min) |
Capillary | Methyl phenyl siloxane (not specified) | 752. | Poligne, Collignan, et al., 2002 | Program: not specified |
Capillary | DB-5 MS | 769. | Luo and Agnew, 2001 | 30. m/0.25 mm/1.0 μm, Helium; Program: not specified |
Capillary | Methyl Silicone | 723. | Zenkevich, 1999 | Program: not specified |
Capillary | SPB-1 | 733. | Flanagan, Streete, et al., 1997 | 60. m/0.53 mm/5. μm, He; Program: 40C(6min) => 5C/min => 80C => 10C/min => 200C |
Capillary | SPB-1 | 733. | Strete, Ruprah, et al., 1992 | 60. m/0.53 mm/5.0 μm, Helium; Program: 40 0C (6 min) 5 0C/min -> 80 0C 10 0C/min -> 200 0C |
Capillary | SPB-1 | 755. | Strete, Ruprah, et al., 1992 | 60. m/0.53 mm/5.0 μm, Helium; Program: not specified |
Capillary | DB-1 | 727. | Kawai, Ishida, et al., 1991 | 60. m/0.25 mm/0.25 μm; Program: not specified |
Capillary | DB-1 | 728. | Kawai, Ishida, et al., 1991 | 60. m/0.25 mm/0.25 μm; Program: not specified |
Capillary | OV-1 | 755. | Ramsey and Flanagan, 1982 | Program: not specified |
Normal alkane RI, polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | HP-Innowax | 1488. | Puvipirom and Chaisei, 2012 | 15. m/0.32 mm/0.50 μm, Helium, 3. K/min; Tstart: 40. C; Tend: 250. C |
Capillary | FFAP | 1534. | Budryn, Nebesny, et al., 2011 | 30. m/0.32 mm/0.50 μm, Nitrogen, 35. C @ 5. min, 4. K/min, 250. C @ 45. min |
Capillary | FFAP | 1534. | Nebesny, Budryn, et al., 2007 | 30. m/0.32 mm/0.5 μm, N2, 35. C @ 5. min, 4. K/min, 320. C @ 45. min |
Capillary | HP-Wax | 1542. | Sanz, Maeztu, et al., 2002 | 60. m/0.25 mm/0.5 μm, He, 40. C @ 6. min, 3. K/min; Tend: 190. C |
Capillary | HP-Wax | 1542. | Maeztu, Sanz, et al., 2001 | 60. m/0.25 mm/0.5 μm, He, 40. C @ 6. min, 3. K/min; Tend: 190. C |
Capillary | HP-Wax | 1542. | Sanz, Ansorena, et al., 2001 | 60. m/0.25 mm/0.5 μm, He, 40. C @ 6. min, 3. K/min; Tend: 190. C |
Capillary | Supelcowax-10 | 1526. | Girard and Durance, 2000 | 60. m/0.25 mm/0.25 μm, He, 35. C @ 10. min, 4. K/min; Tend: 200. C |
Capillary | DB-Wax | 1507. | Buttery, Orts, et al., 1999 | 30. C @ 4. min, 2. K/min, 170. C @ 60. min; Column length: 60. m; Column diameter: 0.32 mm |
Capillary | DB-Wax | 1507. | Buttery and Ling, 1998 | 30. C @ 4. min, 2. K/min, 170. C @ 30. min; Column length: 60. m; Column diameter: 0.25 mm |
Capillary | PEG-20M | 1477. | Kubota, Matsujage, et al., 1996 | 50. m/0.25 mm/0.25 μm, Nitrogen, 2. K/min; Tstart: 60. C; Tend: 180. C |
Capillary | DB-Wax | 1513. | Umano, Hagi, et al., 1995 | He, 40. C @ 2. min, 2. K/min; Column length: 60. m; Column diameter: 0.25 mm; Tend: 200. C |
Capillary | DB-Wax | 1470. | Hatsuko, Kazuko, et al., 1992 | He, 60. C @ 10. min, 3. K/min; Column length: 30. m; Column diameter: 0.25 mm; Tend: 240. C |
Capillary | DB-Wax | 1509. | Wong and Bernhard, 1988 | He, 70. C @ 8. min, 2. K/min; Column length: 30. m; Column diameter: 0.25 mm; Tend: 160. C |
Capillary | Carbowax 20M | 1504. | Shibamoto and Russell, 1977 | 1. K/min; Column length: 100. m; Column diameter: 0.25 mm; Tstart: 70. C; Tend: 170. C |
Capillary | Carbowax 20M | 1505. | Shibamoto and Russell, 1977 | 1. K/min; Column length: 100. m; Column diameter: 0.25 mm; Tstart: 70. C; Tend: 170. C |
Normal alkane RI, polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | DB-Wax | 1498. | Welke, Manfroi, et al., 2012 | 30. m/0.25 mm/0.25 μm, Helium; Program: not specified |
Capillary | DB-Wax | 1507. | Welke, Manfroi, et al., 2012 | 30. m/0.25 mm/0.25 μm, Helium; Program: not specified |
Capillary | DB-Wax | 1518. | Gonzalez-Rios, Suarez-Quiroz, et al., 2007 | 30. m/0.25 mm/0.25 μm, Hydrogen; Program: 44 0C 3 0C/min -> 170 0C 8 0C/min -> 250 0C |
Capillary | DB-Wax | 1514. | Kim. J.H., Ahn, et al., 2004 | 60. m/0.25 mm/0.25 μm, Helium; Program: 60 0C (3 min) 2 0C/min -> 150 0C 4 0C/min -> 200 0C |
Capillary | Carbowax 20M | 1516. | Finkelstein, Kurbatova, et al., 2002 | Program: not specified |
Capillary | CP-Wax 52CB | 1532. | Muresan, Eillebrecht, et al., 2000 | 50. m/0.32 mm/1.2 μm; Program: 40C(10min) => 3C/min => 190C => 10C/min => 250C(5min) |
Capillary | Supelcowax-10 | 1524. | Chang, Seitz, et al., 1995 | 30. m/0.32 mm/0.25 μm, He; Program: 50C(2min) => 7C/min => 140C => 17.5C/min => 230C |
Capillary | DB-Wax | 1508. | Peng, Yang, et al., 1991 | Program: not specified |
Capillary | DB-Wax | 1511. | Peng, Yang, et al., 1991 | Program: not specified |
Capillary | Carbowax 20M | 1472. | Ramsey and Flanagan, 1982 | Program: not specified |
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Zaheeruddin and Lodhi, 1991
Zaheeruddin, M.; Lodhi, Z.H.,
Enthalpies of formation of some cyclic compounds,
Phys. Chem. (Peshawar Pak.), 1991, 10, 111-118. [all data]
Scott, Berg, et al., 1967
Scott, D.W.; Berg, W.T.; Hossenlopp, I.A.; Hubbard, W.N.; Messerly, J.F.; Todd, S.S.; Douslin, D.R.; McCullough, J.P.; Waddington, G.,
Pyrrole: Chemical thermodynamic properties,
J. Phys. Chem., 1967, 71, 2263-2270. [all data]
Zimmerman and Geisenfelder, 1961
Zimmerman, H.; Geisenfelder, H.,
Uber die Mesomerieenergie von Azolen,
Z. Electrochem., 1961, 65, 368-371. [all data]
Rosso and Carbonnel, 1973
Rosso, M.J.-C.; Carbonnel, L.,
Hydrates + cubic clathrates generated by the nitrogenous meterocycles: the binary systems water + propylene imine and water + pyrrole,
C. R. Seances Acad. Sci., Ser. C, 1973, 277, 259. [all data]
Timmermans and Hennaut-Roland, 1955
Timmermans, J.; Hennaut-Roland, M.,
Work of the International Bureau of Physical-Chemical Standards. IX. The Physical Constants of Twenty Organic Compounds,
J. Chim. Phys. Phys.-Chim. Biol., 1955, 52, 223. [all data]
Anonymous, 1942
Anonymous, R.,
, Am. Pet. Inst. Res. Proj. 6, Natl. Bur. Stand., 1942. [all data]
Milazzo, 1941
Milazzo, G.,
Boll. Sci. Facolta Chim. Ind. Bologna, 1941, 94. [all data]
Scott, Berg, et al., 1967, 2
Scott, D.W.; Berg, W.T.; Hossenlopp, I.A.; Hubbard, W.N.; Messerly, J.F.; Todd, S.S.; Douslin, D.R.; McCullough, J.P.; Waddington, G.,
Pyrrole: Chemical Thermodynamic Properties,
J. Phys. Chem., 1967, 71, 2263. [all data]
Helm, Lanum, et al., 1958
Helm, R.V.; Lanum, W.J.; Cook, G.L.; Ball, J.S.,
Purification and Properties of Pyrrole, Pyrrolidine, Pyridine and 2-Methylpyridine,
J. Phys. Chem., 1958, 62, 858. [all data]
McCullough and Waddington, 1957
McCullough, J.P.; Waddington, G.,
Melting-point purity determinations: limitations as evidenced by calorimetric studies in the melting region,
Anal. Chim. Acta, 1957, 17, 80. [all data]
Majer and Svoboda, 1985
Majer, V.; Svoboda, V.,
Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]
Cheng, McCoubrey, et al., 1962
Cheng, D.C.H.; McCoubrey, J.C.; Phillips, D.G.,
Critical Temperatures of Some Organic Cyclic Compounds,
Trans. Faraday Soc., 1962, 58, 224. [all data]
Glaser and Ruland, 1957
Glaser, F.; Ruland, H.,
Untersuchungsen über dampfdruckkurven und kritische daten einiger technisch wichtiger organischer substanzen,
Chem. Ing. Techn., 1957, 29, 772. [all data]
Kimizuka and Szydlowski, 1992
Kimizuka, Wieslawa; Szydlowski, Jerzy,
Vapor pressure isotope effect of n-deuterated pyrrole,
Fluid Phase Equilibria, 1992, 77, 261-267, https://doi.org/10.1016/0378-3812(92)85107-J
. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Osborn and Douslin, 1968
Osborn, Ann G.; Douslin, Donald R.,
Vapor pressure relations of 13 nitrogen compounds related to petroleum,
J. Chem. Eng. Data, 1968, 13, 4, 534-537, https://doi.org/10.1021/je60039a024
. [all data]
Eon, Pommier, et al., 1971
Eon, C.; Pommier, C.; Guiochon, G.,
Vapor pressures and second virial coefficients of some five-membered heterocyclic derivatives,
J. Chem. Eng. Data, 1971, 16, 4, 408-410, https://doi.org/10.1021/je60051a008
. [all data]
Stull, 1947
Stull, Daniel R.,
Vapor Pressure of Pure Substances. Organic and Inorganic Compounds,
Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022
. [all data]
Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D.,
Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III,
J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985
. [all data]
Gianola, Ichino, et al., 2004
Gianola, A.J.; Ichino, T.; Hoenigman, R.L.; Kato, S.; Bierbaum, V.M.; Lineberger, W.C.,
Thermochemistry and electronic structure of the pyrrolyl radical,
J. Phys. Chem. A, 2004, 108, 46, 10326-10335, https://doi.org/10.1021/jp047790+
. [all data]
Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr.,
The gas phase acidity scale from methanol to phenol,
J. Am. Chem. Soc., 1979, 101, 6047. [all data]
Cumming and Kebarle, 1978
Cumming, J.B.; Kebarle, P.,
Summary of gas phase measurements involving acids AH. Entropy changes in proton transfer reactions involving negative ions. Bond dissociation energies D(A-H) and electron affinities EA(A),
Can. J. Chem., 1978, 56, 1. [all data]
Muftakhov, Vasil'ev, et al., 1999
Muftakhov, M.V.; Vasil'ev, Y.V.; Khatymov, R.V.; Mazunov, V.A.; Takhistov, V.V.; Travkin, O.V.; Yakovleva, E.V.,
Thermochemistry of negatively charged ions. II. Energetics of formation of negative ions from acridanone and some of its derivatives,
Rapid Commun. Mass Spectrom., 1999, 13, 10, 912-923, https://doi.org/10.1002/(SICI)1097-0231(19990530)13:10<912::AID-RCM585>3.0.CO;2-W
. [all data]
Meot-ner, 1988
Meot-ner, M.,
Ionic Hydrogen Bond and Ion Solvation. 6. Interaction Energies of the Acetate Ion with Organic Molecules. Comparison of CH3COO- with Cl-, CN-, and SH-,
J. Am. Chem. Soc., 1988, 110, 12, 3854, https://doi.org/10.1021/ja00220a022
. [all data]
Larson and McMahon, 1987
Larson, J.W.; McMahon, T.B.,
Hydrogen bonding in gas phase anions. The energetics of interaction between cyanide ion and bronsted acids,
J. Am. Chem. Soc., 1987, 109, 6230. [all data]
Payzant, Yamdagni, et al., 1971
Payzant, J.D.; Yamdagni, R.; Kebarle, P.,
Hydration of CN-, NO2-, NO3-, and HO- in the gas phase,
Can. J. Chem., 1971, 49, 3308. [all data]
Larson and McMahon, 1983
Larson, J.W.; McMahon, T.B.,
Strong hydrogen bonding in gas-phase anions. An ion cyclotron resonance determination of fluoride binding energetics to bronsted acids from gas-phase fluoride exchange equilibria measurements,
J. Am. Chem. Soc., 1983, 105, 2944. [all data]
Arshadi, Yamdagni, et al., 1970
Arshadi, M.; Yamdagni, R.; Kebarle, P.,
Hydration of Halide Negative Ions in the Gas Phase. II. Comparison of Hydration Energies for the Alkali Positive and Halide Negative Ions,
J. Phys. Chem., 1970, 74, 7, 1475, https://doi.org/10.1021/j100702a014
. [all data]
Larson and McMahon, 1984
Larson, J.W.; McMahon, T.B.,
Hydrogen bonding in gas phase anions. An experimental investigation of the interaction between chloride ion and bronsted acids from ICR chloride exchange equilibria,
J. Am. Chem. Soc., 1984, 106, 517. [all data]
French, Ikuta, et al., 1982
French, M.A.; Ikuta, S.; Kebarle, P.,
Hydrogen bonding of O-H and C-H hydrogen donors to Cl-. Results from mass spectrometric measurement of the ion-molecule equilibria RH + Cl- = RHCl-,
Can. J. Chem., 1982, 60, 1907. [all data]
Meot-ner, 1988, 2
Meot-ner, M.,
The Ionic Hydrogen Bond and Solvation. 7. Interaction Energies of Carbanions with Solvent Molecules,
J. Am. Chem. Soc., 1988, 110, 12, 3858, https://doi.org/10.1021/ja00220a022
. [all data]
Hiraoka, Takimoto, et al., 1987
Hiraoka, K.; Takimoto, H.; Yamabe, S.,
Stabilities and Structures in Cluster Ions of Five-Membered Heterocyclic Compounds Containing O, N and S Atoms,
J. Am. Chem. Soc., 1987, 109, 24, 7346, https://doi.org/10.1021/ja00258a018
. [all data]
Deakyne and Meot-Ner (Mautner), 1985
Deakyne, C.A.; Meot-Ner (Mautner), M.,
Unconventional Ionic Hydrogen Bonds. 2. NH+ pi. Complexes of Onium Ions with Olefins and Benzene Derivatives,
J. Am. Chem. Soc., 1985, 107, 2, 474, https://doi.org/10.1021/ja00288a034
. [all data]
Meot-Ner (Mautner), 1988
Meot-Ner (Mautner), M.,
Models for Strong Interactions in Proteins and Enzymes. 2. Interactions of Ions with the Peptide Link and Imidazole,
J. Am. Chem. Soc., 1988, 110, 10, 3075, https://doi.org/10.1021/ja00218a014
. [all data]
Gapeev and Yang, 2000
Gapeev, A.; Yang, C.-N.,
Binding Energies of Gas-Phase Ions with Pyrrole. Experimental and Quantum Chemical Results,
J. Phys. Chem. A, 2000, 104, 14, 3246, https://doi.org/10.1021/jp992627d
. [all data]
Huang and Rodgers, 2002
Huang, H.; Rodgers, M.T.,
Sigma versus Pi interactions in alkali metal ion binding to azoles: Threshold collision-induced dissociation and ab initio theory studies,
J. Phys. Chem. A, 2002, 106, 16, 4277, https://doi.org/10.1021/jp013630b
. [all data]
Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G.,
Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update,
J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018
. [all data]
Klasinc, Sabljic, et al., 1982
Klasinc, L.; Sabljic, A.; Kluge, G.; Rieger, J.; Scholz, M.,
Chemistry of excited states. Part 13. Assignment of lowest .PI.-ionizations in photoelectron spectra of thiophen, furan, and pyrrole,
J. Chem. Soc. Perkin Trans. 2, 1982, 539. [all data]
Galasso, Klasinc, et al., 1981
Galasso, V.; Klasinc, L.; Sabluic, A.; Trinajstic, N.; Pappalardo, G.C.; Steglich, W.,
Conformation and photoelectron spectra of 2-(2-Furyl)pyrrole and 2-(2-tThienyl)pyrrole,
J. Chem. Soc. Perkin Trans. 2, 1981, 127. [all data]
Willett and Baer, 1980
Willett, G.D.; Baer, T.,
Thermochemistry and dissociation dynamics of state-selected C4H4X ions. 3. C4H5N+,
J. Am. Chem. Soc., 1980, 102, 6774. [all data]
Tedder and Vidaud, 1980
Tedder, J.M.; Vidaud, P.H.,
Charge exchange mass spectra of thiophene, pyrrole and furan,
J. Chem. Soc. Faraday Trans. 2, 1980, 76, 1516. [all data]
Cooper, Williamson, et al., 1980
Cooper, C.D.; Williamson, A.D.; Miller, J.C.; Compton, R.N.,
Resonantly enhanced multiphoton ionization of pyrrole, N-methyl pyrrole, and furan,
J. Chem. Phys., 1980, 73, 1527. [all data]
Williamson, Compton, et al., 1979
Williamson, A.D.; Compton, R.N.; Eland, J.H.D.,
Accurate photoionization thresholds by multiphoton ionization: Pyrrole,
J. Chem. Phys., 1979, 70, 590. [all data]
Van Veen, 1976
Van Veen, E.H.,
Triplet π-π* transitions in thiophene, furan and pyrrole by low-energy electron-impact spectroscopy,
Chem. Phys. Lett., 1976, 41, 535. [all data]
Thorstad and Undheim, 1974
Thorstad, O.; Undheim, K.,
Mass spectrometry of onium compounds. XXIV. Ionisation potential in structure analysis of pyridodiazo-oxides,
Chem. Scr., 1974, 6, 222. [all data]
Linda, Marino, et al., 1971
Linda, P.; Marino, G.; Pignataro, S.,
A comparison of sensitivities to substituent effects of five- membered heteroaromatic rings in gas phase ionization,
J. Chem. Soc. B, 1971, 1585. [all data]
Derrick, Asbrink, et al., 1971
Derrick, P.J.; Asbrink, L.; Edqvist, O.; Jonsson, B.-O.; Lindholm, E.,
Rydberg series in small molecules. XII. Photoelectron spectroscopy and electronic structure of pyrrole,
Intern. J. Mass Spectrom. Ion Phys., 1971, 6, 191. [all data]
Potapov and Yuzhakova, 1970
Potapov, V.K.; Yuzhakova, O.A.,
Photoionization and electronic structure of pyrrole and its methyl derivatives,
Dokl. Akad. Nauk SSSR, 1970, 192, 131, In original 365. [all data]
Potapov and Bazhenov, 1970
Potapov, V.K.; Bazhenov, B.A.,
The photionization of pyrrole, furan, and thiophene,
High Energy Chem., 1970, 505, In original 553. [all data]
Watanabe, Nakayama, et al., 1962
Watanabe, K.; Nakayama, T.; Mottl, J.,
Ionization potentials of some molecules,
J. Quant. Spectry. Radiative Transfer, 1962, 2, 369. [all data]
Cradock, Findlay, et al., 1973
Cradock, S.; Findlay, R.H.; Palmer, M.H.,
The molecular energy levels of the azoles: A study by photoelectron spectroscopy and ab initio molecular orbital calculations,
Tetrahedron, 1973, 29, 2173. [all data]
Sakurai and Jennings, 1981
Sakurai, H.; Jennings, K.R.,
A study of the structures of decomposing and non-decomposing [C4H5N]+ ions formed from different neutral species,
Org. Mass Spectrom., 1981, 16, 393. [all data]
Zhuravleva, 2000
Zhuravleva, I.L.,
Evaluation of the polarity and boiling points of nitrogen-containing heterocyclic compounds by gas chromatography,
Russ. Chem. Bull. (Engl. Transl.), 2000, 49, 2, 325-328, https://doi.org/10.1007/BF02494682
. [all data]
Golovnya, Kuz'menko, et al., 1999
Golovnya, R.V.; Kuz'menko, T.E.; Zhuravleva, I.L.,
Gas chromatographic indicator of the ability of five- and six-membered heterocyclic nitrogen-containing compounds for self-association in pure liquids,
Russ. Chem. Bull. (Engl. Transl.), 1999, 48, 4, 726-729, https://doi.org/10.1007/BF02496256
. [all data]
Anderson, Jurel, et al., 1973
Anderson, A.; Jurel, S.; Shymanska, M.; Golender, L.,
Gas-liquid chromatography of some aliphatic and heterocyclic mono- and pollyfunctional amines. VII. Retention indices of amines in some polar and unpolar stationary phases,
Latv. PSR Zinat. Akad. Vestis Kim. Ser., 1973, 1, 51-63. [all data]
Tibor and Anna, 1971
Tibor, T.; Anna, B.,
Gázkromatográfiás retenció és a kémiai szerkezet, I.,
Magy. Kem. Foly., 1971, 77, 576-587. [all data]
Kurbatova, Finkelstein, et al., 2004
Kurbatova, S.V.; Finkelstein, E.E.; Kolosova, E.A.; Kartashev, A.V.; Rashkin, S.V.,
Structural analogy method in studies of adamantanes,
J. Struct. Chem., 2004, 45, 1, 144-150, https://doi.org/10.1023/B:JORY.0000041513.82837.4e
. [all data]
Methven L., Tsoukka M., et al., 2007
Methven L.; Tsoukka M.; Oruna-Concha M.J.; Parker J.K.; Mottram D.S.,
Influence of sulfur amino acids on the volatile and nonvolatile components of cooked salmon (Salmo salar),
J. Agric. Food Chem., 2007, 55, 4, 1427-1436, https://doi.org/10.1021/jf0625611
. [all data]
Solina, Baumgartner, et al., 2005
Solina, M.; Baumgartner, P.; Johnson, R.L.; Whitfield, F.B.,
Volatile aroma components of soy protein isolate and acid-hydrolysed vegetable protein,
Food Chem., 2005, 90, 4, 861-873, https://doi.org/10.1016/j.foodchem.2004.06.005
. [all data]
Pino, Marbot, et al., 2004
Pino, J.A.; Marbot, R.; Vazquez, C.,
Volatile components of tamarind (Tamarindus indica L.) grown in Cuba,
J. Essent. Oil Res., 2004, 16, 4, 318-320, https://doi.org/10.1080/10412905.2004.9698731
. [all data]
Pino, Marbot, et al., 2004, 2
Pino, J.A.; Marbot, R.; Rosado, A.; Vázquez, C.,
Volatile constituents of Malay rose apple [Syzygium malaccense (L.) Merr. Perry],
Flavour Fragr. J., 2004, 19, 1, 32-35, https://doi.org/10.1002/ffj.1269
. [all data]
Bredie, Mottram, et al., 2002
Bredie, W.L.P.; Mottram, D.S.; Guy, R.C.E.,
Effect of temperature and pH on the generation of flavor volatiles in extrusion cooking of wheat flour,
J. Agric. Food Chem., 2002, 50, 5, 1118-1125, https://doi.org/10.1021/jf0111662
. [all data]
Ames, Guy, et al., 2001
Ames, J.M.; Guy, R.C.E.; Kipping, G.J.,
Effect of pH and temperature on the formation of volatile compounds in cysteine/reducing sugar/starch mixtures during extrusion cooking,
J. Agric. Food Chem., 2001, 49, 4, 1885-1894, https://doi.org/10.1021/jf0012547
. [all data]
Ames, Guy, et al., 2001, 2
Ames, J.M.; Guy, R.C.E.; Kipping, G.J.,
Effect of pH, temperature, and moisture on the formation of volatile compounds in glycine/glucose model systems,
J. Agric. Food Chem., 2001, 49, 9, 4315-4323, https://doi.org/10.1021/jf010198m
. [all data]
Kim, 2001
Kim, J.S.,
Einfluss der Temperatur beim Rösten von Sesam auf Aroma und antioxidative Eigenschaften des Öls, PhD Thesis, Technischen Universität Berlin zur Erlangung des akademischen Grades, Berlin, 2001, 151. [all data]
Izzo and Ho, 1991
Izzo, H.V.; Ho, C.-T.,
Isolation and identification of the volatile components of an extruded autolyzed yeast extract,
J. Agric. Food Chem., 1991, 39, 12, 2245-2248, https://doi.org/10.1021/jf00012a029
. [all data]
Peng, Ding, et al., 1988
Peng, C.T.; Ding, S.F.; Hua, R.L.; Yang, Z.C.,
Prediction of Retention Indexes I. Structure-Retention Index Relationship on Apolar Columns,
J. Chromatogr., 1988, 436, 137-172, https://doi.org/10.1016/S0021-9673(00)94575-8
. [all data]
Zhang, Chien, et al., 1988
Zhang, Y.; Chien, M.; Ho.C.-T.,
Comparison of the volatile compounds obtained from thermal degradation of cysteine and glutathione in water,
J. Agric. Food Chem., 1988, 36, 5, 992-996, https://doi.org/10.1021/jf00083a022
. [all data]
Elmore, Mottram, et al., 2000
Elmore, J.S.; Mottram, D.S.; Enser, M.; Wood, J.D.,
The effects of diet and breed on the volatile compounds of cooked lamb,
Meat Sci., 2000, 55, 2, 149-159, https://doi.org/10.1016/S0309-1740(99)00137-0
. [all data]
Parker, Hassell, et al., 2000
Parker, J.K.; Hassell, G.M.E.; Mottram, D.S.; Guy, R.C.E.,
Sensory and instrumental analyses of volatiles generated during the extrusion cooking of oat flours,
J. Agric. Food Chem., 2000, 48, 8, 3497-3506, https://doi.org/10.1021/jf991302r
. [all data]
Lopez-Galilea I., Fournier N., et al., 2006
Lopez-Galilea I.; Fournier N.; Cid C.; Guichard E.,
Changes in headspace volatile concentrations of coffee brews caused by the roasting process and the brewing procedure,
J. Agric. Food Chem., 2006, 54, 22, 8560-8566, https://doi.org/10.1021/jf061178t
. [all data]
Mahadevan and Farmer, 2006
Mahadevan, K.; Farmer, L.,
Key Odor Impact Compounds in Three Yeast Extract Pastes,
J. Agric. Food Chem., 2006, 54, 19, 7242-7250, https://doi.org/10.1021/jf061102x
. [all data]
Chung, Yung, et al., 2002
Chung, H.-Y.; Yung, I.K.S.; Ma, W.C.J.; Kim, J.-S.,
Analysis of volatile components in frozen and dried scallops (Patinopecten yessoensis) by gas chromatography/mass spectrometry,
Food Res. Int., 2002, 35, 1, 43-53, https://doi.org/10.1016/S0963-9969(01)00107-7
. [all data]
Chung, Yung, et al., 2001
Chung, H.Y.; Yung, I.K.S.; Kim, J.-S.,
Comparison of volatile components in dried scallops (Chlamys farreri and Patinopecten yessoensis) prepared by boiling and steaming methods,
J. Agric. Food Chem., 2001, 49, 1, 192-202, https://doi.org/10.1021/jf000692a
. [all data]
Chung, 2000
Chung, H.Y.,
Volatile flavor components in red fermented soybean (Glycine max) curds,
J. Agric. Food Chem., 2000, 48, 5, 1803-1809, https://doi.org/10.1021/jf991272s
. [all data]
Chung, 1999
Chung, H.Y.,
Volatile components in crabmeats of Charybdis feriatus,
J. Agric. Food Chem., 1999, 47, 6, 2280-2287, https://doi.org/10.1021/jf981027t
. [all data]
Ott, Fay, et al., 1997
Ott, A.; Fay, L.B.; Chaintreau, A.,
Determination and origin of the aroma impact compounds of yogurt flavor,
J. Agric. Food Chem., 1997, 45, 3, 850-858, https://doi.org/10.1021/jf960508e
. [all data]
Shimoda, Nakada, et al., 1997
Shimoda, M.; Nakada, Y.; Nakashima, M.; Osajima, Y.,
Quantitative comparison of volatile flavor compounds in deep-roasted and light-roasted sesame seed oil,
J. Agric. Food Chem., 1997, 45, 8, 3193-3196, https://doi.org/10.1021/jf970172o
. [all data]
Shimoda, Shiratsuchi, et al., 1996
Shimoda, M.; Shiratsuchi, H.; Nakada, Y.; Wu, Y.; Osajima, Y.,
Identification and sensory characterization of volatile flavor compounds in sesame seed oil,
J. Agric. Food Chem., 1996, 44, 12, 3909-3912, https://doi.org/10.1021/jf960115f
. [all data]
Shimoda, Shigematsu, et al., 1995
Shimoda, M.; Shigematsu, H.; Shiratsuchi, H.; Osajima, Y.,
Comparison of the odor concentrates by SDE and adsorptive column method from green tea infusion,
J. Agric. Food Chem., 1995, 43, 6, 1616-1620, https://doi.org/10.1021/jf00054a037
. [all data]
Chung, Eiserich, et al., 1994
Chung, T.Y.; Eiserich, J.P.; Shibamoto, T.,
Volatile compounds produced from peanut oil heated with different amounts of cysteine,
J. Agric. Food Chem., 1994, 42, 8, 1743-1746, https://doi.org/10.1021/jf00044a032
. [all data]
Shiratsuchi, Shimoda, et al., 1994
Shiratsuchi, H.; Shimoda, M.; Imayoshi, K.; Noda, K.; Osajima, Y.,
Off-flavor compounds in spray-dried skim milk powder,
J. Agric. Food Chem., 1994, 42, 6, 1323-1327, https://doi.org/10.1021/jf00042a014
. [all data]
Shiratsuchi, Shimoda, et al., 1994, 2
Shiratsuchi, H.; Shimoda, M.; Imayoshi, K.; Noda, K.; Osajima, Y.,
Volatile flavor compounds in spray-dried skim milk powder,
J. Agric. Food Chem., 1994, 42, 4, 984-988, https://doi.org/10.1021/jf00040a028
. [all data]
Chung and Cadwallader, 1993
Chung, H.Y.; Cadwallader, K.R.,
Volatile components in blue crab (Callinectes sapidus) meat and processing by-product,
J. Food Sci., 1993, 58, 6, 1203-1207, https://doi.org/10.1111/j.1365-2621.1993.tb06148.x
. [all data]
Matiella and Hsieh, 1990
Matiella, J.E.; Hsieh, T.C.-Y.,
Analysis of crabmeat volatile compounds,
J. Food Sci., 1990, 55, 4, 962-966, https://doi.org/10.1111/j.1365-2621.1990.tb01575.x
. [all data]
Tanchotikul and Hsieh, 1989
Tanchotikul, U.; Hsieh, T.C.-Y.,
Volatile Flavor Components in Crayfish Waste,
J. Food Sci., 1989, 54, 6, 1515-1520, https://doi.org/10.1111/j.1365-2621.1989.tb05149.x
. [all data]
Vejaphan, Hsieh, et al., 1988
Vejaphan, W.; Hsieh, T.C.Y.; Williams, S.S.,
Volatile flavor components from boiled crayfish (Procambarus clarkii) tail meat,
J. Food Sci., 1988, 53, 6, 1666-1670, https://doi.org/10.1111/j.1365-2621.1988.tb07811.x
. [all data]
Bianchi, Careri, et al., 2007
Bianchi, F.; Careri, M.; Mangia, A.; Musci, M.,
Retention indices in the analysis of food aroma volatile compounds in temperature-programmed gas chromatography: Database creation and evaluation of precision and robustness,
J. Sep. Sci., 2007, 39, 4, 563-572, https://doi.org/10.1002/jssc.200600393
. [all data]
Alasalvar, Shahidi, et al., 2003
Alasalvar, C.; Shahidi, F.; Cadwallader, K.R.,
Comparison of natural and roasted Turkish Tombul hazelnut (Corylus avellana L.) volatiles and flavor by DHA/GC/MS and descriptive sensory analysis,
J. Agric. Food Chem., 2003, 51, 17, 5067-5072, https://doi.org/10.1021/jf0300846
. [all data]
Baek and Cadwallader, 1996
Baek, H.H.; Cadwallader, K.R.,
Volatile compounds in flavor concentrates produced from crayfish-processing byproducts with and without protease treatment,
J. Agric. Food Chem., 1996, 44, 10, 3262-3267, https://doi.org/10.1021/jf960023q
. [all data]
Leffingwell and Alford, 2011
Leffingwell, J.; Alford, E.D.,
Volatile constituents of the giant pufball mushroom (Calvatia gigantea),
Leffingwell Rep., 2011, 4, 1-17. [all data]
Piyachaiseth, Jirapakkul, et al., 2011
Piyachaiseth, T.; Jirapakkul, W.; Chaiseri, S.,
Aroma compounds of flash-fried rice,
Kasetsart J. (Nat. Sci.), 2011, 45, 717-729. [all data]
Harrison and Priest, 2009
Harrison, B.M.; Priest, F.G.,
Composition of peaks used in the preparation of malt for Scotch Whisky production - influence of geographical source and extraction depth,
J. Agric. Food Chem., 2009, 57, 6, 2385-2391, https://doi.org/10.1021/jf803556y
. [all data]
Risticevic, Carasek, et al., 2008
Risticevic, S.; Carasek, E.; Pawliszyn, J.,
Headspace solid-phase microextraction-gas chromatographic-time-of-flight mass spectrometric methodology for geographical origin verification of coffee,
Anal. Chim. Acta, 2008, 617, 1-2, 72-84, https://doi.org/10.1016/j.aca.2008.04.009
. [all data]
van Loon, Linssen, et al., 2005
van Loon, W.A.M.; Linssen, J.P.H.; Legger, A.; Posthumus, M.A.; Voragen, A.G.J.,
Identification and olfactometry of French fries flavour extracted at mouth conditions,
Food Chem., 2005, 90, 3, 417-425, https://doi.org/10.1016/j.foodchem.2004.05.005
. [all data]
Sies A., Hirsch R., et al., 2002
Sies A.; Hirsch R.; Löscher R.; Tablack P.; Guth H.,
Direct thermal desorption and Fast-GC-TOF-MS for a rapid quality control of hazelnuts, 10th Weurman Flavour Research Symposium, 24 - 28 June 2002, Beaune, France, 2002. [all data]
Poligné, Collignan, et al., 2001
Poligné, I.; Collignan, A.; Trystram, G.,
Characterization of traditional processing of pork meat into boucané,
Meat Sci., 2001, 59, 4, 377-389, https://doi.org/10.1016/S0309-1740(01)00090-0
. [all data]
Buttery, Ling, et al., 1997
Buttery, R.G.; Ling, L.C.; Stern, D.J.,
Studies on popcorn aroma and flavor volatiles,
J. Agric. Food Chem., 1997, 45, 3, 837-843, https://doi.org/10.1021/jf9604807
. [all data]
Bellesia, Pinetti, et al., 1996
Bellesia, F.; Pinetti, A.; Bianchi, A.; Tirillini, B.,
Volatile compounds of the white truffle (Tuber magnaturn Pico) from middle Italy,
Flavour Fragr. J., 1996, 11, 4, 239-243, https://doi.org/10.1002/(SICI)1099-1026(199607)11:4<239::AID-FFJ573>3.0.CO;2-A
. [all data]
Buttery and Ling, 1995
Buttery, R.G.; Ling, L.C.,
Volatile flavor components of corn tortillas and related products,
J. Agric. Food Chem., 1995, 43, 7, 1878-1882, https://doi.org/10.1021/jf00055a023
. [all data]
Macku and Shibamoto, 1991
Macku, C.; Shibamoto, T.,
Headspace volatile compounds formed from heated corn oil and corn oil with glycine,
J. Agric. Food Chem., 1991, 39, 7, 1265-1269, https://doi.org/10.1021/jf00007a014
. [all data]
Macku and Shibamoto, 1991, 2
Macku, C.; Shibamoto, T.,
Volatile sulfur-containing compounds generated from the thermal interaction of corn oil and cysteine,
J. Agric. Food Chem., 1991, 39, 11, 1987-1989, https://doi.org/10.1021/jf00011a021
. [all data]
del Rosario, de Lumen, et al., 1984
del Rosario, R.; de Lumen, B.O.; Habu, T.; Flath, R.A.; Mon, T.R.; Teranishi, R.,
Comparison of headspace volatiles from winged beans and soybeans,
J. Agric. Food Chem., 1984, 32, 5, 1011-1015, https://doi.org/10.1021/jf00125a015
. [all data]
Liu, Xu, et al., 2007
Liu, Y.; Xu, X.-L.; Zhou, G.-H.,
Comparative study of volatile compounds in traditional Chinese Nanjing marinated duck by different extraction techniques,
Int. J. Food Sci. Technol., 2007, 42, 5, 543-550, https://doi.org/10.1111/j.1365-2621.2006.01264.x
. [all data]
Pino, Marbot, et al., 2005
Pino, J.A.; Marbot, R.; Rosado, A.; Vázquez, C.,
Volatile constituents of Malay rose apple [Syzygium malaccense (L.) Merr. Perry],
Flavour Fragr. J., 2005, 20, 98-100. [all data]
Begnaud, Pérès, et al., 2003
Begnaud, F.; Pérès, C.; Berdagué, J.-L.,
Characterization of volatile effluents of livestock buildings by solid-phase microextraction,
Int. J. Environ. Anal. Chem., 2003, 83, 10, 837-849, https://doi.org/10.1080/03067310310001603349
. [all data]
Machiels and Istasse, 2003
Machiels, D.; Istasse, L.,
Evaluation of two commercial solid-phase microextraction fibres for the analysis of target aroma compounds in cooked beef meat,
Talanta, 2003, 61, 4, 529-537, https://doi.org/10.1016/S0039-9140(03)00319-9
. [all data]
Machiels, van Ruth, et al., 2003
Machiels, D.; van Ruth, S.M.; Posthumus, M.A.; Istasse, L.,
Gas chromatography-olfactometry analysis of the volatile compounds of two commercial Irish beef meats,
Talanta, 2003, 60, 4, 755-764, https://doi.org/10.1016/S0039-9140(03)00133-4
. [all data]
Poligne, Collignan, et al., 2002
Poligne, I.; Collignan, A.; Trystram, G.,
Effects of salting, drying, cooking, and smoking operations on volatile compound formation and collor patterns in pork,
Food Eng. Physical Properties, 2002, 67, 8, 2976-2986. [all data]
Luo and Agnew, 2001
Luo, J.; Agnew, M.P.,
Gas characteristics before and after biofiltration treating odorous emissions from animal rendering processes,
Environ. Technol., 2001, 22, 9, 1091-1103, https://doi.org/10.1080/09593332208618220
. [all data]
Zenkevich, 1999
Zenkevich, I.G.,
Precalculation of Gas Chromatographic Retention Indices of Organic Compounds from Boiling Points of their Structural Analogues,
Zh. Struct. Khim., 1999, 40, 1, 121-130. [all data]
Flanagan, Streete, et al., 1997
Flanagan, R.J.; Streete, P.J.; Ramsey, J.D.,
Volatile Substance Abuse, UNODC Technical Series, No 5, United Nations, Office on Drugs and Crime, Vienna International Centre, PO Box 500, A-1400 Vienna, Austria, 1997, 56, retrieved from http://www.odccp.org/pdf/technicalseries1997-01-011.pdf. [all data]
Strete, Ruprah, et al., 1992
Strete, P.J.; Ruprah, M.; Ramsey, J.D.; Flanagan, R.J.,
Detection and identification of volatile substances by headspace capillary gas chromatography to aid the diagnosis of acute poisoning,
Analyst, 1992, 117, 7, 1111-1127, https://doi.org/10.1039/an9921701111
. [all data]
Kawai, Ishida, et al., 1991
Kawai, T.; Ishida, Y.; Kakiuchi, H.; Ikeda, N.; Higashida, T.; Nakamura, S.,
Flavor components of dried squid,
J. Agric. Food Chem., 1991, 39, 4, 770-777, https://doi.org/10.1021/jf00004a031
. [all data]
Ramsey and Flanagan, 1982
Ramsey, J.D.; Flanagan, R.J.,
Detection and Identification of Volatile Organic Compounds in Blood by Headspace Gas Chromatography as an Aid to the Diagnosis of Solvent Abuse,
J. Chromatogr., 1982, 240, 2, 423-444, https://doi.org/10.1016/S0021-9673(00)99622-5
. [all data]
Puvipirom and Chaisei, 2012
Puvipirom, J.; Chaisei, S.,
Contribution of roasted grains and seeds in aroma of oleang (Thai coffee drink),
Int. Food Res. J., 2012, 19, 2, 583-588. [all data]
Budryn, Nebesny, et al., 2011
Budryn, G.; Nebesny, E.; Kula, J.; Majda, T.; Krysiak, W.,
HS-SPME/GC/MS Profiles of convectively and microwave roasted Ivory Coast Robusta coffee brews,
Czech. J. Food Sci., 2011, 29, 2, 151-160. [all data]
Nebesny, Budryn, et al., 2007
Nebesny, E.; Budryn, G.; Kula, J.; Majda, T.,
The effect of roasting method on headspace composition of robusta coffee bean aroma,
Eur. Food Res. Technol., 2007, 225, 1, 9-19, https://doi.org/10.1007/s00217-006-0375-0
. [all data]
Sanz, Maeztu, et al., 2002
Sanz, C.; Maeztu, L.; Zapelena, M.J.; Bello, J.; Cid, C.,
Profiles of volatile compounds and sensory analysis of three blends of coffee: influence of different proportions of Arabica and Robusta and influence of roasting coffee with sugar,
J. Sci. Food Agric., 2002, 82, 8, 840-847, https://doi.org/10.1002/jsfa.1110
. [all data]
Maeztu, Sanz, et al., 2001
Maeztu, L.; Sanz, C.; Andueza, S.; de Peña, M.P.; Bello, J.; Cid, C.,
Characterization of espresso coffee aroma by static headspace GC-MS and sensory flavor profile,
J. Agric. Food Chem., 2001, 49, 11, 5437-5444, https://doi.org/10.1021/jf0107959
. [all data]
Sanz, Ansorena, et al., 2001
Sanz, C.; Ansorena, D.; Bello, J.; Cid, C.,
Optimizing headspace temperature and time sampling for identification of volatile compounds in ground roasted Arabica coffee,
J. Agric. Food Chem., 2001, 49, 3, 1364-1369, https://doi.org/10.1021/jf001100r
. [all data]
Girard and Durance, 2000
Girard, B.; Durance, T.,
Headspace volatiles of sockeye and pink salmon as affected by retort process,
Food Chem. Toxicol., 2000, 65, 1, 34-39. [all data]
Buttery, Orts, et al., 1999
Buttery, R.G.; Orts, W.J.; Takeoka, G.R.; Nam, Y.,
Volatile flavor components of rice cakes,
J. Agric. Food Chem., 1999, 47, 10, 4353-4356, https://doi.org/10.1021/jf990140w
. [all data]
Buttery and Ling, 1998
Buttery, R.G.; Ling, L.C.,
Additional studies on flavor components of corn tortilla chips,
J. Agric. Food Chem., 1998, 46, 7, 2764-2769, https://doi.org/10.1021/jf980125b
. [all data]
Kubota, Matsujage, et al., 1996
Kubota, K.; Matsujage, Y.; Sekiwa, Y.; Kobayashi, A.,
Identification of the characteristic volatile flavor compounds formed by cooking squid (Todarodes pacificus Steenstrup),
Food Sci. Technol., 1996, 2, 3, 163-166. [all data]
Umano, Hagi, et al., 1995
Umano, K.; Hagi, Y.; Nakahara, K.; Shyoji, A.; Shibamoto, T.,
Volatile chemicals formed in the headspace of a heated D-glucose/L-cysteine Maillard model system,
J. Agric. Food Chem., 1995, 43, 8, 2212-2218, https://doi.org/10.1021/jf00056a046
. [all data]
Hatsuko, Kazuko, et al., 1992
Hatsuko, S.; Kazuko, H.; Masayoshi, K.; Yoshiaki, I.,
Improvement of quality of likorine extract by heat treatment,
J. Food Sci. Technol., 1992, 39, 11, 976-983, https://doi.org/10.3136/nskkk1962.39.976
. [all data]
Wong and Bernhard, 1988
Wong, J.M.; Bernhard, R.A.,
Effect of nitrogen source on pyrazine formation,
J. Agric. Food Chem., 1988, 36, 1, 123-129, https://doi.org/10.1021/jf00079a032
. [all data]
Shibamoto and Russell, 1977
Shibamoto, T.; Russell, G.F.,
A study of the volatiles isolated from a D-glucose-hydrogen sulfide-ammonia model system,
J. Agric. Food Chem., 1977, 25, 1, 109-112, https://doi.org/10.1021/jf60209a054
. [all data]
Welke, Manfroi, et al., 2012
Welke, J.E.; Manfroi, V.; Zanus, M.; Lazarotto, M.; Zini, C.A.,
Characterization of the volatile profile of Brazilian merlot wines through comprehensive two dimensional gas chromatography time-of-flight mass spectrometric detection,
J. Chromatogr. A, 2012, 1226, 124-139, https://doi.org/10.1016/j.chroma.2012.01.002
. [all data]
Gonzalez-Rios, Suarez-Quiroz, et al., 2007
Gonzalez-Rios, O.; Suarez-Quiroz, M.L.; Boulanger, R.; Barel, M.; Guyot, B.; Guiraud, J.-P.; Schorr-Galindo, S.,
Impact of ecological post-harvest processing of coffee aroma: II Roasted coffee.,
J. Food Composition Analysis, 2007, 20, 3-4, 297-307, https://doi.org/10.1016/j.jfca.2006.12.004
. [all data]
Kim. J.H., Ahn, et al., 2004
Kim. J.H.; Ahn, H.J.; Yook, H.S.; Kim, K.S.; Rhee, M.S.; Ryu, G.H.; Byun, M.W.,
Color, flavor, and sensory characteristics of gamma-irradiated salted and fermented anchovy sauce,
Radiation Phys. Chem., 2004, 69, 2, 179-187, https://doi.org/10.1016/S0969-806X(03)00400-6
. [all data]
Finkelstein, Kurbatova, et al., 2002
Finkelstein, E.E.; Kurbatova, S.V.; Kolosova, E.A.,
Study of biological activity of structure analogies of adamantane,
Proc. Samara State Univ., 2002, 26, 4, 121-128. [all data]
Muresan, Eillebrecht, et al., 2000
Muresan, S.; Eillebrecht, M.A.J.L.; de Rijk, T.C.; de Jonge, H.G.; Leguijt, T.; Nijhuis, H.H.,
Aroma profile development of intermediate chocolate products. I. Volatile constituents of block-milk,
Food Chem., 2000, 68, 2, 167-174, https://doi.org/10.1016/S0308-8146(99)00171-5
. [all data]
Chang, Seitz, et al., 1995
Chang, C.-Y.; Seitz, L.M.; Chambers, E., IV,
Volatile Flavor Components of Breads Made from Hard Red Winter Wheat and Hard White Winter Wheat,
Cereal Chem., 1995, 72, 3, 237-242. [all data]
Peng, Yang, et al., 1991
Peng, C.T.; Yang, Z.C.; Ding, S.F.,
Prediction of rentention idexes. II. Structure-retention index relationship on polar columns,
J. Chromatogr., 1991, 586, 1, 85-112, https://doi.org/10.1016/0021-9673(91)80028-F
. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References
- Symbols used in this document:
AE Appearance energy Cp,liquid Constant pressure heat capacity of liquid IE (evaluated) Recommended ionization energy Pc Critical pressure S°liquid Entropy of liquid at standard conditions T Temperature Tboil Boiling point Tc Critical temperature Tfus Fusion (melting) point Ttriple Triple point temperature ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔfusH Enthalpy of fusion ΔfusS Entropy of fusion ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.