n-Propyl acetate

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Reaction thermochemistry data

Go To: Top, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C3H9Si+ + n-Propyl acetate = (C3H9Si+ • n-Propyl acetate)

By formula: C3H9Si+ + C5H10O2 = (C3H9Si+ • C5H10O2)

Quantity Value Units Method Reference Comment
Δr49.4kcal/molPHPMSWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr31.6cal/mol*KN/AWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
34.7468.PHPMSWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M

C3H9Sn+ + n-Propyl acetate = (C3H9Sn+ • n-Propyl acetate)

By formula: C3H9Sn+ + C5H10O2 = (C3H9Sn+ • C5H10O2)

Quantity Value Units Method Reference Comment
Δr40.2kcal/molPHPMSStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr32.8cal/mol*KN/AStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
23.0525.PHPMSStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M

C5H9O2- + Hydrogen cation = n-Propyl acetate

By formula: C5H9O2- + H+ = C5H10O2

Quantity Value Units Method Reference Comment
Δr371.3 ± 4.1kcal/molG+TSHaas, Giblin, et al., 1998gas phase; From transesterification equilibria; B
Quantity Value Units Method Reference Comment
Δr364.6 ± 4.0kcal/molIMREHaas, Giblin, et al., 1998gas phase; From transesterification equilibria; B

Nitric oxide anion + n-Propyl acetate = (Nitric oxide anion • n-Propyl acetate)

By formula: NO- + C5H10O2 = (NO- • C5H10O2)

Quantity Value Units Method Reference Comment
Δr42.0kcal/molICRReents and Freiser, 1981gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M

Ketene + 1-Propanol = n-Propyl acetate

By formula: C2H2O + C3H8O = C5H10O2

Quantity Value Units Method Reference Comment
Δr-35.32kcal/molCmRice and Greenberg, 1934gas phase; ALS

Gas phase ion energetics data

Go To: Top, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

Quantity Value Units Method Reference Comment
Proton affinity (review)200.0kcal/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity192.5kcal/molN/AHunter and Lias, 1998HL

Ionization energy determinations

IE (eV) Method Reference Comment
10.04 ± 0.03PIWatanabe, Nakayama, et al., 1962RDSH
9.92PEBenoit and Harrison, 1977Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
C2H5O2+9.94 ± 0.05CH2=CHCH2EIBenoit, Harrison, et al., 1977LLK
C2H5O2+10.48 ± 0.07?EIBrion and Dunning, 1963RDSH
C3H5O2+11.29 ± 0.04C2H5EIBrion and Dunning, 1963RDSH
C3H7+11.41 ± 0.04?EIBrion and Dunning, 1963RDSH
C3H7O+11.64 ± 0.03CH3COEIBrion and Dunning, 1963RDSH

De-protonation reactions

C5H9O2- + Hydrogen cation = n-Propyl acetate

By formula: C5H9O2- + H+ = C5H10O2

Quantity Value Units Method Reference Comment
Δr371.3 ± 4.1kcal/molG+TSHaas, Giblin, et al., 1998gas phase; From transesterification equilibria; B
Quantity Value Units Method Reference Comment
Δr364.6 ± 4.0kcal/molIMREHaas, Giblin, et al., 1998gas phase; From transesterification equilibria; B

References

Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Wojtyniak and Stone, 1986
Wojtyniak, A.C.M.; Stone, A.J., A High-Pressure Mass Spectrometric Study of the Bonding of Trimethylsilylium to Oxygen and Aromatic Bases, Can. J. Chem., 1986, 74, 59. [all data]

Stone and Splinter, 1984
Stone, J.A.; Splinter, D.E., A high-pressure mass spectrometric study of the binding of (CH3)3Sn+ to lewis bases in the gas phase, Int. J. Mass Spectrom. Ion Processes, 1984, 59, 169. [all data]

Haas, Giblin, et al., 1998
Haas, G.W.; Giblin, D.E.; Gross, M.L., The Mechanism and Thermodynamics of Transesterification of Acetate-Ester Enolates in the Gas Phase, Int. J. Mass Spectrom. Ion Proc., 1998, 172, 1-2, 25, https://doi.org/10.1016/S0168-1176(97)83245-4 . [all data]

Reents and Freiser, 1981
Reents, W.D.; Freiser, B.S., Gas-Phase Binding Energies and Spectroscopic Properties of NO+ Charge-Transfer Complexes, J. Am. Chem. Soc., 1981, 103, 2791. [all data]

Farid and McMahon, 1978
Farid, R.; McMahon, T.B., Gas-Phase Ion-Molecule Reactions of Alkyl Nitrites by Ion Cyclotron Resonance Spectroscopy, Int. J. Mass Spectrom. Ion Phys., 1978, 27, 2, 163, https://doi.org/10.1016/0020-7381(78)80037-0 . [all data]

Rice and Greenberg, 1934
Rice, F.O.; Greenberg, J., Ketene. III. Heat of formation and heat of reaction with alcohols, J. Am. Chem. Soc., 1934, 38, 2268-2270. [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Watanabe, Nakayama, et al., 1962
Watanabe, K.; Nakayama, T.; Mottl, J., Ionization potentials of some molecules, J. Quant. Spectry. Radiative Transfer, 1962, 2, 369. [all data]

Benoit and Harrison, 1977
Benoit, F.M.; Harrison, A.G., Predictive value of proton affinity. Ionization energy correlations involving oxygenated molecules, J. Am. Chem. Soc., 1977, 99, 3980. [all data]

Benoit, Harrison, et al., 1977
Benoit, F.M.; Harrison, A.G.; Lossing, F.P., Hydrogen migrations in mass spectrometry III-Energetics of formation of [R'CO2H2]+ in the mass spectra of R'CO2R, Org. Mass Spectrom., 1977, 12, 78. [all data]

Brion and Dunning, 1963
Brion, C.E.; Dunning, W.J., Electron impact studies of simple carboxylic esters, J. Chem. Soc. Faraday Trans., 1963, 59, 647. [all data]


Notes

Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, References