1-Pentene

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-22. ± 9.kJ/molAVGN/AAverage of 6 values; Individual data points

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
82.35200.Thermodynamics Research Center, 1997p=1 bar. Recommended values were calculated from data for lower alkenes by a method of increments. These values are in good agreement with experimental data. The results of the similar estimation [ Kilpatrick J.E., 1946] are in poor agreement with experiment.; GT
101.2273.15
108.2298.15
108.7300.
137.6400.
164.0500.
186.3600.
205.1700.
221.0800.
234.6900.
246.21000.
256.41100.
265.11200.
272.81300.
279.21400.
285.41500.

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
112.34 ± 0.33311.09Scott D.W., 1949GT
126.15 ± 0.38357.51
139.08 ± 0.42402.32
148.41 ± 0.45436.01
157.69 ± 0.47471.08

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-49. ± 5.kJ/molAVGN/AAverage of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Δcliquid-3349.72 ± 0.58kJ/molCcbGood and Smith, 1979Corresponding Δfliquid = -46.98 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
liquid262.60J/mol*KN/AMesserly, Todd, et al., 1990DH
liquid262.6J/mol*KN/AChao, Hall, et al., 1983DH
liquid262.55J/mol*KN/ATodd, Oliver, et al., 1947DH

Constant pressure heat capacity of liquid

Cp,liquid (J/mol*K) Temperature (K) Reference Comment
154.87298.15Messerly, Todd, et al., 1990T = 10 to 320 K.; DH
154.298.15Chao, Hall, et al., 1983T = 12 to 353 K.; DH
154.3294.Schlinger and Sage, 1949T = 294 to 378 K. Cp given as 0.526 Btu/lb*R at 70°F.; DH
155.31298.15Todd, Oliver, et al., 1947T = 12 to 300 K.; DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Tboil304. ± 8.KAVGN/AAverage of 30 out of 31 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus107.75KN/AStreiff, Murphy, et al., 1946Uncertainty assigned by TRC = 0.2 K; TRC
Tfus107.78KN/AStreiff, Murphy, et al., 1946Uncertainty assigned by TRC = 0.2 K; TRC
Tfus107.88KN/AStreiff, Murphy, et al., 1946Uncertainty assigned by TRC = 0.1 K; TRC
Quantity Value Units Method Reference Comment
Ttriple108.010KN/AMesserly, Todd, et al., 1990, 2Crystal phase 1 phase; Uncertainty assigned by TRC = 0.003 K; TRC
Ttriple107.790KN/AMesserly, Todd, et al., 1990, 2Metastable crystal phase; Uncertainty assigned by TRC = 0.003 K; TRC
Ttriple5.800KN/AChao, Hall, et al., 1983, 2Uncertainty assigned by TRC = 0.01 K; TRC
Ttriple107.9KN/ATodd, Oliver, et al., 1947, 2Uncertainty assigned by TRC = 0.5 K; this value not measured but taken from 1956-strmur 0; TRC
Quantity Value Units Method Reference Comment
Tc464.8 ± 0.5KN/ATsonopoulos and Ambrose, 1996 
Tc464.7KN/AMajer and Svoboda, 1985 
Tc465.1KN/AWolfe, Kay, et al., 1983Uncertainty assigned by TRC = 0.3 K; $ %Y/SI 0.01 @Y/SI 0.3; TRC
Tc463.77KN/AMousa, Kay, et al., 1972Uncertainty assigned by TRC = 0.2 K; TRC
Tc464.74KN/AAmbrose, Cox, et al., 1960Uncertainty assigned by TRC = 0.03 K; Visual, PRT, IPTS-48; TRC
Quantity Value Units Method Reference Comment
Pc35.6 ± 0.5barN/ATsonopoulos and Ambrose, 1996 
Pc35.50barN/AWolfe, Kay, et al., 1983Uncertainty assigned by TRC = 0.20 bar; $ %Y/SI 1.5 @Y/SI 20.; TRC
Pc35.510barN/AMousa, Kay, et al., 1972Uncertainty assigned by TRC = 0.0344 bar; TRC
Quantity Value Units Method Reference Comment
Vc0.2984l/molN/ATsonopoulos and Ambrose, 1996 
Quantity Value Units Method Reference Comment
ρc3.35 ± 0.05mol/lN/ATsonopoulos and Ambrose, 1996 
ρc3.32mol/lN/AWolfe, Kay, et al., 1983Uncertainty assigned by TRC = 0.03 mol/l; TRC
Quantity Value Units Method Reference Comment
Δvap29.82kJ/molN/AMajer and Svoboda, 1985 
Δvap25.5kJ/molN/AReid, 1972AC
Δvap25.5 ± 0.1kJ/molCScott, Waddington, et al., 1949AC

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
25.2303.1N/AMajer and Svoboda, 1985 
29.1233.AStephenson and Malanowski, 1987Based on data from 218. to 311. K.; AC
26.7295.MMForziati, Camin, et al., 1950Based on data from 286. to 304. K.; AC
26.9288.N/AScott, Waddington, et al., 1949Based on data from 273. to 334. K.; AC
26.2 ± 0.1284.CScott, Waddington, et al., 1949AC
25.2 ± 0.1303.CScott, Waddington, et al., 1949AC
26.3290.N/ADay, Nicholson, et al., 1948Based on data from 273. to 308. K.; AC
25.7341.N/ADay, Nicholson, et al., 1948Based on data from 313. to 368. K.; AC

Enthalpy of vaporization

ΔvapH = A exp(-βTr) (1 − Tr)β
    ΔvapH = Enthalpy of vaporization (at saturation pressure) (kJ/mol)
    Tr = reduced temperature (T / Tc)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A (kJ/mol) β Tc (K) Reference Comment
284. to 303.39.710.2663464.7Majer and Svoboda, 1985 

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference
285.98 to 303.873.910581014.294-43.367Forziati, Camin, et al., 1950, 2

Enthalpy of fusion

ΔfusH (kJ/mol) Temperature (K) Reference Comment
5.93739108.016Messerly, Todd, et al., 1990DH
5.88168107.797Messerly, Todd, et al., 1990c(metastable)/liq; DH
5.807107.90Chao, Hall, et al., 1983DH
5.807107.9Todd, Oliver, et al., 1947DH
5.81107.9Acree, 1991See also Messerly, Todd, et al., 1990.; AC

Entropy of fusion

ΔfusS (J/mol*K) Temperature (K) Reference Comment
54.97108.016Messerly, Todd, et al., 1990DH
54.56107.797Messerly, Todd, et al., 1990c(metastable)/liq; DH
53.82107.90Chao, Hall, et al., 1983DH
53.82107.9Todd, Oliver, et al., 1947DH

Temperature of phase transition

Ttrs (K) Initial Phase Final Phase Reference Comment
71.7crystalineglassTakeda, Oguni, et al., 1990DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, IR Spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

1-Pentene + Hydrogen = Pentane

By formula: C5H10 + H2 = C5H12

Quantity Value Units Method Reference Comment
Δr-126.6 ± 2.4kJ/molChydMolnar, Rachford, et al., 1984liquid phase; solvent: Dioxane
Δr-125.0 ± 1.8kJ/molChydMolnar, Rachford, et al., 1984liquid phase; solvent: Hexane
Δr-122.6 ± 2.4kJ/molChydRogers and Skanupong, 1974liquid phase; solvent: Hexane
Δr-119. ± 1.kJ/molChydRogers and McLafferty, 1971liquid phase; solvent: Hydrocarbon

2-Pentene, (E)- = 1-Pentene

By formula: C5H10 = C5H10

Quantity Value Units Method Reference Comment
Δr-10.9 ± 0.8kJ/molEqkEgger and Benson, 1966gas phase; Heat of Isomerization

Pentane, 2-chloro- = 1-Pentene + Hydrogen chloride

By formula: C5H11Cl = C5H10 + HCl

Quantity Value Units Method Reference Comment
Δr73.6kJ/molEqkKaraseva and Andreevskii, 1969gas phase

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
L - Sharon G. Lias

Data compiled as indicated in comments:
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to C5H10+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)9.49 ± 0.03eVN/AN/AL

Ionization energy determinations

IE (eV) Method Reference Comment
9.50PITraeger, 1986LBLHLM
9.52 ± 0.05EIHolmes and Lossing, 1983LBLHLM
9.42 ± 0.02PEAshmore and Burgess, 1978LLK
9.52 ± 0.02PEBieri, Burger, et al., 1977LLK
9.524 ± 0.003PEMasclet, Grosjean, et al., 1973LLK
9.48EILossing, 1972LLK
9.82 ± 0.06EIGross and Wilkins, 1971LLK
9.50 ± 0.02PIWatanabe, Nakayama, et al., 1962RDSH
9.50 ± 0.02PISteiner, Giese, et al., 1961RDSH
9.68 ± 0.01PEKrause, Taylor, et al., 1978Vertical value; LLK
9.54 ± 0.02PEBunzli, Burak, et al., 1973Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
C3H6+10.68 ± 0.02C2H4PIBrand and Baer, 1984LBLHLM
C3H6+11.61 ± 0.08C2H4EIGross and Wilkins, 1971LLK
C4H7+10.50CH3PITraeger, 1986LBLHLM
C4H7+10.64CH3EIBrand and Baer, 1984LBLHLM
C4H7+10.63 ± 0.02CH3PIBrand and Baer, 1984LBLHLM
C4H7+10.64CH3EILossing, 1972LLK
C4H7+11.35 ± 0.07CH3EIGross and Wilkins, 1971LLK

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Gas Phase Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

IR spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Notice: Concentration information is not available for this spectrum and, therefore, molar absorptivity values cannot be derived.

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Owner NIST Standard Reference Data Program
Collection (C) 2018 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin NIST Mass Spectrometry Data Center
State gas
Instrument HP-GC/MS/IRD

This IR spectrum is from the NIST/EPA Gas-Phase Infrared Database .


Gas Chromatography

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Kovats' RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryMethyl Silicone30.489.0Soják, Addová, et al., 2002He; Column length: 150. m; Column diameter: 0.250 mm
CapillarySqualane30.481.1Soják, Addová, et al., 2002He; Column length: 93. m; Column diameter: 0.250 mm
PackedC78, Branched paraffin130.485.0Dallos, Sisak, et al., 2000He; Column length: 3.3 m
CapillarySqualane100.483.Heinzen, Soares, et al., 1999 
CapillaryBPX-530.480.Aflalaye, Sternberg, et al., 199512. m/0.15 mm/0.25 μm, H2
CapillaryCP Sil 5 CB20.488.8Do and Raulin, 199225. m/0.15 mm/2. μm, H2
CapillaryPoraPLOT Q100.489.Do and Raulin, 198910. m/0.32 mm/10. μm, H2
CapillaryPoraPLOT Q160.491.Do and Raulin, 198910. m/0.32 mm/10. μm, H2
CapillaryOV-10140.488.Laub and Purnell, 1988 
CapillaryOV-10160.488.Laub and Purnell, 1988 
CapillaryOV-10180.489.Laub and Purnell, 1988 
CapillarySqualane50.481.3Papazova, Milina, et al., 1988Column length: 50. m; Column diameter: 0.25 mm
CapillaryOV-1100.488.8Anders, Anders, et al., 198555. m/0.21 mm/0.35 μm, N2
PackedSE-3042.496.Rudenko, Mal'tsev, et al., 1985Column length: 3. m
CapillaryDB-140.489.Lubeck and Sutton, 198460. m/0.264 mm/0.25 μm, H2
CapillaryHP-PONA40.489.Lubeck and Sutton, 198450. m/0.21 mm/0.5 μm, H2
CapillarySE-3080.492.Bredael, 1982Column length: 100. m; Column diameter: 0.5 mm
CapillaryOV-120.486.Nijs and Jacobs, 1981He; Column length: 150. m; Column diameter: 0.50 mm
CapillarySqualane50.481.6Bajus, Veselý, et al., 1979Column length: 100. m; Column diameter: 0.25 mm
CapillarySqualane70.482.Bajus, Veselý, et al., 1979Column length: 100. m; Column diameter: 0.25 mm
CapillarySqualane50.481.5Bajus, Veselý, et al., 1979, 2Column length: 100. m; Column diameter: 0.25 mm
CapillarySqualane70.481.6Bajus, Veselý, et al., 1979, 2Column length: 100. m; Column diameter: 0.25 mm
PackedSqualane80.482.Chrétien and Dubois, 1977 
CapillarySqualane50.482.Chretien and Dubois, 1976 
CapillarySqualane100.486.8Lulova, Leont'eva, et al., 1976He; Column length: 120. m; Column diameter: 0.25 mm
PackedApolane70.482.5Riedo, Fritz, et al., 1976He, Chromosorb; Column length: 2.4 m
CapillarySqualane50.482.Rijks and Cramers, 1974N2; Column length: 100. m; Column diameter: 0.25 mm
CapillarySqualane70.482.Rijks and Cramers, 1974N2; Column length: 100. m; Column diameter: 0.25 mm
CapillarySqualane27.481.07Schomburg and Dielmann, 1973Column length: 100. m; Column diameter: 0.25 mm
PackedSE-3075.491.Robinson and Odell, 1971N2, Chromosorb W; Column length: 6.1 m
CapillarySqualane40.482.Matukuma, 1969N2; Column length: 91.4 m; Column diameter: 0.25 mm
PackedSqualane27.481.Hively and Hinton, 1968He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm
PackedSqualane49.481.Hively and Hinton, 1968He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm
PackedSqualane67.483.Hively and Hinton, 1968He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm
PackedSqualane86.483.Hively and Hinton, 1968He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm
PackedSE-3070.490.Widmer, 1967Diatoport S; Column length: 7.9 m
PackedSqualane26.483.Zulaïca and Guiochon, 1966Column length: 10. m
PackedApiezon L130.479.Wehrli and Kováts, 1959Celite; Column length: 2.25 m
PackedApiezon L70.485.Wehrli and Kováts, 1959Celite; Column length: 2.25 m

Kovats' RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryPetrocol DH-100491.Haagen-Smit Laboratory, 1997He; Column length: 100. m; Column diameter: 0.2 mm; Program: 5C(10min) => 5C/min => 50C(48min) => 1.5C/min => 195C(91min)
CapillaryDB-1491.Hoekman, 199360. m/0.32 mm/1.0 μm, He; Program: -40 C for 12 min; -40 - 125 C at 3 deg.min; 125-185 C at 6 deg/min; 185 - 220 C at 20 deg/min; hold 220 C for 2 min

Kovats' RI, polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
PackedCarbowax 20M130.532.Widmer, 1967Diatoport P; Column length: 7.9 m
PackedCarbowax 20M70.523.Widmer, 1967Diatoport P; Column length: 7.9 m

Van Den Dool and Kratz RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryMethyl Silicone486.5Soják, Addová, et al., 2002He, 1. K/min; Column length: 150. m; Column diameter: 0.250 mm; Tstart: 30. C; Tend: 200. C
CapillaryUltra-1487.Olson, Sinkevitch, et al., 19924. K/min; Tstart: -40. C; Tend: 230. C
CapillaryPetrocol DH483.39White, Douglas, et al., 1992100. m/0.25 mm/0.5 μm, He, 1. K/min; Tstart: 30. C; Tend: 220. C
CapillaryPetrocol DH483.67White, Douglas, et al., 1992100. m/0.25 mm/0.5 μm, He, 1. K/min; Tstart: 30. C; Tend: 220. C
CapillaryPetrocol DH483.White, Hackett, et al., 1992100. m/0.25 mm/0.5 μm, He, 1. K/min; Tstart: 30. C; Tend: 220. C

Van Den Dool and Kratz RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-5478.Zaikin and Borisov, 2002He; Column length: 30. m; Column diameter: 0.25 mm; Program: 30C => 5K/min=120C => 10C/min => 270C

Normal alkane RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillarySqualane40.481.3Sojak, Addova, et al., 2000He; Column length: 93. m; Column diameter: 0.25 mm
CapillaryOV-10140.482.Li and Deng, 1998N2; Column length: 51. m; Column diameter: 0.25 mm
CapillarySE-5450.492.Xieyun, Maoqi, et al., 1996N2; Column length: 40. m; Column diameter: 0.25 mm
CapillaryMethyl Silicone50.482.N/AN2; Column length: 74.6 m; Column diameter: 0.28 mm
PackedMethyl Silicone50.500.Huguet, 1961Nitrogen, Celite C-22; Column length: 2.5 m

Normal alkane RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryPolydimethyl siloxane: CP-Sil 5 CB488.Bramston-Cook, 201360. m/0.25 mm/1.0 μm, Helium, 45. C @ 1.45 min, 3.6 K/min, 210. C @ 2.72 min
CapillaryPetrocol DH489.Supelco, 2012100. m/0.25 mm/0.50 μm, Helium, 20. C @ 15. min, 15. K/min, 220. C @ 30. min
CapillaryUltra-ALLOY-5491.Tsuge, Ohtan, et al., 201130. m/0.25 mm/0.25 μm, 40. C @ 2. min, 20. K/min, 320. C @ 13. min
CapillaryUltra-ALLOY-5492.Tsuge, Ohtan, et al., 201130. m/0.25 mm/0.25 μm, 40. C @ 2. min, 20. K/min, 320. C @ 13. min
CapillaryUltra-ALLOY-5492.Tsuge, Ohtan, et al., 201130. m/0.25 mm/0.25 μm, 40. C @ 2. min, 20. K/min, 320. C @ 13. min
CapillaryUltra-ALLOY-5495.Tsuge, Ohtan, et al., 201130. m/0.25 mm/0.25 μm, 40. C @ 2. min, 20. K/min, 320. C @ 13. min
CapillarySPB-5488.Sivadier, Ratel, et al., 200960. m/0.32 mm/1.00 μm, 40. C @ 5. min, 3. K/min, 230. C @ 10. min
CapillaryPONA483.Zhang, Ding, et al., 200950. m/0.20 mm/0.50 μm, Nitrogen, 35. C @ 15. min, 2. K/min, 200. C @ 10. min
CapillaryDB-5MS483.Shoenmakers, Oomen, et al., 200030. m/0.25 mm/0.25 μm, He, 40. C @ 1. min, 3. K/min; Tend: 250. C
CapillaryOV-101487.Chupalov and Zenkevich, 1996N2, 3. K/min; Column length: 52. m; Column diameter: 0.26 mm; Tstart: 50. C; Tend: 220. C
CapillarySE-54483.Guan, Li, et al., 199560. C @ 2. min, 4. K/min; Column length: 50. m; Column diameter: 0.32 mm; Tend: 200. C
CapillaryDB-1486.Ramnas, Ostermark, et al., 199450. m/0.32 mm/1.0 μm, He, 2. K/min; Tstart: -20. C
CapillaryDB-1483.Ciccioli, Cecinato, et al., 199260. m/0.32 mm/1.2 μm, He, 30. C @ 10. min, 3. K/min; Tend: 240. C

Normal alkane RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryMethyl Silicone483.Chen and Feng, 2007Program: not specified
CapillaryPolydimethyl siloxane483.Junkes, Castanho, et al., 2003Program: not specified
CapillaryPONA491.Perkin Elmer Instruments, 2002Column length: 100. m; Phase thickness: 0.50 μm; Program: not specified
CapillaryMethyl Silicone479.N/AProgram: not specified
CapillaryDB-1489.Zhu and Wang, 2001Program: not specified
CapillaryCP-Sil5 CB MS484.Tirillini, Verdelli, et al., 200050. m/0.32 mm/0.4 μm; Program: 0C (3min) => 3C/min => 50C => 5C/min => 220C (30min)
CapillaryMethyl Silicone488.Zenkevich, 2000Program: not specified
CapillaryMethyl Silicone488.Spieksma, 1999Program: not specified
CapillarySPB-1483.Flanagan, Streete, et al., 199760. m/0.53 mm/5. μm, He; Program: 40C(6min) => 5C/min => 80C => 10C/min => 200C
CapillaryPolydimethyl siloxanes488.Zenkevich, 1997Program: not specified
CapillaryMethyl Silicone488.Zenkevich, 1996Program: not specified
CapillarySPB-1483.Strete, Ruprah, et al., 199260. m/0.53 mm/5.0 μm, Helium; Program: 40 0C (6 min) 5 0C/min -> 80 0C 10 0C/min -> 200 0C
CapillarySE-52485.van Langenhove and Schamp, 1986Column length: 100. m; Column diameter: 0.50 mm; Program: not specified
CapillaryOV-1, SE-30, Methyl silicone, SP-2100, OV-101, DB-1, etc.492.Waggott and Davies, 1984Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified
PackedSE-30492.Robinson and Odell, 1971N2, Chromosorb W; Column length: 6.1 m; Program: 50C910min) => 20C/min => 90(6min) => 10C/min => 150C(hold)
PackedSE-30492.Robinson and Odell, 1971, 2Chrom W; Column length: 6.1 m; Program: 50C(10min) => 20C/min(2min) => 90C(6min) => 10C/min(6min) => (hold at 150C)
PackedSqualane479.Robinson and Odell, 1971, 2Embacel; Column length: 3.0 m; Program: 25C(5min) => 2C/min(5min) => 4C/min(15min) => (hold at 95C)

Normal alkane RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillarySupelcowax-10534.Girard and Durance, 200060. m/0.25 mm/0.25 μm, He, 35. C @ 10. min, 4. K/min; Tend: 200. C

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Gas Chromatography, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Thermodynamics Research Center, 1997
Thermodynamics Research Center, Selected Values of Properties of Chemical Compounds., Thermodynamics Research Center, Texas A&M University, College Station, Texas, 1997. [all data]

Kilpatrick J.E., 1946
Kilpatrick J.E., Heats, equilibrium constants, and free energies of formation of the monoolefin hydrocarbons, J. Res. Nat. Bur. Stand, 1946, 36, 559-612. [all data]

Scott D.W., 1949
Scott D.W., Thermodynamic properties of three isomeric pentenes, J. Am. Chem. Soc., 1949, 71, 2767-2773. [all data]

Good and Smith, 1979
Good, W.D.; Smith, N.K., The enthalpies of combustion of the isomeric pentenes in the liquid state. A warning to combustion calorimetrists about sample drying, J. Chem. Thermodyn., 1979, 11, 111-118. [all data]

Messerly, Todd, et al., 1990
Messerly, J.F.; Todd, S.S.; Finke, H.L.; Lee-Bechtold, S.H.; Guthrie, G.B.; Steele, W.V.; Chirico, R.D., Heat capacities of pent-1-ene (10K to 320K), cis-hex-2-ene (10K to 330K), non-1-ene (10K to 400K), and hexadec-1-ene (10K to 400K), J. Chem. Thermodynam., 1990, 22, 1107-1128. [all data]

Chao, Hall, et al., 1983
Chao, J.; Hall, K.R.; Yao, J.M., Thermodynamic properties of simple alkenes, Thermochim. Acta, 1983, 64(3), 285-303. [all data]

Todd, Oliver, et al., 1947
Todd, S.S.; Oliver, G.D.; Huffman, H.M., The heat capacities, heats of fusion and entropies of the six pentenes, J. Am. Chem. Soc., 1947, 69, 1519-1525. [all data]

Schlinger and Sage, 1949
Schlinger, W.G.; Sage, B.H., Isobaric heat capacity of 1-butene and 1-pentene at bubble point, Ind. Eng. Chem., 1949, 41, 1779-1782. [all data]

Streiff, Murphy, et al., 1946
Streiff, A.J.; Murphy, E.T.; Sedlak, V.A.; Willingham, C.B.; Rossini, F.D., Purification, Purity, and Freezing Points of 7 Heptanes, 16 Octanes, 6 Pentene, Cyclopentene, and 7 C9H12 Alkylbenzenes of the API-Standard and API-NBS Series, J. Res. Natl. Bur. Stand. (U. S.), 1946, 37, 331. [all data]

Messerly, Todd, et al., 1990, 2
Messerly, J.F.; Todd, S.S.; Finke, H.L.; Lee-Bechtold, S.H.; Guthrie, G.B.; Steele, W.V.; Chirico, R.D., Heat capacities of pent-1-ene (10 K to 320 K), cis-hex-2-ene (10 K to 330 K), non-1-ene (10 K to 400 K) and hexadec-1-ene (10 K to 400 K), J. Chem. Thermodyn., 1990, 22, 1107-28. [all data]

Chao, Hall, et al., 1983, 2
Chao, J.; Hall, K.R.; Yao, J.M., Thermodynamic Properties of Simple Alkenes, Thermochim. Acta, 1983, 64, 285. [all data]

Todd, Oliver, et al., 1947, 2
Todd, S.S.; Oliver, G.D.; Huffman, H.M., The heat capacities, heats of fusion and entropies of the six pentenes., J. Am. Chem. Soc., 1947, 69, 1519. [all data]

Tsonopoulos and Ambrose, 1996
Tsonopoulos, C.; Ambrose, D., Vapor-Liquid Critical Properties of Elements and Compounds. 6. Unsaturated Aliphatic Hydrocarbons, J. Chem. Eng. Data, 1996, 41, 645-656. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Wolfe, Kay, et al., 1983
Wolfe, D.; Kay, W.B.; Teja, A.S., Phase Equilibria in the n-Pentane + Pent-1-ene System 1. Critical States, J. Chem. Eng. Data, 1983, 28, 319. [all data]

Mousa, Kay, et al., 1972
Mousa, A.H.N.; Kay, W.B.; Kreglewski, A., The critical constants of binary mixtures of certain perfluoro-compounds with alkanes, J. Chem. Thermodyn., 1972, 4, 301-11. [all data]

Ambrose, Cox, et al., 1960
Ambrose, D.; Cox, J.D.; Townsend, R., The critical temperatures of forty organic compounds, Trans. Faraday Soc., 1960, 56, 1452. [all data]

Reid, 1972
Reid, Robert C., Handbook on vapor pressure and heats of vaporization of hydrocarbons and related compounds, R. C. Wilhort and B. J. Zwolinski, Texas A Research Foundation. College Station, Texas(1971). 329 pages.$10.00, AIChE J., 1972, 18, 6, 1278-1278, https://doi.org/10.1002/aic.690180637 . [all data]

Scott, Waddington, et al., 1949
Scott, D.W.; Waddington, G.; Smith, J.C.; Huffman, H.M., Thermodynamic properties of three isomeric pentenes, J. Am. Chem. Soc., 1949, 71, 2767-2773. [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Forziati, Camin, et al., 1950
Forziati, A.F.; Camin, D.L.; Rossini, F.D., Density, refractive index, boiling point, and vapor pressure of eight monoolefin (1-alkene), six pentadiene, and two cyclomonoolefin hydrocarbons, J. RES. NATL. BUR. STAN., 1950, 45, 5, 406, https://doi.org/10.6028/jres.045.044 . [all data]

Day, Nicholson, et al., 1948
Day, H.O.; Nicholson, D.E.; Felsing, W.A., The Vapor Pressures and Some Related Quantities of Pentene-1 from 0 to 200°, J. Am. Chem. Soc., 1948, 70, 5, 1784-1785, https://doi.org/10.1021/ja01185a037 . [all data]

Forziati, Camin, et al., 1950, 2
Forziati, a.F.; Camin, D.L.; Rossini, F.D., Density, refractive index, boiling point, and vapor pressure of eight monoolefin (1-alkene), six pentadiene, and two cyclomonoolefin hydrocarbons, J. Res. NBS, 1950, 45, 406-410. [all data]

Acree, 1991
Acree, William E., Thermodynamic properties of organic compounds: enthalpy of fusion and melting point temperature compilation, Thermochimica Acta, 1991, 189, 1, 37-56, https://doi.org/10.1016/0040-6031(91)87098-H . [all data]

Takeda, Oguni, et al., 1990
Takeda, K.; Oguni, M.; Suga, H., A DTA apparatus for vapour-deposited samples. Characterisation of some vapour-deposited hydrocarbons, Thermochim. Acta, 1990, 158(1), 195-203. [all data]

Molnar, Rachford, et al., 1984
Molnar, A.; Rachford, R.; Smith, G.V.; Liu, R., Heats of hydrogenation by a simple and rapid flow calorimetric method, Appl. Catal., 1984, 9, 219-223. [all data]

Rogers and Skanupong, 1974
Rogers, D.W.; Skanupong, S., Heats of hydrogenation of sixteen terminal monoolefins. The alternating effect, J. Phys. Chem., 1974, 78, 2569-2572. [all data]

Rogers and McLafferty, 1971
Rogers, D.W.; McLafferty, F.J., A new hydrogen calorimeter. Heats of hydrogenation of allyl and vinyl unsaturation adjacent to a ring, Tetrahedron, 1971, 27, 3765-3775. [all data]

Egger and Benson, 1966
Egger, K.W.; Benson, S.W., Nitric oxide and iodine catalyzed isomerization of olefins. VI. Thermodynamic data from equilibrium studies of the geometrical and positional isomerization of n-pentenes, J. Am. Chem. Soc., 1966, 88, 236-240. [all data]

Karaseva and Andreevskii, 1969
Karaseva, S.Ya.; Andreevskii, D.N., Equilibrium in the isomerisation of secondary monochloropentanes and the dehydrochlorination of 2-chloropentane, Russ. J. Phys. Chem. (Engl. Transl.), 1969, 43, 1236-1238. [all data]

Traeger, 1986
Traeger, J.C., Heat of formation for the 1-methylallyl cation by photoionization mass spectrometry, J. Phys. Chem., 1986, 90, 4114. [all data]

Holmes and Lossing, 1983
Holmes, J.L.; Lossing, F.P., The need for adequate thermochemical data for the interpretation of fragmentation mechanisms and ion structure assignments, Int. J. Mass Spectrom. Ion Phys., 1983, 47, 133. [all data]

Ashmore and Burgess, 1978
Ashmore, F.S.; Burgess, A.R., Photoelectron spectra of the unbranched C5-C7 alkenes, aldehydes and ketones, J. Chem. Soc. Faraday Trans. 2, 1978, 74, 734. [all data]

Bieri, Burger, et al., 1977
Bieri, G.; Burger, F.; Heilbronner, E.; Maier, J.P., Valence ionization enrgies of hydrocarbons, Helv. Chim. Acta, 1977, 60, 2213. [all data]

Masclet, Grosjean, et al., 1973
Masclet, P.; Grosjean, D.; Mouvier, G., Alkene ionization potentials. Part I. Quantitative determination of alkyl group structural effects, J. Electron Spectrosc. Relat. Phenom., 1973, 2, 225. [all data]

Lossing, 1972
Lossing, F.P., Free radicals by mass spectrometry. XLV. Ionization potentials and heats of formation of C3H3, C3H5, and C4H7 radicals and ions, Can. J. Chem., 1972, 50, 3973. [all data]

Gross and Wilkins, 1971
Gross, M.L.; Wilkins, C.L., Computer-assisted ion cyclotron resonance appearance potential measurements for C5H10 isomers, Anal. Chem., 1971, 43, 1624. [all data]

Watanabe, Nakayama, et al., 1962
Watanabe, K.; Nakayama, T.; Mottl, J., Ionization potentials of some molecules, J. Quant. Spectry. Radiative Transfer, 1962, 2, 369. [all data]

Steiner, Giese, et al., 1961
Steiner, B.; Giese, C.F.; Inghram, M.G., Photoionization of alkanes. Dissociation of excited molecular ions, J. Chem. Phys., 1961, 34, 189. [all data]

Krause, Taylor, et al., 1978
Krause, D.A.; Taylor, J.W.; Fenske, R.F., An analysis of the effects of alkyl substituents on the ionization potentials of n-alkenes, J. Am. Chem. Soc., 1978, 100, 718. [all data]

Bunzli, Burak, et al., 1973
Bunzli, J.C.; Burak, A.J.; Frost, D.C., Through-space interaction in non-conjugated acyclic dienes studied by photoelectron spectroscopy, Tetrahedron, 1973, 29, 3735. [all data]

Brand and Baer, 1984
Brand, W.A.; Baer, T., Dissociation dynamics of energy-selected C5H10+ ions, J. Am. Chem. Soc., 1984, 106, 3154. [all data]

Soják, Addová, et al., 2002
Soják, L.; Addová, G.; Kubinec, R.; Kraus, A.; Hu, G., Gas chromatographic-mass spectrometric characterization of all acyclic C5-C7 alkenes from fluid catalytic cracked gasoline using polydimethylsiloxane and squalane stationary phases, J. Chromatogr. A, 2002, 947, 1, 103-117, https://doi.org/10.1016/S0021-9673(01)01564-3 . [all data]

Dallos, Sisak, et al., 2000
Dallos, A.; Sisak, A.; Kulcsár, Z.; Kováts, E., Pair-wise interactions by gas chromatography VII. Interaction free enthalpies of solutes with secondary alcohol groups, J. Chromatogr. A, 2000, 904, 2, 211-242, https://doi.org/10.1016/S0021-9673(00)00908-0 . [all data]

Heinzen, Soares, et al., 1999
Heinzen, V.E.F.; Soares, M.F.; Yunes, R.A., Semi-empirical topological method for the prediction of the chromatographic retention of cis- and trans-alkene isomers and alkanes, J. Chromatogr. A, 1999, 849, 2, 495-506, https://doi.org/10.1016/S0021-9673(99)00530-0 . [all data]

Aflalaye, Sternberg, et al., 1995
Aflalaye, A.; Sternberg, R.; Raulin, F.; Vidal-Madjar, C., Gas chromatography of Titan's atmosphere. VI. Analysis of low-molecular-mass hydrocarbons and nitriles with BPX5 capillary columns, J. Chromatogr. A, 1995, 708, 2, 283-291, https://doi.org/10.1016/0021-9673(95)00410-O . [all data]

Do and Raulin, 1992
Do, L.; Raulin, F., Gas chromatography of Titan's atmosphere. III. Analysis of low-molecular-weight hydrocarbons and nitriles with a CP-Sil-5 CB WCOT capillary column, J. Chromatogr., 1992, 591, 1-2, 297-301, https://doi.org/10.1016/0021-9673(92)80247-R . [all data]

Do and Raulin, 1989
Do, L.; Raulin, F., Gas chromatography of Titan's atmosphere. I. Analysis of low-molecular-weight hydrocarbons and nitriles with a PoraPLOT Q porous polymer coated open-tubular capillary column, J. Chromatogr., 1989, 481, 45-54, https://doi.org/10.1016/S0021-9673(01)96751-2 . [all data]

Laub and Purnell, 1988
Laub, R.J.; Purnell, J.H., Specific retention volumes, retention indices, and family-plot regressions of aliphatic, alicyclic, and aromatic hydrocarbon solutes with OV-101 poly (dimethylsiloxane) stationary phase, J. Hi. Res. Chromatogr. Chromatogr. Comm., 1988, 11, 9, 649-660, https://doi.org/10.1002/jhrc.1240110908 . [all data]

Papazova, Milina, et al., 1988
Papazova, D.; Milina, R.; Dimov, N., Comparative evaluation of retention of hydrocarbons present in the C5-petroleum fraction of methylsilicone and squalane phases, Chromatographia, 1988, 25, 3, 177-180, https://doi.org/10.1007/BF02316441 . [all data]

Anders, Anders, et al., 1985
Anders, G.; Anders, K.; Engewald, W., Identification of non-branched alkenylcycloalkanes with a terminal double bond from retention index increments, Chromatographia, 1985, 20, 2, 83-86, https://doi.org/10.1007/BF02280602 . [all data]

Rudenko, Mal'tsev, et al., 1985
Rudenko, G.I.; Mal'tsev, V.V.; Studenichnik, V.N.; Ustinov, E.P., Gas chromatographic analysis of volatile substances evolved into atmosphere from polymer materials, Zh. Anal. Khim., 1985, 40, 6, 1119-1127. [all data]

Lubeck and Sutton, 1984
Lubeck, A.J.; Sutton, D.L., Kovats Retention Indices of Selected Olefins on Bonded Phase Fused Silica Capillaries, J. Hi. Res. Chromatogr. Chromatogr. Comm., 1984, 7, 9, 542-544, https://doi.org/10.1002/jhrc.1240070913 . [all data]

Bredael, 1982
Bredael, P., Retention indices of hydrocarbons on SE-30, J. Hi. Res. Chromatogr. Chromatogr. Comm., 1982, 5, 6, 325-328, https://doi.org/10.1002/jhrc.1240050610 . [all data]

Nijs and Jacobs, 1981
Nijs, H.H.; Jacobs, P.A., On-Line Single Run Analysis of Effluents from a Fischer-Tropsch Reactor, J. Chromatogr. Sci., 1981, 19, 1, 40-45, https://doi.org/10.1093/chromsci/19.1.40 . [all data]

Bajus, Veselý, et al., 1979
Bajus, M.; Veselý, V.; Leclercq, P.A.; Rijks, J.A., Steam cracking of hydrocarbons. 2. Pyrolysis of methylcyclohexane, Ind. Eng. Chem. Prod. Res. Dev., 1979, 18, 2, 135-142, https://doi.org/10.1021/i360070a012 . [all data]

Bajus, Veselý, et al., 1979, 2
Bajus, M.; Veselý, V.; Leclercq, P.A.; Rijks, J.A., Steam cracking of hydrocarbons. 1. Pyrolysis of heptane, Ind. Eng. Chem. Prod. Res. Dev., 1979, 18, 1, 30-37, https://doi.org/10.1021/i360069a007 . [all data]

Chrétien and Dubois, 1977
Chrétien, J.R.; Dubois, J.E., Topological analysis of gas-liquid chromatographic behavior of alkenes, Anal. Chem., 1977, 49, 6, 747-756, https://doi.org/10.1021/ac50014a021 . [all data]

Chretien and Dubois, 1976
Chretien, J.R.; Dubois, J.-E., New Perspectives in the Prediction of Kovats Indices, J. Chromatogr., 1976, 126, 171-189, https://doi.org/10.1016/S0021-9673(01)84071-1 . [all data]

Lulova, Leont'eva, et al., 1976
Lulova, N.I.; Leont'eva, S.A.; Timofeeva, A.N., Gas-chromatographic method of determination of individual hydrocarbons in catalytic cracking gasolines in Proceedings of All-Union Research Institute on Oil Processes. Vol.18, All-Union Research Institute on Oil Processes, Moscow, 1976, 30-53. [all data]

Riedo, Fritz, et al., 1976
Riedo, F.; Fritz, D.; Tarján, G.; Kováts, E.Sz., A tailor-made C87 hydrocarbon as a possible non-polar standard stationary phase for gas chromatography, J. Chromatogr., 1976, 126, 63-83, https://doi.org/10.1016/S0021-9673(01)84063-2 . [all data]

Rijks and Cramers, 1974
Rijks, J.A.; Cramers, C.A., High precision capillary gas chromatography of hydrocarbons, Chromatographia, 1974, 7, 3, 99-106, https://doi.org/10.1007/BF02269819 . [all data]

Schomburg and Dielmann, 1973
Schomburg, G.; Dielmann, G., Identification by means of retention parameters, J. Chromatogr. Sci., 1973, 11, 3, 151-159, https://doi.org/10.1093/chromsci/11.3.151 . [all data]

Robinson and Odell, 1971
Robinson, P.G.; Odell, A.L., A system of standard retention indices and its uses. The characterisation of stationary phases and the prediction of retention indices, J. Chromatogr., 1971, 57, 1-10, https://doi.org/10.1016/0021-9673(71)80001-8 . [all data]

Matukuma, 1969
Matukuma, A., Retention indices of alkanes through C10 and alkenes through C8 and relation between boiling points and retention data, Gas Chromatogr., Int. Symp. Anal. Instrum. Div Instrum Soc. Amer., 1969, 7, 55-75. [all data]

Hively and Hinton, 1968
Hively, R.A.; Hinton, R.E., Variation of the retention index with temperature on squalane substrates, J. Gas Chromatogr., 1968, 6, 4, 203-217, https://doi.org/10.1093/chromsci/6.4.203 . [all data]

Widmer, 1967
Widmer, H., Gas chromatographic identification of hydrocarbons using retention indices, J. Gas Chromatogr., 1967, 5, 10, 506-510, https://doi.org/10.1093/chromsci/5.10.506 . [all data]

Zulaïca and Guiochon, 1966
Zulaïca, J.; Guiochon, G., Analyse des hauts polymères par chromatographie en phase gazeuse de leurs produits de pyrolyse. II. Application à quelques hydrocarbures macromoléculaires purs, Bull. Soc. Chim. Fr., 1966, 4, 1351-1363. [all data]

Wehrli and Kováts, 1959
Wehrli, A.; Kováts, E., Gas-chromatographische Charakterisierung ogranischer Verbindungen. Teil 3: Berechnung der Retentionsindices aliphatischer, alicyclischer und aromatischer Verbindungen, Helv. Chim. Acta, 1959, 7, 7, 2709-2736, https://doi.org/10.1002/hlca.19590420745 . [all data]

Haagen-Smit Laboratory, 1997
Haagen-Smit Laboratory, Procedure for the detailed hydrocarbon analysis of gasolines by single column high efficiency (capillary) column gas chromatography, SOP NO. MLD 118, Revision No. 1.1, California Environmental Protection Agency, Air Resources Board, El Monte, California, 1997, 22. [all data]

Hoekman, 1993
Hoekman, S.K., Improved gas chromatography procedure for speciated hydrocarbon measurements of vehicle emissions, J. Chromatogr., 1993, 639, 2, 239-253, https://doi.org/10.1016/0021-9673(93)80260-F . [all data]

Olson, Sinkevitch, et al., 1992
Olson, K.L.; Sinkevitch, R.M.; Sloane, T.M., Speciation and Quantitation of Hydrocarbons in Gasoline Engine Exhaust, J. Chromatogr. Sci., 1992, 30, 12, 500-508, https://doi.org/10.1093/chromsci/30.12.500 . [all data]

White, Douglas, et al., 1992
White, C.M.; Douglas, L.J.; Hackett, J.P.; Anderson, R.R., Characterization of synthetic gasoline from the chloromethane-zeolite reaction, Energy Fuels, 1992, 6, 1, 76-82, https://doi.org/10.1021/ef00031a012 . [all data]

White, Hackett, et al., 1992
White, C.M.; Hackett, J.; Anderson, R.R.; Kail, S.; Spock, P.S., Linear temperature programmed retention indices of gasoline range hydrocarbons and chlorinated hydrocarbons on cross-linked polydimethylsiloxane, J. Hi. Res. Chromatogr., 1992, 15, 2, 105-120, https://doi.org/10.1002/jhrc.1240150211 . [all data]

Zaikin and Borisov, 2002
Zaikin, V.G.; Borisov, R.S., Chromatographic-mass spectrometric analysis of Fishcer-Tropsch synthesis products, J. Anal. Chem. USSR (Engl. Transl.), 2002, 57, 6, 544-551. [all data]

Sojak, Addova, et al., 2000
Sojak, L.; Addova, G.; Kubinec, R.; Ruman, J.; Hu, G., GC-MS characterization of all acyclic C5-C7 alkenes from FCC gasoline using squalane stationary phase, Petroleum and Coal, 2000, 42, 3-4, 188-194. [all data]

Li and Deng, 1998
Li, H.; Deng, C., Qualitative analysis of light components of gasoline cracking using Kovats retention indices, J. Instrumental Analysis, 1998, 17, 1, 67-69. [all data]

Xieyun, Maoqi, et al., 1996
Xieyun, H.; Maoqi, C.; Shiyan, Y., Gas Chromatographic analysis during the process of heptaldehyde production using 1-hexene, Chin. J. Chromatogr., 1996, 14, 4, 291-293. [all data]

Huguet, 1961
Huguet, M., Kovats retention indices in the qualitative analysis of light hydrocarbons by gas chromatography, Journees internationales d'etude des methodes de separation immediate et de chromatographie, 1961, 69. [all data]

Bramston-Cook, 2013
Bramston-Cook, R., Kovats indices for C2-C13 hydrocarbons and selected oxygenated/halocarbons with 100 % dimethylpolysiloxane columns, 2013, retrieved from http://lotusinstruments.com/monographs/List .... [all data]

Supelco, 2012
Supelco, CatalogNo. 24160-U, Petrocol DH Columns. Catalog No. 24160-U, 2012, retrieved from http://www.sigmaaldrich.com/etc/medialib/docs/Supelco/Datasheet/1/w97949.Par.0001.File.tmp/w97949.pdf. [all data]

Tsuge, Ohtan, et al., 2011
Tsuge, S.; Ohtan, H.; Watanabe, C., Pyrolysis - GC/MS Data Book of Synthetic Polymers, Elsevier, 2011, 420. [all data]

Sivadier, Ratel, et al., 2009
Sivadier, G.; Ratel, J.; Engel, E., Latency and persistence of diet volatile biomarkers in lamb fats, J. Agric. Food Chem., 2009, 57, 2, 645-652, https://doi.org/10.1021/jf802467q . [all data]

Zhang, Ding, et al., 2009
Zhang, X.; Ding, L.; Sun, Z.; Song, L.; Sun, T., Study on quantitative structure-retention relationships for hydrocarbons in FCC gasoline, Chromatographia, 2009, 70, 3/4, 511-518, https://doi.org/10.1365/s10337-009-1174-0 . [all data]

Shoenmakers, Oomen, et al., 2000
Shoenmakers, P.J.; Oomen, J.L.M.M.; Blomberg, J.; Genuit, W.; van Velzen, G., Comparison of comprehensive two-dimensional gas chromatography and gas chromatography-mass spectrometry for the characterization of complex hydrocarbon mixtures, J. Chromatogr. A, 2000, 892, 1-2, 29-46, https://doi.org/10.1016/S0021-9673(00)00744-5 . [all data]

Chupalov and Zenkevich, 1996
Chupalov, A.A.; Zenkevich, I.G., Chromatographic Characterization of Structural Transformations of Organic Compounds in Diels-Alder Reaction. Aliphatic Dienes and Dienophyls, Zh. Org. Khim., 1996, 32, 6, 675-684. [all data]

Guan, Li, et al., 1995
Guan, Y.; Li, L.; Zhou, L., Live retention database for compound identification in capillary gas chromatography, Chin. J. Chromatogr., 1995, 13, 5, 851-857. [all data]

Ramnas, Ostermark, et al., 1994
Ramnas, O.; Ostermark, U.; Peterson, G., Characterization of sixty alkenes in a cat-cracked gasoline naphtha by gas chromatography, Chromatographia, 1994, 38, 3/4, 222-226, https://doi.org/10.1007/BF02290340 . [all data]

Ciccioli, Cecinato, et al., 1992
Ciccioli, P.; Cecinato, A.; Brancaleoni, E.; Frattoni, M.; Liberti, A., Use of carbon adsorption traps combined with high resolution gas chromatography - mass spectrometry for the analysis of polar and non-polar C4-C14 hydrocarbons involved in photochemical smog formation, J. Hi. Res. Chromatogr., 1992, 15, 2, 75-84, https://doi.org/10.1002/jhrc.1240150205 . [all data]

Chen and Feng, 2007
Chen, Y.; Feng, C., QSPR study on gas chromatography retention index of some organic pollutants, Comput. Appl. Chem. (China), 2007, 24, 10, 1404-1408. [all data]

Junkes, Castanho, et al., 2003
Junkes, B.S.; Castanho, R.D.M.; Amboni, C.; Yunes, R.A.; Heinzen, V.E.F., Semiempirical Topological Index: A Novel Molecular Descriptor for Quantitative Structure-Retention Relationship Studies, Internet Electronic Journal of Molecular Design, 2003, 2, 1, 33-49. [all data]

Perkin Elmer Instruments, 2002
Perkin Elmer Instruments, Detailed hydrocarbon analysis (DHAX) Model 4015, 2002, retrieved from http://www.perkinelmer.com/instruments. [all data]

Zhu and Wang, 2001
Zhu, X.; Wang, W., The relationship between partition coefficients of hydrocarbons and their retention indices, Acta Scientific Circumstantiae, 2001, 21, 5, 631-633. [all data]

Tirillini, Verdelli, et al., 2000
Tirillini, B.; Verdelli, G.; Paolocci, F.; Ciccioli, P.; Frattoni, M., The volatile organic compounds from the mycelium of Tuber borchii Vitt., Phytochemistry, 2000, 55, 8, 983-985, https://doi.org/10.1016/S0031-9422(00)00308-3 . [all data]

Zenkevich, 2000
Zenkevich, I.G., Mutual Correlation between Gas Chromatographic Retention Indices of Unsaturated and Saturated Hydrocarbons found by Molecular Dynamics, Z. Anal. Chem., 2000, 55, 10, 1091-1097. [all data]

Spieksma, 1999
Spieksma, W., Determination of vapor liquid equilibrium from the Kovats retention index on dimethylsilicone using the Wilson mixing tool, J. Hi. Res. Chromatogr., 1999, 22, 10, 565-588, https://doi.org/10.1002/(SICI)1521-4168(19991001)22:10<565::AID-JHRC565>3.0.CO;2-2 . [all data]

Flanagan, Streete, et al., 1997
Flanagan, R.J.; Streete, P.J.; Ramsey, J.D., Volatile Substance Abuse, UNODC Technical Series, No 5, United Nations, Office on Drugs and Crime, Vienna International Centre, PO Box 500, A-1400 Vienna, Austria, 1997, 56, retrieved from http://www.odccp.org/pdf/technicalseries1997-01-011.pdf. [all data]

Zenkevich, 1997
Zenkevich, I.G., Influence of the Variations of Dynamics Molecular Parameterts on the Additivity of Chromatigraphic Retention Indices of Products of Organic Reactions Relative to Initial Reagents, Dokl. Akad. Nauk (Rus.), 1997, 353, 5, 625-627. [all data]

Zenkevich, 1996
Zenkevich, I.G., Informational Maitenance of Gas Chromatographic Identification of Organic Compounds in Ecoanalytical Investigations, Z. Anal. Chem., 1996, 51, 11, 1140-1148. [all data]

Strete, Ruprah, et al., 1992
Strete, P.J.; Ruprah, M.; Ramsey, J.D.; Flanagan, R.J., Detection and identification of volatile substances by headspace capillary gas chromatography to aid the diagnosis of acute poisoning, Analyst, 1992, 117, 7, 1111-1127, https://doi.org/10.1039/an9921701111 . [all data]

van Langenhove and Schamp, 1986
van Langenhove, H.; Schamp, N., Identification of Volatiles in the Head Space of Acid-Treated Phosphate Rock by Gas Chromatography-Mass Spectromety, J. Chromatogr., 1986, 351, 65-75, https://doi.org/10.1016/S0021-9673(01)83473-7 . [all data]

Waggott and Davies, 1984
Waggott, A.; Davies, I.W., Identification of organic pollutants using linear temperature programmed retention indices (LTPRIs) - Part II, 1984, retrieved from http://dwi.defra.gov.uk/research/completed-research/reports/dwi0383.pdf. [all data]

Robinson and Odell, 1971, 2
Robinson, P.G.; Odell, A.L., Comparison of isothermal and non-linear temperature programmed gas chromatography. The temperature dependence of the retention indices of a number of hydrocarbons on squalane and SE-30, J. Chromatogr., 1971, 57, 11-17, https://doi.org/10.1016/0021-9673(71)80002-X . [all data]

Girard and Durance, 2000
Girard, B.; Durance, T., Headspace volatiles of sockeye and pink salmon as affected by retort process, Food Chem. Toxicol., 2000, 65, 1, 34-39. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Gas Chromatography, References