Pentane
- Formula: C5H12
- Molecular weight: 72.1488
- IUPAC Standard InChIKey: OFBQJSOFQDEBGM-UHFFFAOYSA-N
- CAS Registry Number: 109-66-0
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: n-Pentane; Skellysolve A; n-C5H12; Pentan; Pentanen; Pentani; Amyl hydride; NSC 72415
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -35.08 ± 0.14 | kcal/mol | Ccb | Good, 1970 | ALS |
ΔfH°gas | -35.16 ± 0.24 | kcal/mol | Cm | Pilcher and Chadwick, 1967 | ALS |
ΔfH°gas | -35.00 ± 0.16 | kcal/mol | Ccb | Prosen and Rossini, 1945 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°gas | -844.99 ± 0.23 | kcal/mol | Cm | Pilcher and Chadwick, 1967 | Corresponding ΔfHºgas = -35.16 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°gas | -845.27 ± 0.21 | kcal/mol | Ccb | Rossini, 1934 | Corresponding ΔfHºgas = -34.88 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°gas | 83.13 ± 0.20 | cal/mol*K | N/A | Messerly G.H., 1940 | Scott [ Scott D.W., 1974] has calculated the value of S(298.15 K)=349.49(0.71) J/mol*K on the basis of data [ Messerly G.H., 1940].; GT |
Constant pressure heat capacity of gas
Cp,gas (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
28.697 ± 0.057 | 298.15 | Kharin V.E., 1985 | Experimental data [ Sage B.H., 1937] are less accurate than selected ones. Please also see Hossenlopp I.A., 1981.; GT |
30.554 ± 0.062 | 323.15 | ||
32.481 ± 0.065 | 348.15 | ||
34.405 ± 0.069 | 373.15 | ||
36.310 ± 0.072 | 398.15 | ||
38.162 ± 0.076 | 423.15 | ||
40.002 ± 0.079 | 448.15 | ||
40.179 | 450. | ||
41.766 ± 0.084 | 473.15 | ||
43.494 ± 0.086 | 498.15 | ||
43.592 | 500. | ||
45.191 ± 0.091 | 523.15 | ||
46.836 | 550. | ||
50.007 | 600. | ||
53.043 | 650. | ||
55.664 | 700. |
Constant pressure heat capacity of gas
Cp,gas (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
22.36 | 200. | Scott D.W., 1974, 2 | Recommended values were obtained from the consistent correlation scheme for alkanes [ Scott D.W., 1974, Scott D.W., 1974, 2]. This approach gives a better agreement with experimental data than the statistical thermodynamics calculation [ Pitzer K.S., 1944, Pitzer K.S., 1946].; GT |
26.900 | 273.15 | ||
28.69 ± 0.02 | 298.15 | ||
28.829 | 300. | ||
36.460 | 400. | ||
43.640 | 500. | ||
49.900 | 600. | ||
55.301 | 700. | ||
59.900 | 800. | ||
63.800 | 900. | ||
67.299 | 1000. | ||
70.201 | 1100. | ||
72.801 | 1200. | ||
75.000 | 1300. | ||
77.000 | 1400. | ||
79.001 | 1500. |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
MS - José A. Martinho Simões
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
By formula: C5H10 + H2 = C5H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -30.27 ± 0.58 | kcal/mol | Chyd | Molnar, Rachford, et al., 1984 | liquid phase; solvent: Dioxane; ALS |
ΔrH° | -29.87 ± 0.42 | kcal/mol | Chyd | Molnar, Rachford, et al., 1984 | liquid phase; solvent: Hexane; ALS |
ΔrH° | -29.30 ± 0.57 | kcal/mol | Chyd | Rogers and Skanupong, 1974 | liquid phase; solvent: Hexane; ALS |
ΔrH° | -28.5 ± 0.3 | kcal/mol | Chyd | Rogers and McLafferty, 1971 | liquid phase; solvent: Hydrocarbon; ALS |
C10H12CrO5 (solution) = (solution) + C5CrO5 (solution)
By formula: C10H12CrO5 (solution) = C5H12 (solution) + C5CrO5 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 8.91 | kcal/mol | N/A | Morse, Parker, et al., 1989 | solvent: Pentane; The reaction enthalpy was derived by using the LPHP value for the enthalpy of cleavage of Cr-CO bond in Cr(CO)6, 36.81 kcal/mol Lewis, Golden, et al., 1984, toghether with a PAC value for the reaction Cr(CO)6(solution) + n-C5H12(solution) = Cr(CO)5(n-C5H12)(solution) + CO(solution), 27.89 kcal/mol Morse, Parker, et al., 1989; MS |
(solution) + (solution) = C10H12CrO5 (solution) + (solution)
By formula: C5H12 (solution) + C6CrO6 (solution) = C10H12CrO5 (solution) + CO (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 27.9 ± 2.5 | kcal/mol | PAC | Morse, Parker, et al., 1989 | solvent: Pentane; The reaction enthalpy relies on 0.67 for the quantum yield of CO dissociation; MS |
By formula: 3H2 + C5H6 = C5H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -96.8 ± 0.1 | kcal/mol | Chyd | Roth, Adamczak, et al., 1991 | liquid phase; ALS |
ΔrH° | -95.6 ± 1.1 | kcal/mol | Chyd | Skinner and Snelson, 1959 | liquid phase; solvent: Acetic acid; ALS |
By formula: 3H2 + C5H6 = C5H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -97.0 ± 0.3 | kcal/mol | Chyd | Roth, Adamczak, et al., 1991 | liquid phase; ALS |
ΔrH° | -96.0 ± 0.4 | kcal/mol | Chyd | Skinner and Snelson, 1959 | liquid phase; solvent: Acetic acid; ALS |
By formula: 2H2 + C5H8 = C5H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -60.22 ± 0.15 | kcal/mol | Chyd | Kistiakowsky, Ruhoff, et al., 1936 | gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -60.79 ± 0.15 kcal/mol; At 355 °K; ALS |
(solution) + C5H11BrMg (solution) = C6H5BrMgO (solution) + (solution)
By formula: C6H6O (solution) + C5H11BrMg (solution) = C6H5BrMgO (solution) + C5H12 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -48.4 ± 1.0 | kcal/mol | RSC | Holm, 1983 | solvent: Diethyl ether; MS |
C5H11BrMg (solution) + (g) = (solution) + Br2Mg (solution)
By formula: C5H11BrMg (solution) + HBr (g) = C5H12 (solution) + Br2Mg (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -73.21 ± 0.53 | kcal/mol | RSC | Holm, 1981 | solvent: Diethyl ether; MS |
(solution) + C5H11BrMg (solution) = C2H5BrMgO (solution) + (solution)
By formula: C2H6O (solution) + C5H11BrMg (solution) = C2H5BrMgO (solution) + C5H12 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -47.7 ± 1.0 | kcal/mol | RSC | Holm, 1983 | solvent: Diethyl ether; MS |
C5H11BrMg (solution) + (solution) = CH4BrMgN (solution) + (solution)
By formula: C5H11BrMg (solution) + CH5N (solution) = CH4BrMgN (solution) + C5H12 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -31.19 ± 0.60 | kcal/mol | RSC | Holm, 1983 | solvent: Diethyl ether; MS |
By formula: 2H2 + C5H8 = C5H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -65.5 ± 0.2 | kcal/mol | Chyd | Roth, Kirmse, et al., 1982 | liquid phase; solvent: Isooctane; ALS |
C5O5W (g) + (g) = C10H12O5W (g)
By formula: C5O5W (g) + C5H12 (g) = C10H12O5W (g)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -10.6 ± 3.0 | kcal/mol | EqG | Brown, Ishikawa, et al., 1990 | Temperature range: ca. 300-350 K; MS |
C5H11BrMg (solution) + (solution) = (solution) + CH3BrMg (solution)
By formula: C5H11BrMg (solution) + CH4 (solution) = C5H12 (solution) + CH3BrMg (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -3.6 ± 1.0 | kcal/mol | RSC | Holm, 1983 | solvent: Diethyl ether; MS |
(solution) + C5H11BrMg (solution) = C3HBrMgN2 (solution) + (solution)
By formula: C3H2N2 (solution) + C5H11BrMg (solution) = C3HBrMgN2 (solution) + C5H12 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -48.59 | kcal/mol | RSC | Holm, 1983 | solvent: Diethyl ether; MS |
(solution) + C5H11BrMg (solution) = C12H10BrMgN (solution) + (solution)
By formula: C12H11N (solution) + C5H11BrMg (solution) = C12H10BrMgN (solution) + C5H12 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -28.39 | kcal/mol | RSC | Holm, 1983 | solvent: Diethyl ether; MS |
C5H11BrMg (solution) + (solution) = C2BrF3MgO2 (solution) + (solution)
By formula: C5H11BrMg (solution) + C2HF3O2 (solution) = C2BrF3MgO2 (solution) + C5H12 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -65.39 | kcal/mol | RSC | Holm, 1983 | solvent: Diethyl ether; MS |
C5H11BrMg (solution) + (solution) = C6BrF5MgO (cr) + (solution)
By formula: C5H11BrMg (solution) + C6HF5O (solution) = C6BrF5MgO (cr) + C5H12 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -55.90 | kcal/mol | RSC | Holm, 1983 | solvent: Diethyl ether; MS |
C5H11BrMg (solution) + (solution) = C2H2BrF3MgO (solution) + (solution)
By formula: C5H11BrMg (solution) + C2H3F3O (solution) = C2H2BrF3MgO (solution) + C5H12 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -47.71 | kcal/mol | RSC | Holm, 1983 | solvent: Diethyl ether; MS |
(solution) + C5H11BrMg (solution) = CH3BrMgO (cr) + (solution)
By formula: CH4O (solution) + C5H11BrMg (solution) = CH3BrMgO (cr) + C5H12 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -52.51 | kcal/mol | RSC | Holm, 1983 | solvent: Diethyl ether; MS |
By formula: 2H2 + C5H8 = C5H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -54.11 ± 0.15 | kcal/mol | Chyd | Dolliver, Gresham, et al., 1937 | gas phase; At 355 °K; ALS |
By formula: C5H12 = C5H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -1.861 | kcal/mol | Eqk | Pines, Kvetinskas, et al., 1945 | gas phase; Heat of isomerization; ALS |
By formula: H2 + C5H10 = C5H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -28.1 ± 0.2 | kcal/mol | Chyd | Egger and Benson, 1966 | gas phase; ALS |
By formula: H2 + C5H10 = C5H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -27.2 ± 0.2 | kcal/mol | Chyd | Egger and Benson, 1966 | gas phase; ALS |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
L - Sharon G. Lias
Data compiled as indicated in comments:
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 10.28 ± 0.10 | eV | N/A | N/A | L |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
10.37 | PI | Traeger, Hudson, et al., 1996 | T = 0K; LL |
10.43 | EST | Luo and Pacey, 1992 | LL |
10.22 ± 0.05 | EI | Holmes and Lossing, 1991 | LL |
10.28 ± 0.10 | EVAL | Lias, 1982 | LBLHLM |
10.18 ± 0.15 | EQ | Mautner(Meot-Ner), Sieck, et al., 1981 | LLK |
10.93 | PE | Kimura, Katsumata, et al., 1981 | LLK |
10.2 ± 0.1 | PE | Bieri, Burger, et al., 1977 | LLK |
10.50 | EQ | Lias, Ausloos, et al., 1976 | LLK |
10.36 | PE | Ikuta, Yoshihara, et al., 1973 | LLK |
10.59 ± 0.05 | EI | Flesch and Svec, 1973 | LLK |
10.37 | PE | Dewar and Worley, 1969 | RDSH |
10.35 | PI | Watanabe, Nakayama, et al., 1962 | RDSH |
10.9 ± 0.1 | PE | Bieri, Burger, et al., 1977 | Vertical value; LLK |
Appearance energy determinations
Ion | AE (eV) | Other Products | Method | Reference | Comment |
---|---|---|---|---|---|
C3H6+ | 11.02 | C2H6 | PI | Traeger, Hudson, et al., 1996 | T = 0K; LL |
C3H6+ | 10.99 ± 0.02 | C2H6 | PI | Steiner, Giese, et al., 1961 | RDSH |
C3H7+ | 11.13 | C2H5 | PI | Traeger, Hudson, et al., 1996 | T = 0K; LL |
C3H7+ | 11.11 ± 0.05 | C2H5 | PI | Steiner, Giese, et al., 1961 | RDSH |
C4H8+ | 11.05 | CH4 | PI | Traeger, Hudson, et al., 1996 | T = 0K; LL |
C4H8+ | 11.00 | CH4 | EI | Wolkoff and Holmes, 1978 | LLK |
C4H8+ | 10.93 ± 0.03 | CH4 | PI | Steiner, Giese, et al., 1961 | RDSH |
C4H9+ | 11.10 | CH3 | PI | Traeger, Hudson, et al., 1996 | T = 0K; LL |
C4H9+ | 11.0 ± 0.1 | CH3 | EI | Burgers and Holmes, 1982 | LBLHLM |
C4H9+ | 10.98 ± 0.05 | CH3 | EI | Lossing and Semeluk, 1970 | RDSH |
C4H9+ | 11.06 ± 0.07 | CH3 | PI | Steiner, Giese, et al., 1961 | RDSH |
References
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Good, 1970
Good, W.D.,
The enthalpies of combustion and formation of the isomeric pentanes,
J. Chem. Thermodyn., 1970, 2, 237-244. [all data]
Pilcher and Chadwick, 1967
Pilcher, G.; Chadwick, J.D.M.,
Measurements of heats of combustion by flame calorimetry. Part 4.-n-Pentane, isopentane, neopentane,
Trans. Faraday Soc., 1967, 63, 2357-2361. [all data]
Prosen and Rossini, 1945
Prosen, E.J.; Rossini, F.D.,
Heats of combustion and formation of the paraffin hydrocarbons at 25° C,
J. Res. NBS, 1945, 263-267. [all data]
Rossini, 1934
Rossini, F.D.,
Calorimetric determination of the heats of combustion of ethane, propane, normal butane, and normal pentane,
J. Res. NBS, 1934, 12, 735-750. [all data]
Messerly G.H., 1940
Messerly G.H.,
The heat capacity and entropy, heats of fusion and vaporization and the vapor pressure of n-pentane,
J. Am. Chem. Soc., 1940, 62, 2988-2991. [all data]
Scott D.W., 1974
Scott D.W.,
Correlation of the chemical thermodynamic properties of alkane hydrocarbons,
J. Chem. Phys., 1974, 60, 3144-3165. [all data]
Kharin V.E., 1985
Kharin V.E.,
Isobaric heat capacity of n-pentane in the vapor phase,
Izv. Vyssh. Ucheb. Zaved., Neft. Gaz, 1985, 28, 63-66. [all data]
Sage B.H., 1937
Sage B.H.,
Phase equilibria in hydrocarbon systems. XX. Isobaric heat capacity of gaseous propane, n-butane, isobutane, and n-pentane,
Ind. Eng. Chem., 1937, 29, 1309-1314. [all data]
Hossenlopp I.A., 1981
Hossenlopp I.A.,
Vapor heat capacities and enthalpies of vaporization of five alkane hydrocarbons,
J. Chem. Thermodyn., 1981, 13, 415-421. [all data]
Scott D.W., 1974, 2
Scott D.W.,
Chemical Thermodynamic Properties of Hydrocarbons and Related Substances. Properties of the Alkane Hydrocarbons, C1 through C10 in the Ideal Gas State from 0 to 1500 K. U.S. Bureau of Mines, Bulletin 666, 1974. [all data]
Pitzer K.S., 1944
Pitzer K.S.,
Thermodynamics of gaseous paraffins. Specific heat and related properties,
Ind. Eng. Chem., 1944, 36, 829-831. [all data]
Pitzer K.S., 1946
Pitzer K.S.,
The entropies and related properties of branched paraffin hydrocarbons,
Chem. Rev., 1946, 39, 435-447. [all data]
Molnar, Rachford, et al., 1984
Molnar, A.; Rachford, R.; Smith, G.V.; Liu, R.,
Heats of hydrogenation by a simple and rapid flow calorimetric method,
Appl. Catal., 1984, 9, 219-223. [all data]
Rogers and Skanupong, 1974
Rogers, D.W.; Skanupong, S.,
Heats of hydrogenation of sixteen terminal monoolefins. The alternating effect,
J. Phys. Chem., 1974, 78, 2569-2572. [all data]
Rogers and McLafferty, 1971
Rogers, D.W.; McLafferty, F.J.,
A new hydrogen calorimeter. Heats of hydrogenation of allyl and vinyl unsaturation adjacent to a ring,
Tetrahedron, 1971, 27, 3765-3775. [all data]
Morse, Parker, et al., 1989
Morse, J.M., Jr.; Parker, G.H.; Burkey, T.J.,
Organometallics, 1989, 8, 2471. [all data]
Lewis, Golden, et al., 1984
Lewis, K.E.; Golden, D.M.; Smith, G.P.,
Organometallic bond dissociation energies: Laser pyrolysis of Fe(CO)5, Cr(CO)6, Mo(CO)6, and W(CO)6,
J. Am. Chem. Soc., 1984, 106, 3905. [all data]
Roth, Adamczak, et al., 1991
Roth, W.R.; Adamczak, O.; Breuckmann, R.; Lennartz, H.-W.; Boese, R.,
Die Berechnung von Resonanzenergien; das MM2ERW-Kraftfeld,
Chem. Ber., 1991, 124, 2499-2521. [all data]
Skinner and Snelson, 1959
Skinner, H.A.; Snelson, A.,
Heats of hydrogenation Part 3.,
Trans. Faraday Soc., 1959, 55, 405-407. [all data]
Kistiakowsky, Ruhoff, et al., 1936
Kistiakowsky, G.B.; Ruhoff, J.R.; Smith, H.A.; Vaughan, W.E.,
Heats of organic reactions. IV. Hydrogenation of some dienes and of benzene,
J. Am. Chem. Soc., 1936, 58, 146-153. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]
Holm, 1983
Holm, T.,
Acta Chem. Scand. B, 1983, 37, 797. [all data]
Holm, 1981
Holm, T.,
J. Chem. Soc., Perkin Trans. II, 1981, 464.. [all data]
Roth, Kirmse, et al., 1982
Roth, W.R.; Kirmse, W.; Hoffmann, W.; Lennartz, H.W.,
Heats of hydrogenation. III. Effect of fluoro substituents on the thermal rearrangement of cyclopropane systems,
Chem. Ber., 1982, 115, 2508-2515. [all data]
Brown, Ishikawa, et al., 1990
Brown, C.E.; Ishikawa, Y.; Hackett, P.A.; Rayner, D.M.,
J. Am. Chem. Soc., 1990, 112, 2530. [all data]
Dolliver, Gresham, et al., 1937
Dolliver, M.a.; Gresham, T.L.; Kistiakowsky, G.B.; Vaughan, W.E.,
Heats of organic reactions. V. Heats of hydrogenation of various hydrocarbons,
J. Am. Chem. Soc., 1937, 59, 831-841. [all data]
Pines, Kvetinskas, et al., 1945
Pines, H.; Kvetinskas, B.; Kassel, L.S.; Ipatieff, V.N.,
Determination of equilibrium constants for butanes and pentanes,
J. Am. Chem. Soc., 1945, 67, 631-637. [all data]
Egger and Benson, 1966
Egger, K.W.; Benson, S.W.,
Nitric oxide and iodine catalyzed isomerization of olefins. VI. Thermodynamic data from equilibrium studies of the geometrical and positional isomerization of n-pentenes,
J. Am. Chem. Soc., 1966, 88, 236-240. [all data]
Traeger, Hudson, et al., 1996
Traeger, J.C.; Hudson, C.E.; McAdoo, D.J.,
A photoionization study of the ion-neutral complexes [CH3CH+CH3CH2CH3] and [CH3CH2CH+CH3CH3] in the gas phase: Formation, H-transfer and C-C bond formation between partners, and channeling of energy into dissociation,
J. Am. Soc. Mass Spectrom., 1996, 7, 73. [all data]
Luo and Pacey, 1992
Luo, Y.-R.; Pacey, P.D.,
Effects of alkyl substitution on ionization energies of alkanes and haloalkanes and on heats of formation of their molecular cations. Part 2. Alkanes and chloro-, bromo- and iodoalkanes,
Int. J. Mass Spectrom. Ion Processes, 1992, 112, 63. [all data]
Holmes and Lossing, 1991
Holmes, J.L.; Lossing, F.P.,
Ionization energies of homologous organic compounds and correlation with molecular size,
Org. Mass Spectrom., 1991, 26, 537. [all data]
Lias, 1982
Lias, S.G.,
Thermochemical information from ion-molecule rate constants,
Ion Cyclotron Reson. Spectrom. 1982, 1982, 409. [all data]
Mautner(Meot-Ner), Sieck, et al., 1981
Mautner(Meot-Ner), M.; Sieck, L.W.; Ausloos, P.,
Ionization of normal alkanes: Enthalpy, entropy, structural, and isotope effects,
J. Am. Chem. Soc., 1981, 103, 5342. [all data]
Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S.,
Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules
in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]
Bieri, Burger, et al., 1977
Bieri, G.; Burger, F.; Heilbronner, E.; Maier, J.P.,
Valence ionization enrgies of hydrocarbons,
Helv. Chim. Acta, 1977, 60, 2213. [all data]
Lias, Ausloos, et al., 1976
Lias, S.G.; Ausloos, P.; Horvath, Z.,
Charge transfer reactions in alkane and cycloalkane systems. Estimated ionization potentials,
Int. J. Chem. Kinet., 1976, 8, 725. [all data]
Ikuta, Yoshihara, et al., 1973
Ikuta, S.; Yoshihara, K.; Shiokawa, T.; Jinno, M.; Yokoyama, Y.; Ikeda, S.,
Photoelectron spectroscopy of cyclohexane, cyclopentane, and some related compounds,
Chem. Lett., 1973, 1237. [all data]
Flesch and Svec, 1973
Flesch, G.D.; Svec, H.J.,
Fragmentation reactions in the mass spectrometer for C2-C5 alkanes,
J. Chem. Soc. Faraday Trans. 2, 1973, 69, 1187. [all data]
Dewar and Worley, 1969
Dewar, M.J.S.; Worley, S.D.,
Photoelectron spectra of molecules. I. Ionization potentials of some organic molecules and their interpretation,
J. Chem. Phys., 1969, 50, 654. [all data]
Watanabe, Nakayama, et al., 1962
Watanabe, K.; Nakayama, T.; Mottl, J.,
Ionization potentials of some molecules,
J. Quant. Spectry. Radiative Transfer, 1962, 2, 369. [all data]
Steiner, Giese, et al., 1961
Steiner, B.; Giese, C.F.; Inghram, M.G.,
Photoionization of alkanes. Dissociation of excited molecular ions,
J. Chem. Phys., 1961, 34, 189. [all data]
Wolkoff and Holmes, 1978
Wolkoff, P.; Holmes, J.L.,
Fragmentations of alkane molecular ions,
J. Am. Chem. Soc., 1978, 100, 7346. [all data]
Burgers and Holmes, 1982
Burgers, P.C.; Holmes, J.L.,
Metastable ion studies. XIII. The measurement of appearance energies of metastable peaks,
Org. Mass Spectrom., 1982, 17, 123. [all data]
Lossing and Semeluk, 1970
Lossing, F.P.; Semeluk, G.P.,
Free radicals by mass spectrometry. XLII.Ionization potentials and ionic heats of formation for C1-C4 alkyl radicals,
Can. J. Chem., 1970, 48, 955. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, References
- Symbols used in this document:
AE Appearance energy Cp,gas Constant pressure heat capacity of gas IE (evaluated) Recommended ionization energy S°gas Entropy of gas at standard conditions ΔcH°gas Enthalpy of combustion of gas at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔrH° Enthalpy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.