Pentane

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Phase change data

Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Tboil309.2 ± 0.2KAVGN/AAverage of 81 out of 94 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus143.4 ± 0.7KAVGN/AAverage of 30 out of 31 values; Individual data points
Quantity Value Units Method Reference Comment
Ttriple143.46 ± 0.05KAVGN/AAverage of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Tc469.8 ± 0.5KAVGN/AAverage of 27 out of 31 values; Individual data points
Quantity Value Units Method Reference Comment
Pc33.1 ± 0.6atmAVGN/AAverage of 20 values; Individual data points
Quantity Value Units Method Reference Comment
Vc0.311l/molN/AAmbrose and Tsonopoulos, 1995 
Vc0.3098l/molN/AAftienjew and Zawisza, 1977Uncertainty assigned by TRC = 0.0003 l/mol; TRC
Vc0.295l/molN/ABeattie, Levine, et al., 1951Uncertainty assigned by TRC = 0.006 l/mol; TRC
Vc0.31482l/molN/ASage and Lacey, 1942Uncertainty assigned by TRC = 0.0031 l/mol; TRC
Quantity Value Units Method Reference Comment
ρc3.22 ± 0.07mol/lAVGN/AAverage of 14 values; Individual data points
Quantity Value Units Method Reference Comment
Δvap6.3 ± 0.2kcal/molAVGN/AAverage of 11 values; Individual data points

Enthalpy of vaporization

ΔvapH (kcal/mol) Temperature (K) Method Reference Comment
6.164309.2N/AMajer and Svoboda, 1985 
6.2620298.15N/AMesserly and Kennedy, 1940P = 68.68 kPa; DH
6.38323.N/APfohl, Riebesell, et al., 2002Based on data from 308. to 423. K.; AC
7.12238.AStephenson and Malanowski, 1987Based on data from 223. to 352. K.; AC
7.72208.AStephenson and Malanowski, 1987Based on data from 143. to 223. K.; AC
6.24365.AStephenson and Malanowski, 1987Based on data from 350. to 422. K.; AC
6.26433.AStephenson and Malanowski, 1987Based on data from 418. to 470. K.; AC
6.67284.EBStephenson and Malanowski, 1987Based on data from 269. to 341. K. See also Osborn and Douslin, 1974.; AC
6.09310.N/ADas, Reed, et al., 1977AC
5.5350.N/ADas, Reed, et al., 1977AC
4.71390.N/ADas, Reed, et al., 1977AC
3.61430.N/ADas, Reed, et al., 1977AC
2.0460.N/ADas, Reed, et al., 1977AC

Enthalpy of vaporization

ΔvapH = A exp(-αTr) (1 − Tr)β
    ΔvapH = Enthalpy of vaporization (at saturation pressure) (kcal/mol)
    Tr = reduced temperature (T / Tc)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) 260. to 428.
A (kcal/mol) 8.846
α -0.1238
β 0.4121
Tc (K) 469.6
ReferenceMajer and Svoboda, 1985

Entropy of vaporization

ΔvapS (cal/mol*K) Temperature (K) Reference Comment
21.00298.15Messerly and Kennedy, 1940P; DH

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (atm)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
268.8 to 341.373.98351070.617-40.454Osborn and Douslin, 1974Coefficents calculated by NIST from author's data.

Enthalpy of sublimation

ΔsubH (kcal/mol) Temperature (K) Method Reference Comment
10.0143.BBondi, 1963AC

Enthalpy of fusion

ΔfusH (kcal/mol) Temperature (K) Reference Comment
2.008143.47Messerly, Guthrie, et al., 1967DH
2.0112143.46Messerly and Kennedy, 1940DH
2.0143.5Acree, 1991AC
2.002143.4Parks and Huffman, 1930DH

Entropy of fusion

ΔfusS (cal/mol*K) Temperature (K) Reference Comment
14.00143.47Messerly, Guthrie, et al., 1967DH
14.02143.46Messerly and Kennedy, 1940DH
13.96143.4Parks and Huffman, 1930DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Phase change data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
MS - José A. Martinho Simões

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

1-Pentene + Hydrogen = Pentane

By formula: C5H10 + H2 = C5H12

Quantity Value Units Method Reference Comment
Δr-30.27 ± 0.58kcal/molChydMolnar, Rachford, et al., 1984liquid phase; solvent: Dioxane; ALS
Δr-29.87 ± 0.42kcal/molChydMolnar, Rachford, et al., 1984liquid phase; solvent: Hexane; ALS
Δr-29.30 ± 0.57kcal/molChydRogers and Skanupong, 1974liquid phase; solvent: Hexane; ALS
Δr-28.5 ± 0.3kcal/molChydRogers and McLafferty, 1971liquid phase; solvent: Hydrocarbon; ALS

C10H12CrO5 (solution) = Pentane (solution) + C5CrO5 (solution)

By formula: C10H12CrO5 (solution) = C5H12 (solution) + C5CrO5 (solution)

Quantity Value Units Method Reference Comment
Δr8.91kcal/molN/AMorse, Parker, et al., 1989solvent: Pentane; The reaction enthalpy was derived by using the LPHP value for the enthalpy of cleavage of Cr-CO bond in Cr(CO)6, 36.81 kcal/mol Lewis, Golden, et al., 1984, toghether with a PAC value for the reaction Cr(CO)6(solution) + n-C5H12(solution) = Cr(CO)5(n-C5H12)(solution) + CO(solution), 27.89 kcal/mol Morse, Parker, et al., 1989; MS

Pentane (solution) + Chromium hexacarbonyl (solution) = C10H12CrO5 (solution) + Carbon monoxide (solution)

By formula: C5H12 (solution) + C6CrO6 (solution) = C10H12CrO5 (solution) + CO (solution)

Quantity Value Units Method Reference Comment
Δr27.9 ± 2.5kcal/molPACMorse, Parker, et al., 1989solvent: Pentane; The reaction enthalpy relies on 0.67 for the quantum yield of CO dissociation; MS

3Hydrogen + 3-Penten-1-yne, (Z)- = Pentane

By formula: 3H2 + C5H6 = C5H12

Quantity Value Units Method Reference Comment
Δr-96.8 ± 0.1kcal/molChydRoth, Adamczak, et al., 1991liquid phase; ALS
Δr-95.6 ± 1.1kcal/molChydSkinner and Snelson, 1959liquid phase; solvent: Acetic acid; ALS

3Hydrogen + 3-Penten-1-yne, (E)- = Pentane

By formula: 3H2 + C5H6 = C5H12

Quantity Value Units Method Reference Comment
Δr-97.0 ± 0.3kcal/molChydRoth, Adamczak, et al., 1991liquid phase; ALS
Δr-96.0 ± 0.4kcal/molChydSkinner and Snelson, 1959liquid phase; solvent: Acetic acid; ALS

2Hydrogen + 1,4-Pentadiene = Pentane

By formula: 2H2 + C5H8 = C5H12

Quantity Value Units Method Reference Comment
Δr-60.22 ± 0.15kcal/molChydKistiakowsky, Ruhoff, et al., 1936gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -60.79 ± 0.15 kcal/mol; At 355 °K; ALS

Phenol (solution) + C5H11BrMg (solution) = C6H5BrMgO (solution) + Pentane (solution)

By formula: C6H6O (solution) + C5H11BrMg (solution) = C6H5BrMgO (solution) + C5H12 (solution)

Quantity Value Units Method Reference Comment
Δr-48.4 ± 1.0kcal/molRSCHolm, 1983solvent: Diethyl ether; MS

C5H11BrMg (solution) + Hydrogen bromide (g) = Pentane (solution) + Br2Mg (solution)

By formula: C5H11BrMg (solution) + HBr (g) = C5H12 (solution) + Br2Mg (solution)

Quantity Value Units Method Reference Comment
Δr-73.21 ± 0.53kcal/molRSCHolm, 1981solvent: Diethyl ether; MS

Ethanol (solution) + C5H11BrMg (solution) = C2H5BrMgO (solution) + Pentane (solution)

By formula: C2H6O (solution) + C5H11BrMg (solution) = C2H5BrMgO (solution) + C5H12 (solution)

Quantity Value Units Method Reference Comment
Δr-47.7 ± 1.0kcal/molRSCHolm, 1983solvent: Diethyl ether; MS

C5H11BrMg (solution) + Methylamine (solution) = CH4BrMgN (solution) + Pentane (solution)

By formula: C5H11BrMg (solution) + CH5N (solution) = CH4BrMgN (solution) + C5H12 (solution)

Quantity Value Units Method Reference Comment
Δr-31.19 ± 0.60kcal/molRSCHolm, 1983solvent: Diethyl ether; MS

2Hydrogen + Cyclopropane,ethenyl- = Pentane

By formula: 2H2 + C5H8 = C5H12

Quantity Value Units Method Reference Comment
Δr-65.5 ± 0.2kcal/molChydRoth, Kirmse, et al., 1982liquid phase; solvent: Isooctane; ALS

C5O5W (g) + Pentane (g) = C10H12O5W (g)

By formula: C5O5W (g) + C5H12 (g) = C10H12O5W (g)

Quantity Value Units Method Reference Comment
Δr-10.6 ± 3.0kcal/molEqGBrown, Ishikawa, et al., 1990Temperature range: ca. 300-350 K; MS

C5H11BrMg (solution) + Methane (solution) = Pentane (solution) + CH3BrMg (solution)

By formula: C5H11BrMg (solution) + CH4 (solution) = C5H12 (solution) + CH3BrMg (solution)

Quantity Value Units Method Reference Comment
Δr-3.6 ± 1.0kcal/molRSCHolm, 1983solvent: Diethyl ether; MS

Propanedinitrile (solution) + C5H11BrMg (solution) = C3HBrMgN2 (solution) + Pentane (solution)

By formula: C3H2N2 (solution) + C5H11BrMg (solution) = C3HBrMgN2 (solution) + C5H12 (solution)

Quantity Value Units Method Reference Comment
Δr-48.59kcal/molRSCHolm, 1983solvent: Diethyl ether; MS

Diphenylamine (solution) + C5H11BrMg (solution) = C12H10BrMgN (solution) + Pentane (solution)

By formula: C12H11N (solution) + C5H11BrMg (solution) = C12H10BrMgN (solution) + C5H12 (solution)

Quantity Value Units Method Reference Comment
Δr-28.39kcal/molRSCHolm, 1983solvent: Diethyl ether; MS

C5H11BrMg (solution) + Trifluoroacetic acid (solution) = C2BrF3MgO2 (solution) + Pentane (solution)

By formula: C5H11BrMg (solution) + C2HF3O2 (solution) = C2BrF3MgO2 (solution) + C5H12 (solution)

Quantity Value Units Method Reference Comment
Δr-65.39kcal/molRSCHolm, 1983solvent: Diethyl ether; MS

C5H11BrMg (solution) + Phenol, pentafluoro- (solution) = C6BrF5MgO (cr) + Pentane (solution)

By formula: C5H11BrMg (solution) + C6HF5O (solution) = C6BrF5MgO (cr) + C5H12 (solution)

Quantity Value Units Method Reference Comment
Δr-55.90kcal/molRSCHolm, 1983solvent: Diethyl ether; MS

C5H11BrMg (solution) + Ethanol, 2,2,2-trifluoro- (solution) = C2H2BrF3MgO (solution) + Pentane (solution)

By formula: C5H11BrMg (solution) + C2H3F3O (solution) = C2H2BrF3MgO (solution) + C5H12 (solution)

Quantity Value Units Method Reference Comment
Δr-47.71kcal/molRSCHolm, 1983solvent: Diethyl ether; MS

Methyl Alcohol (solution) + C5H11BrMg (solution) = CH3BrMgO (cr) + Pentane (solution)

By formula: CH4O (solution) + C5H11BrMg (solution) = CH3BrMgO (cr) + C5H12 (solution)

Quantity Value Units Method Reference Comment
Δr-52.51kcal/molRSCHolm, 1983solvent: Diethyl ether; MS

2Hydrogen + 1,3-Pentadiene = Pentane

By formula: 2H2 + C5H8 = C5H12

Quantity Value Units Method Reference Comment
Δr-54.11 ± 0.15kcal/molChydDolliver, Gresham, et al., 1937gas phase; At 355 °K; ALS

Pentane = Butane, 2-methyl-

By formula: C5H12 = C5H12

Quantity Value Units Method Reference Comment
Δr-1.861kcal/molEqkPines, Kvetinskas, et al., 1945gas phase; Heat of isomerization; ALS

Hydrogen + 2-Pentene, (Z)- = Pentane

By formula: H2 + C5H10 = C5H12

Quantity Value Units Method Reference Comment
Δr-28.1 ± 0.2kcal/molChydEgger and Benson, 1966gas phase; ALS

Hydrogen + 2-Pentene, (E)- = Pentane

By formula: H2 + C5H10 = C5H12

Quantity Value Units Method Reference Comment
Δr-27.2 ± 0.2kcal/molChydEgger and Benson, 1966gas phase; ALS

Gas phase ion energetics data

Go To: Top, Phase change data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
L - Sharon G. Lias

Data compiled as indicated in comments:
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

Quantity Value Units Method Reference Comment
IE (evaluated)10.28 ± 0.10eVN/AN/AL

Ionization energy determinations

IE (eV) Method Reference Comment
10.37PITraeger, Hudson, et al., 1996T = 0K; LL
10.43ESTLuo and Pacey, 1992LL
10.22 ± 0.05EIHolmes and Lossing, 1991LL
10.28 ± 0.10EVALLias, 1982LBLHLM
10.18 ± 0.15EQMautner(Meot-Ner), Sieck, et al., 1981LLK
10.93PEKimura, Katsumata, et al., 1981LLK
10.2 ± 0.1PEBieri, Burger, et al., 1977LLK
10.50EQLias, Ausloos, et al., 1976LLK
10.36PEIkuta, Yoshihara, et al., 1973LLK
10.59 ± 0.05EIFlesch and Svec, 1973LLK
10.37PEDewar and Worley, 1969RDSH
10.35PIWatanabe, Nakayama, et al., 1962RDSH
10.9 ± 0.1PEBieri, Burger, et al., 1977Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
C3H6+11.02C2H6PITraeger, Hudson, et al., 1996T = 0K; LL
C3H6+10.99 ± 0.02C2H6PISteiner, Giese, et al., 1961RDSH
C3H7+11.13C2H5PITraeger, Hudson, et al., 1996T = 0K; LL
C3H7+11.11 ± 0.05C2H5PISteiner, Giese, et al., 1961RDSH
C4H8+11.05CH4PITraeger, Hudson, et al., 1996T = 0K; LL
C4H8+11.00CH4EIWolkoff and Holmes, 1978LLK
C4H8+10.93 ± 0.03CH4PISteiner, Giese, et al., 1961RDSH
C4H9+11.10CH3PITraeger, Hudson, et al., 1996T = 0K; LL
C4H9+11.0 ± 0.1CH3EIBurgers and Holmes, 1982LBLHLM
C4H9+10.98 ± 0.05CH3EILossing and Semeluk, 1970RDSH
C4H9+11.06 ± 0.07CH3PISteiner, Giese, et al., 1961RDSH

References

Go To: Top, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Ambrose and Tsonopoulos, 1995
Ambrose, D.; Tsonopoulos, C., Vapor-Liquid Critical Properties of Elements and Compounds. 2. Normal Alkenes, J. Chem. Eng. Data, 1995, 40, 531-546. [all data]

Aftienjew and Zawisza, 1977
Aftienjew, J.; Zawisza, A., High-Pressure Liquid Vapour-Equilibria, Critical State and p(V,T,x) Up to 501.15 K and 4.560 MPa for n-Pentane + n-Perfluoropentane, J. Chem. Thermodyn., 1977, 9, 2, 153-165, https://doi.org/10.1016/0021-9614(77)90081-7 . [all data]

Beattie, Levine, et al., 1951
Beattie, J.A.; Levine, S.W.; Douslin, D.R., The vapor pressure and critical constants of normal pentane, J. Am. Chem. Soc., 1951, 73, 4431. [all data]

Sage and Lacey, 1942
Sage, B.H.; Lacey, W.N., Phase equilibria in hydrocarbon systems. Thermodynamic properties of n- pentane., Ind. Eng. Chem., 1942, 34, 730-737. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Messerly and Kennedy, 1940
Messerly, G.H.; Kennedy, R.M., The heat capacity and entropy, heats of fusion and vaporization and the vapor pressure of n-pentane, J. Am. Chem. Soc., 1940, 62, 2988-2991. [all data]

Pfohl, Riebesell, et al., 2002
Pfohl, Oliver; Riebesell, Christine; Dohrn, Ralf, Measurement and calculation of phase equilibria in the system n-pentane + poly(dimethylsiloxane) at 308.15--423.15 K, Fluid Phase Equilibria, 2002, 202, 2, 289-306, https://doi.org/10.1016/S0378-3812(02)00123-1 . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Osborn and Douslin, 1974
Osborn, Ann G.; Douslin, Donald R., Vapor-pressure relations for 15 hydrocarbons, J. Chem. Eng. Data, 1974, 19, 2, 114-117, https://doi.org/10.1021/je60061a022 . [all data]

Das, Reed, et al., 1977
Das, Tarun R.; Reed, Charles O.; Eubank, Philip T., PVT surface and thermodynamic properties of n-pentane, J. Chem. Eng. Data, 1977, 22, 1, 3-9, https://doi.org/10.1021/je60072a014 . [all data]

Bondi, 1963
Bondi, A., Heat of Siblimation of Molecular Crystals: A Catalog of Molecular Structure Increments., J. Chem. Eng. Data, 1963, 8, 3, 371-381, https://doi.org/10.1021/je60018a027 . [all data]

Messerly, Guthrie, et al., 1967
Messerly, J.F.; Guthrie, G.B.; Todd, S.S.; Finke, H.L., Low-temperature thermal data for n-pentane, n-heptadecane, and n-octadecane, J. Chem. Eng. Data, 1967, 12, 338-346. [all data]

Acree, 1991
Acree, William E., Thermodynamic properties of organic compounds: enthalpy of fusion and melting point temperature compilation, Thermochimica Acta, 1991, 189, 1, 37-56, https://doi.org/10.1016/0040-6031(91)87098-H . [all data]

Parks and Huffman, 1930
Parks, G.S.; Huffman, H.M., Thermal data on organic compounds. IX. A study of the effect of unsaturation on the heat capacities, entropies and free energies of some hydrocarbons and other compounds, J. Am. Chem. Soc., 1930, 52, 4381-4391. [all data]

Molnar, Rachford, et al., 1984
Molnar, A.; Rachford, R.; Smith, G.V.; Liu, R., Heats of hydrogenation by a simple and rapid flow calorimetric method, Appl. Catal., 1984, 9, 219-223. [all data]

Rogers and Skanupong, 1974
Rogers, D.W.; Skanupong, S., Heats of hydrogenation of sixteen terminal monoolefins. The alternating effect, J. Phys. Chem., 1974, 78, 2569-2572. [all data]

Rogers and McLafferty, 1971
Rogers, D.W.; McLafferty, F.J., A new hydrogen calorimeter. Heats of hydrogenation of allyl and vinyl unsaturation adjacent to a ring, Tetrahedron, 1971, 27, 3765-3775. [all data]

Morse, Parker, et al., 1989
Morse, J.M., Jr.; Parker, G.H.; Burkey, T.J., Organometallics, 1989, 8, 2471. [all data]

Lewis, Golden, et al., 1984
Lewis, K.E.; Golden, D.M.; Smith, G.P., Organometallic bond dissociation energies: Laser pyrolysis of Fe(CO)5, Cr(CO)6, Mo(CO)6, and W(CO)6, J. Am. Chem. Soc., 1984, 106, 3905. [all data]

Roth, Adamczak, et al., 1991
Roth, W.R.; Adamczak, O.; Breuckmann, R.; Lennartz, H.-W.; Boese, R., Die Berechnung von Resonanzenergien; das MM2ERW-Kraftfeld, Chem. Ber., 1991, 124, 2499-2521. [all data]

Skinner and Snelson, 1959
Skinner, H.A.; Snelson, A., Heats of hydrogenation Part 3., Trans. Faraday Soc., 1959, 55, 405-407. [all data]

Kistiakowsky, Ruhoff, et al., 1936
Kistiakowsky, G.B.; Ruhoff, J.R.; Smith, H.A.; Vaughan, W.E., Heats of organic reactions. IV. Hydrogenation of some dienes and of benzene, J. Am. Chem. Soc., 1936, 58, 146-153. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Holm, 1983
Holm, T., Acta Chem. Scand. B, 1983, 37, 797. [all data]

Holm, 1981
Holm, T., J. Chem. Soc., Perkin Trans. II, 1981, 464.. [all data]

Roth, Kirmse, et al., 1982
Roth, W.R.; Kirmse, W.; Hoffmann, W.; Lennartz, H.W., Heats of hydrogenation. III. Effect of fluoro substituents on the thermal rearrangement of cyclopropane systems, Chem. Ber., 1982, 115, 2508-2515. [all data]

Brown, Ishikawa, et al., 1990
Brown, C.E.; Ishikawa, Y.; Hackett, P.A.; Rayner, D.M., J. Am. Chem. Soc., 1990, 112, 2530. [all data]

Dolliver, Gresham, et al., 1937
Dolliver, M.a.; Gresham, T.L.; Kistiakowsky, G.B.; Vaughan, W.E., Heats of organic reactions. V. Heats of hydrogenation of various hydrocarbons, J. Am. Chem. Soc., 1937, 59, 831-841. [all data]

Pines, Kvetinskas, et al., 1945
Pines, H.; Kvetinskas, B.; Kassel, L.S.; Ipatieff, V.N., Determination of equilibrium constants for butanes and pentanes, J. Am. Chem. Soc., 1945, 67, 631-637. [all data]

Egger and Benson, 1966
Egger, K.W.; Benson, S.W., Nitric oxide and iodine catalyzed isomerization of olefins. VI. Thermodynamic data from equilibrium studies of the geometrical and positional isomerization of n-pentenes, J. Am. Chem. Soc., 1966, 88, 236-240. [all data]

Traeger, Hudson, et al., 1996
Traeger, J.C.; Hudson, C.E.; McAdoo, D.J., A photoionization study of the ion-neutral complexes [CH3CH+CH3CH2CH3] and [CH3CH2CH+CH3CH3] in the gas phase: Formation, H-transfer and C-C bond formation between partners, and channeling of energy into dissociation, J. Am. Soc. Mass Spectrom., 1996, 7, 73. [all data]

Luo and Pacey, 1992
Luo, Y.-R.; Pacey, P.D., Effects of alkyl substitution on ionization energies of alkanes and haloalkanes and on heats of formation of their molecular cations. Part 2. Alkanes and chloro-, bromo- and iodoalkanes, Int. J. Mass Spectrom. Ion Processes, 1992, 112, 63. [all data]

Holmes and Lossing, 1991
Holmes, J.L.; Lossing, F.P., Ionization energies of homologous organic compounds and correlation with molecular size, Org. Mass Spectrom., 1991, 26, 537. [all data]

Lias, 1982
Lias, S.G., Thermochemical information from ion-molecule rate constants, Ion Cyclotron Reson. Spectrom. 1982, 1982, 409. [all data]

Mautner(Meot-Ner), Sieck, et al., 1981
Mautner(Meot-Ner), M.; Sieck, L.W.; Ausloos, P., Ionization of normal alkanes: Enthalpy, entropy, structural, and isotope effects, J. Am. Chem. Soc., 1981, 103, 5342. [all data]

Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S., Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]

Bieri, Burger, et al., 1977
Bieri, G.; Burger, F.; Heilbronner, E.; Maier, J.P., Valence ionization enrgies of hydrocarbons, Helv. Chim. Acta, 1977, 60, 2213. [all data]

Lias, Ausloos, et al., 1976
Lias, S.G.; Ausloos, P.; Horvath, Z., Charge transfer reactions in alkane and cycloalkane systems. Estimated ionization potentials, Int. J. Chem. Kinet., 1976, 8, 725. [all data]

Ikuta, Yoshihara, et al., 1973
Ikuta, S.; Yoshihara, K.; Shiokawa, T.; Jinno, M.; Yokoyama, Y.; Ikeda, S., Photoelectron spectroscopy of cyclohexane, cyclopentane, and some related compounds, Chem. Lett., 1973, 1237. [all data]

Flesch and Svec, 1973
Flesch, G.D.; Svec, H.J., Fragmentation reactions in the mass spectrometer for C2-C5 alkanes, J. Chem. Soc. Faraday Trans. 2, 1973, 69, 1187. [all data]

Dewar and Worley, 1969
Dewar, M.J.S.; Worley, S.D., Photoelectron spectra of molecules. I. Ionization potentials of some organic molecules and their interpretation, J. Chem. Phys., 1969, 50, 654. [all data]

Watanabe, Nakayama, et al., 1962
Watanabe, K.; Nakayama, T.; Mottl, J., Ionization potentials of some molecules, J. Quant. Spectry. Radiative Transfer, 1962, 2, 369. [all data]

Steiner, Giese, et al., 1961
Steiner, B.; Giese, C.F.; Inghram, M.G., Photoionization of alkanes. Dissociation of excited molecular ions, J. Chem. Phys., 1961, 34, 189. [all data]

Wolkoff and Holmes, 1978
Wolkoff, P.; Holmes, J.L., Fragmentations of alkane molecular ions, J. Am. Chem. Soc., 1978, 100, 7346. [all data]

Burgers and Holmes, 1982
Burgers, P.C.; Holmes, J.L., Metastable ion studies. XIII. The measurement of appearance energies of metastable peaks, Org. Mass Spectrom., 1982, 17, 123. [all data]

Lossing and Semeluk, 1970
Lossing, F.P.; Semeluk, G.P., Free radicals by mass spectrometry. XLII.Ionization potentials and ionic heats of formation for C1-C4 alkyl radicals, Can. J. Chem., 1970, 48, 955. [all data]


Notes

Go To: Top, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, References