Toluene
- Formula: C7H8
- Molecular weight: 92.1384
- IUPAC Standard InChIKey: YXFVVABEGXRONW-UHFFFAOYSA-N
- CAS Registry Number: 108-88-3
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Isotopologues:
- Other names: Benzene, methyl; Methacide; Methylbenzene; Methylbenzol; Phenylmethane; Antisal 1a; Toluol; Methane, phenyl-; NCI-C07272; Tolueen; Toluen; Toluolo; Rcra waste number U220; Tolu-sol; UN 1294; Dracyl; Monomethyl benzene; CP 25; NSC 406333; methylbenzene (toluene)
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | 12.0 ± 0.26 | kcal/mol | Review | Roux, Temprado, et al., 2008 | There are sufficient high-quality literature values to make a good evaluation with a high degree of confidence. In general, the evaluated uncertainty limits are on the order of (0.5 to 2.5) kJ/mol.; DRB |
ΔfH°gas | 11.95 ± 0.15 | kcal/mol | Ccb | Prosen, Gilmont, et al., 1945 | Hf by Prosen, Johnson, et al., 1946; ALS |
ΔfH°gas | 11.5 | kcal/mol | N/A | Schmidlin, 1906 | Value computed using ΔfHliquid° value of 10.0 kj/mol from Schmidlin, 1906 and ΔvapH° value of 38.0 kj/mol from Prosen, Gilmont, et al., 1945.; DRB |
Constant pressure heat capacity of gas
Cp,gas (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
16.69 | 200. | Draeger, 1985 | Recommended values agree better with experimental heat capacities than results of calculation [ Chao J., 1984]. All other statistically calculated values [ Pitzer K.S., 1943, Taylor W.J., 1946, Scott D.W., 1962] are in close agreement with selected ones, except for high temperatures.; GT |
22.63 | 273.15 | ||
24.78 ± 0.1 | 298.15 | ||
24.95 | 300. | ||
33.44 | 400. | ||
40.82 | 500. | ||
46.89 | 600. | ||
51.86 | 700. | ||
56.00 | 800. | ||
59.49 | 900. | ||
62.43 | 1000. | ||
64.96 | 1100. | ||
67.11 | 1200. | ||
68.95 | 1300. | ||
70.55 | 1400. | ||
71.94 | 1500. |
Constant pressure heat capacity of gas
Cp,gas (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
31.090 ± 0.062 | 371.20 | Scott D.W., 1962 | Please also see Montgomery J.B., 1942, Pitzer K.S., 1943, Taylor W.J., 1946.; GT |
33.51 | 390. | ||
32.80 ± 0.30 | 393. | ||
33.191 ± 0.065 | 396.20 | ||
34.99 | 410. | ||
35.650 ± 0.072 | 427.20 | ||
35.70 ± 0.40 | 428. | ||
38.320 ± 0.076 | 462.20 | ||
38.00 ± 0.40 | 463. | ||
40.980 ± 0.081 | 500.20 |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | 2.9 ± 0.26 | kcal/mol | Review | Roux, Temprado, et al., 2008 | There are sufficient high-quality literature values to make a good evaluation with a high degree of confidence. In general, the evaluated uncertainty limits are on the order of (0.5 to 2.5) kJ/mol.; DRB |
ΔfH°liquid | 2.87 ± 0.15 | kcal/mol | Ccb | Prosen, Gilmont, et al., 1945 | Hf by Prosen, Johnson, et al., 1946; ALS |
ΔfH°liquid | Ccb | Schmidlin, 1906 | uncertain value: 2.4 kcal/mol; Undetermine error; ALS | ||
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -937. ± 5. | kcal/mol | AVG | N/A | Average of 5 out of 6 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
S°liquid | 52.811 | cal/mol*K | N/A | Scott, Guthrie, et al., 1962 | DH |
S°liquid | 52.39 | cal/mol*K | N/A | Kelley, 1929 | DH |
Constant pressure heat capacity of liquid
Cp,liquid (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
37.545 | 298.15 | Grolier, Roux-Desgranges, et al., 1993 | DH |
37.275 | 298.15 | Shiohama, Ogawa, et al., 1988 | DH |
38.22 | 303.15 | Reddy, 1986 | T = 303.15, 313.15 K.; DH |
37.543 | 298.15 | Roux-Dexgranges, Grolier, et al., 1986 | DH |
37.930 | 298.15 | Tardajos, Aicart, et al., 1986 | DH |
37.93 | 298.15 | Stephens and Olson, 1984 | T = 266 to 318 K. Cp given as 0.4117 cal g-1 C-1.; DH |
37.52 | 298.15 | Grolier, Inglese, et al., 1982 | DH |
37.560 | 298.15 | Wilhelm, Faradjzadeh, et al., 1982 | DH |
37.28 | 293.15 | Atalla, El-Sharkawy, et al., 1981 | DH |
37.52 | 294.71 | Andolenko and Grigor'ev, 1979 | T = 293 to 373 K. Unsoothed experimental datum given as 1.704 KJ/kg*K.; DH |
37.5375 | 298.15 | Fortier and Benson, 1979 | DH |
37.5433 | 298.15 | Fortier and Benson, 1977 | DH |
37.510 | 298.15 | Wilhelm, Grolier, et al., 1977 | DH |
37.5301 | 298.15 | Fortier and Benson, 1976 | DH |
37.522 | 298.15 | Holzhauer and Ziegler, 1975 | T = 165 to 312 K. Cp = 187.43814 - 0.73026493T + 0.0029613602T2 - 2.8661704x10-6T3 J/mol*K.; DH |
37.86 | 298.15 | Pedersen, Kay, et al., 1975 | T = 298 to 348 K. Cp(liq) = 154.73 + 0.0981(T/K-273.15) + 0.001949(T/K-273.15)2 J/mol*K (298 to 348 K).; DH |
37.48 | 298.15 | Rajagopal and Subrahmanyam, 1974 | T = 298.15 to 323.15 K.; DH |
37.40 | 298. | Deshpande and Bhatagadde, 1971 | T = 298 to 318 K.; DH |
37.91 | 293. | Rastorguev and Ganiev, 1967 | T = 293 to 373 K.; DH |
37.603 | 298.711 | Hwa and Ziegler, 1966 | T = 181 to 304 K. Unsmoothed experimental datum.; DH |
37.579 | 298.15 | Scott, Guthrie, et al., 1962 | T = 10 to 360 K.; DH |
39.89 | 324. | Swietoslawski and Zielenkiewicz, 1958 | Mean value 21 to 81 C.; DH |
33.5 | 295. | Tschamler, 1948 | DH |
37.91 | 298. | Kurbatov, 1947 | T = -76 to 60 C, mean Cp, four temperatures.; DH |
37.50 | 298.1 | Zhdanov, 1941 | T = 5 to 47 C.; DH |
37.541 | 298.2 | Burlew, 1940 | T = 281 to 383 K.; DH |
37.40 | 298. | Vold, 1937 | DH |
34.11 | 227.8 | Aoyama and Kanda, 1935 | T = 78 to 228 K. Value is unsmoothed experimental datum.; DH |
37.40 | 298.1 | Richards and Wallace, 1932 | T = 293 to 333 K.; DH |
38.70 | 298.15 | Smith and Andrews, 1931 | T = 102 to 299 K. Value is unsmoothed experimental datum.; DH |
36.589 | 28.444 | Kelley, 1929 | T = 14 to 284 K. Value is unsmoothed experimental datum.; DH |
36.09 | 293.2 | Williams and Daniels, 1925 | T = 20 to 60 C.; DH |
36.71 | 303. | Willams and Daniels, 1924 | T = 303 to 343 K. Equation only.; DH |
37.81 | 298. | von Reis, 1881 | T = 292 to 390 K.; DH |
Phase change data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
BS - Robert L. Brown and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
AC - William E. Acree, Jr., James S. Chickos
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 383.8 ± 0.2 | K | AVG | N/A | Average of 110 out of 132 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 178.1 ± 0.6 | K | AVG | N/A | Average of 24 out of 25 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Ttriple | 178.15 | K | N/A | Scott, Guthrie, et al., 1962, 2 | Uncertainty assigned by TRC = 0.05 K; TRC |
Ttriple | 178.00 | K | N/A | Ziegler and Andrews, 1942 | Uncertainty assigned by TRC = 0.2 K; TRC |
Ttriple | 177.9 | K | N/A | Stull, 1937 | Uncertainty assigned by TRC = 0.2 K; TRC |
Ttriple | 177.95 | K | N/A | Kelley, 1929, 2 | Uncertainty assigned by TRC = 0.02 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 593. ± 2. | K | AVG | N/A | Average of 20 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Pc | 41. ± 1. | atm | AVG | N/A | Average of 11 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Vc | 0.316 | l/mol | N/A | Tsonopoulos and Ambrose, 1995 | |
Quantity | Value | Units | Method | Reference | Comment |
ρc | 3.17 ± 0.010 | mol/l | N/A | Tsonopoulos and Ambrose, 1995 | |
ρc | 3.16 | mol/l | N/A | Chirico and Steele, 1994 | Uncertainty assigned by TRC = 0.04 mol/l; TRC |
ρc | 3.15 | mol/l | N/A | Goodwin, 1989 | Uncertainty assigned by TRC = 0.05 mol/l; TRC |
ρc | 3.16 | mol/l | N/A | Steele, Chirico, et al., 1988 | Uncertainty assigned by TRC = 0.05 mol/l; TRC |
ρc | 3.162 | mol/l | N/A | Simon, 1957 | Uncertainty assigned by TRC = 0.05 mol/l; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 9.0 ± 0.7 | kcal/mol | AVG | N/A | Average of 9 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ΔsubH° | 10.3 | kcal/mol | B | Lenchitz and Velicky, 1970 | AC |
Reduced pressure boiling point
Tboil (K) | Pressure (atm) | Reference | Comment |
---|---|---|---|
287.7 | 0.020 | Weast and Grasselli, 1989 | BS |
Enthalpy of vaporization
ΔvapH (kcal/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
7.930 | 383.8 | N/A | Majer and Svoboda, 1985 | |
8.53 | 346. | N/A | Lee and Holder, 1993 | Based on data from 331. to 496. K.; AC |
9.70 | 264. | A | Stephenson and Malanowski, 1987 | Based on data from 210. to 279. K.; AC |
8.22 | 398. | A | Stephenson and Malanowski, 1987 | Based on data from 383. to 445. K.; AC |
7.93 | 455. | A | Stephenson and Malanowski, 1987 | Based on data from 440. to 531. K.; AC |
7.96 | 545. | A | Stephenson and Malanowski, 1987 | Based on data from 530. to 592. K.; AC |
9.30 | 284. | A | Stephenson and Malanowski, 1987 | Based on data from 273. to 295. K.; AC |
8.84 | 323. | N/A | Stephenson and Malanowski, 1987 | Based on data from 308. to 386. K. See also Forziati, Norris, et al., 1949.; AC |
8.01 ± 0.02 | 380. | C | Natarajan and Viswanath, 1985 | AC |
7.67 ± 0.02 | 403. | C | Natarajan and Viswanath, 1985 | AC |
7.03 ± 0.02 | 441. | C | Natarajan and Viswanath, 1985 | AC |
6.48 ± 0.02 | 470. | C | Natarajan and Viswanath, 1985 | AC |
5.74 ± 0.02 | 505. | C | Natarajan and Viswanath, 1985 | AC |
8.46 | 333. | N/A | Eubank, Cediel, et al., 1984 | AC |
7.98 | 373. | N/A | Eubank, Cediel, et al., 1984 | AC |
7.50 | 413. | N/A | Eubank, Cediel, et al., 1984 | AC |
6.79 | 453. | N/A | Eubank, Cediel, et al., 1984 | AC |
5.74 | 493. | N/A | Eubank, Cediel, et al., 1984 | AC |
8.46 | 360. | N/A | Rivenq, 1975 | Based on data from 343. to 383. K.; AC |
8.91 | 318. | N/A | Gaw and Swinton, 1968 | Based on data from 303. to 343. K.; AC |
8.82 | 303. | N/A | Van Ness, Soczek, et al., 1967 | Based on data from 288. to 348. K.; AC |
8.521 | 341.27 | V | Scott, Gutherie, et al., 1962 | low T and vapor flow calorimetry; ALS |
9.03 | 278. | N/A | Milazzo, 1956 | Based on data from 210. to 293. K.; AC |
9.03 | 301. | N/A | Thomson, 1946 | Based on data from 286. to 362. K.; AC |
8.84 | 323. | MM | Willingham, Taylor, et al., 1945 | Based on data from 308. to 384. K.; AC |
9.27 | 288. | N/A | Pitzer and Scott, 1943 | Based on data from 273. to 323. K.; AC |
Enthalpy of vaporization
ΔvapH =
A exp(-βTr) (1 − Tr)β
ΔvapH =
Enthalpy of vaporization (at saturation pressure)
(kcal/mol)
Tr = reduced temperature (T / Tc)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A (kcal/mol) | β | Tc (K) | Reference | Comment |
---|---|---|---|---|---|
298. to 410. | 12.69 | 0.2774 | 591.7 | Majer and Svoboda, 1985 |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (atm)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
273.13 to 297.89 | 4.23108 | 1426.448 | -45.957 | Besley and Bottomley, 1974 | Coefficents calculated by NIST from author's data. |
303. to 343. | 4.07674 | 1346.382 | -53.508 | Gaw and Swinton, 1968, 2 | Coefficents calculated by NIST from author's data. |
420.00 to 580.00 | 4.53865 | 1738.123 | 0.394 | Ambrose, Broderick, et al., 1967 | Coefficents calculated by NIST from author's data. |
308.52 to 384.66 | 4.07256 | 1343.943 | -53.773 | Williamham, Taylor, et al., 1945 | |
273. to 323. | 4.13586 | 1377.578 | -50.507 | Pitzer and Scott, 1943 | Coefficents calculated by NIST from author's data. |
Enthalpy of fusion
ΔfusH (kcal/mol) | Temperature (K) | Reference | Comment |
---|---|---|---|
1.586 | 178.15 | Scott, Guthrie, et al., 1962 | DH |
1.582 | 177.95 | Kelley, 1929 | DH |
1.565 | 178.0 | Ziegler and Andrews, 1942, 2 | DH |
1.58 | 178. | Domalski and Hearing, 1996 | See also Southard and Andrews, 1930.; AC |
Entropy of fusion
ΔfusS (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
8.903 | 178.15 | Scott, Guthrie, et al., 1962 | DH |
8.891 | 177.95 | Kelley, 1929 | DH |
8.793 | 178.0 | Ziegler and Andrews, 1942, 2 | DH |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
RCD - Robert C. Dunbar
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
C7H7- + =
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 382.33 ± 0.45 | kcal/mol | D-EA | Gunion, Gilles, et al., 1992 | gas phase; Kim, Wenthold, et al., 1999, with LN2 cooling of the ion, gives the same EA; B |
ΔrH° | 380.8 ± 2.1 | kcal/mol | G+TS | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
ΔrH° | 379.2 ± 2.1 | kcal/mol | G+TS | Gal, Decouzon, et al., 2001 | gas phase; B |
ΔrH° | 377.0 ± 3.5 | kcal/mol | CIDT | Graul and Squires, 1990 | gas phase; B |
ΔrH° | 384.5 ± 7.1 | kcal/mol | G+TS | Bohme and Young, 1971 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 373.7 ± 2.0 | kcal/mol | IMRE | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
ΔrG° | 372.1 ± 2.0 | kcal/mol | IMRE | Gal, Decouzon, et al., 2001 | gas phase; B |
ΔrG° | 377.4 ± 7.0 | kcal/mol | IMRB | Bohme and Young, 1971 | gas phase; B |
By formula: C3H9Si+ + C7H8 = (C3H9Si+ • C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 28.4 | kcal/mol | PHPMS | Stone and Stone, 1991 | gas phase; forms pi complex; M |
ΔrH° | 31.3 | kcal/mol | PHPMS | Stone and Stone, 1991 | gas phase; toluene D8, forms pi complex; M |
ΔrH° | 26.6 | kcal/mol | PHPMS | Wojtyniak and Stone, 1986 | gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)C6H6, Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 34.9 | cal/mol*K | N/A | Wojtyniak and Stone, 1986 | gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)C6H6, Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
10.3 | 468. | PHPMS | Wojtyniak and Stone, 1986 | gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)C6H6, Entropy change calculated or estimated; M |
By formula: Br- + C7H8 = (Br- • C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 8.6 ± 1.8 | kcal/mol | IMRE | Paul and Kebarle, 1991 | gas phase; ΔGaff measured at 303 K, corrected to 423 K, ΔSaff taken as that of PhNO2..Br-; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 20. | cal/mol*K | N/A | Paul and Kebarle, 1991 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 0.1 ± 1.0 | kcal/mol | IMRE | Paul and Kebarle, 1991 | gas phase; ΔGaff measured at 303 K, corrected to 423 K, ΔSaff taken as that of PhNO2..Br-; B |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
0.1 | 423. | PHPMS | Paul and Kebarle, 1991 | gas phase; Entropy change calculated or estimated; M |
By formula: C4H9+ + C7H8 = (C4H9+ • C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 28.6 | kcal/mol | PHPMS | Stone and Stone, 1991 | gas phase; toluene D8, forms protonated t-butyltoluene; M |
ΔrH° | 29.1 | kcal/mol | PHPMS | Stone and Stone, 1991 | gas phase; forms protomated t-butyltoluene; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 54.5 | cal/mol*K | PHPMS | Stone and Stone, 1991 | gas phase; toluene D8, forms protonated t-butyltoluene; M |
ΔrS° | 54.6 | cal/mol*K | PHPMS | Stone and Stone, 1991 | gas phase; forms protomated t-butyltoluene; M |
By formula: C7H8+ + C7H8 = (C7H8+ • C7H8)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 14.5 | kcal/mol | MPI | Ernstberger, Krause, et al., 1990 | gas phase; M |
ΔrH° | 5.4 | kcal/mol | PI | Ruhl, Bisling, et al., 1986 | gas phase; from vIP of perpendicular dimer; M |
ΔrH° | 16.0 | kcal/mol | PHPMS | Meot-Ner (Mautner), Hamlet, et al., 1978 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 29. | cal/mol*K | PHPMS | Meot-Ner (Mautner), Hamlet, et al., 1978 | gas phase; M |
By formula: C6H7N+ + C7H8 = (C6H7N+ • C7H8)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 13.7 | kcal/mol | PHPMS | Meot-Ner (Mautner) and El-Shall, 1986 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 26.0 | cal/mol*K | PHPMS | Meot-Ner (Mautner) and El-Shall, 1986 | gas phase; M |
By formula: C9H12+ + C7H8 = (C9H12+ • C7H8)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 12.0 | kcal/mol | PHPMS | Meot-Ner (Mautner), Hamlet, et al., 1978 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 27. | cal/mol*K | PHPMS | Meot-Ner (Mautner), Hamlet, et al., 1978 | gas phase; M |
By formula: NO- + C7H8 = (NO- • C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 44.2 | kcal/mol | ICR | Reents and Freiser, 1981 | gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M |
By formula: HBr + C7H7Br = C7H8 + Br2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 8.1 ± 1.0 | kcal/mol | Eqk | Benson and Buss, 1957 | gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = 8.0 ± 0.9 kcal/mol; ALS |
By formula: Cl- + C7H8 = (Cl- • C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 4.00 | kcal/mol | TDEq | French, Ikuta, et al., 1982 | gas phase; B |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
4.0 | 300. | PHPMS | French, Ikuta, et al., 1982 | gas phase; M |
By formula: HI + C7H7I = C7H8 + I2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -7.8 ± 1.1 | kcal/mol | Cm | Graham, Nichol, et al., 1955 | liquid phase; solvent: p-Xylene; ALS |
By formula: C7H7Br + 0.5H2 = C7H8 + 0.5Br2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -0.9 ± 0.5 | kcal/mol | Chyd | Ashcroft, Carson, et al., 1963 | liquid phase; ALS |
By formula: I- + C7H8 = (I- • C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 11.0 ± 1.0 | kcal/mol | TDAs | Caldwell, Masucci, et al., 1989 | gas phase; B,M |
By formula: C7H8 = C7H8
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -24. ± 3. | kcal/mol | Cm | Bartmess and Griffith, 1990 | gas phase; Gas phase acidity; ALS |
By formula: C7H7I = C7H8 + 0.5I2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -9.7 ± 0.4 | kcal/mol | Chyd | Ashcroft, Carson, et al., 1963 | liquid phase; ALS |
By formula: (Li+ • C7H8) + C7H8 = (Li+ • 2C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 27.8 ± 0.7 | kcal/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: (Na+ • C7H8) + C7H8 = (Na+ • 2C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 20.7 ± 0.5 | kcal/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: (Cs+ • C7H8) + C7H8 = (Cs+ • 2C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 14.7 ± 1.0 | kcal/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: (Rb+ • C7H8) + C7H8 = (Rb+ • 2C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 16.2 ± 1.0 | kcal/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: (K+ • C7H8) + C7H8 = (K+ • 2C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 17.9 ± 1.1 | kcal/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: (Cr+ • C7H8) + C7H8 = (Cr+ • 2C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 53.1 ± 9.1 | kcal/mol | RAK | Lin and Dunbar, 1997 | RCD |
By formula: C10H14 + C6H6 = C7H8 + C9H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 0.0 ± 0.1 | kcal/mol | Eqk | Tsvetkov, Rozhnov, et al., 1985 | liquid phase; ALS |
By formula: Li+ + C7H8 = (Li+ • C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 43.7 ± 4.0 | kcal/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: Na+ + C7H8 = (Na+ • C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 26.8 ± 0.8 | kcal/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: Cs+ + C7H8 = (Cs+ • C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 15.3 ± 1.1 | kcal/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: Rb+ + C7H8 = (Rb+ • C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 17.0 ± 1.0 | kcal/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: K+ + C7H8 = (K+ • C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 19.1 ± 1.2 | kcal/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: Cr+ + C7H8 = (Cr+ • C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 42.1 ± 3.3 | kcal/mol | RAK | Lin and Dunbar, 1997 | RCD |
Henry's Law data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Rolf Sander
Henry's Law constant (water solution)
kH(T) = k°H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
k°H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)
k°H (mol/(kg*bar)) | d(ln(kH))/d(1/T) (K) | Method | Reference | Comment |
---|---|---|---|---|
0.15 | 4000. | L | N/A | |
0.18 | 4100. | M | N/A | |
0.16 | M | N/A | ||
0.16 | X | N/A | Value given here as cited in missing citation. | |
0.13 | M | N/A | ||
0.15 | 3400. | M | N/A | |
0.16 | X | N/A | Value given here as cited in missing citation. | |
0.16 | Q | N/A | missing citation give several references for the Henry's law constants but don't assign them to specific species. | |
0.14 | 5000. | X | N/A | |
0.17 | 8400. | X | N/A | |
0.15 | 3000. | X | N/A | |
0.15 | 1900. | X | N/A | |
0.15 | 3700. | X | Leighton and Calo, 1981 | |
0.15 | L | N/A | ||
0.15 | 4900. | X | N/A | |
0.15 | M | Mackay, Shiu, et al., 1979 | ||
0.15 | T | Mackay, Shiu, et al., 1979 | ||
0.15 | V | N/A | ||
0.19 | M | N/A | ||
0.21 | 4600. | M | N/A | |
0.15 | X | N/A | Value given here as cited in missing citation. | |
0.17 | 5900. | M | N/A | |
0.18 | V | Bohon and Claussen, 1951 |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias
Data compiled as indicated in comments:
B - John E. Bartmess
MM - Michael M. Meot-Ner (Mautner)
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
View reactions leading to C7H8+ (ion structure unspecified)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 8.828 ± 0.001 | eV | N/A | N/A | L |
Quantity | Value | Units | Method | Reference | Comment |
Proton affinity (review) | 187.4 | kcal/mol | N/A | Hunter and Lias, 1998 | HL |
Quantity | Value | Units | Method | Reference | Comment |
Gas basicity | 180.8 | kcal/mol | N/A | Hunter and Lias, 1998 | HL |
Proton affinity at 298K
Proton affinity (kcal/mol) | Reference | Comment |
---|---|---|
187.0 | Aue, Guidoni, et al., 2000 | Experimental literature data re-evaluated by the authors using ab initio protonation entropies; MM |
Gas basicity at 298K
Gas basicity (review) (kcal/mol) | Reference | Comment |
---|---|---|
180.1 | Aue, Guidoni, et al., 2000 | Experimental literature data re-evaluated by the authors using ab initio protonation entropies; MM |
Ionization energy determinations
Appearance energy determinations
De-protonation reactions
C7H7- + =
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 382.33 ± 0.45 | kcal/mol | D-EA | Gunion, Gilles, et al., 1992 | gas phase; Kim, Wenthold, et al., 1999, with LN2 cooling of the ion, gives the same EA; B |
ΔrH° | 380.8 ± 2.1 | kcal/mol | G+TS | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
ΔrH° | 379.2 ± 2.1 | kcal/mol | G+TS | Gal, Decouzon, et al., 2001 | gas phase; B |
ΔrH° | 377.0 ± 3.5 | kcal/mol | CIDT | Graul and Squires, 1990 | gas phase; B |
ΔrH° | 384.5 ± 7.1 | kcal/mol | G+TS | Bohme and Young, 1971 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 373.7 ± 2.0 | kcal/mol | IMRE | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
ΔrG° | 372.1 ± 2.0 | kcal/mol | IMRE | Gal, Decouzon, et al., 2001 | gas phase; B |
ΔrG° | 377.4 ± 7.0 | kcal/mol | IMRB | Bohme and Young, 1971 | gas phase; B |
Ion clustering data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
RCD - Robert C. Dunbar
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.
Clustering reactions
By formula: Br- + C7H8 = (Br- • C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 8.6 ± 1.8 | kcal/mol | IMRE | Paul and Kebarle, 1991 | gas phase; ΔGaff measured at 303 K, corrected to 423 K, ΔSaff taken as that of PhNO2..Br-; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 20. | cal/mol*K | N/A | Paul and Kebarle, 1991 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 0.1 ± 1.0 | kcal/mol | IMRE | Paul and Kebarle, 1991 | gas phase; ΔGaff measured at 303 K, corrected to 423 K, ΔSaff taken as that of PhNO2..Br-; B |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
0.1 | 423. | PHPMS | Paul and Kebarle, 1991 | gas phase; Entropy change calculated or estimated; M |
By formula: C3H9Si+ + C7H8 = (C3H9Si+ • C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 28.4 | kcal/mol | PHPMS | Stone and Stone, 1991 | gas phase; forms pi complex; M |
ΔrH° | 31.3 | kcal/mol | PHPMS | Stone and Stone, 1991 | gas phase; toluene D8, forms pi complex; M |
ΔrH° | 26.6 | kcal/mol | PHPMS | Wojtyniak and Stone, 1986 | gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)C6H6, Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 34.9 | cal/mol*K | N/A | Wojtyniak and Stone, 1986 | gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)C6H6, Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
10.3 | 468. | PHPMS | Wojtyniak and Stone, 1986 | gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)C6H6, Entropy change calculated or estimated; M |
By formula: C4H9+ + C7H8 = (C4H9+ • C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 28.6 | kcal/mol | PHPMS | Stone and Stone, 1991 | gas phase; toluene D8, forms protonated t-butyltoluene; M |
ΔrH° | 29.1 | kcal/mol | PHPMS | Stone and Stone, 1991 | gas phase; forms protomated t-butyltoluene; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 54.5 | cal/mol*K | PHPMS | Stone and Stone, 1991 | gas phase; toluene D8, forms protonated t-butyltoluene; M |
ΔrS° | 54.6 | cal/mol*K | PHPMS | Stone and Stone, 1991 | gas phase; forms protomated t-butyltoluene; M |
By formula: C6H7N+ + C7H8 = (C6H7N+ • C7H8)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 13.7 | kcal/mol | PHPMS | Meot-Ner (Mautner) and El-Shall, 1986 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 26.0 | cal/mol*K | PHPMS | Meot-Ner (Mautner) and El-Shall, 1986 | gas phase; M |
By formula: C7H8+ + C7H8 = (C7H8+ • C7H8)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 14.5 | kcal/mol | MPI | Ernstberger, Krause, et al., 1990 | gas phase; M |
ΔrH° | 5.4 | kcal/mol | PI | Ruhl, Bisling, et al., 1986 | gas phase; from vIP of perpendicular dimer; M |
ΔrH° | 16.0 | kcal/mol | PHPMS | Meot-Ner (Mautner), Hamlet, et al., 1978 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 29. | cal/mol*K | PHPMS | Meot-Ner (Mautner), Hamlet, et al., 1978 | gas phase; M |
By formula: C9H12+ + C7H8 = (C9H12+ • C7H8)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 12.0 | kcal/mol | PHPMS | Meot-Ner (Mautner), Hamlet, et al., 1978 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 27. | cal/mol*K | PHPMS | Meot-Ner (Mautner), Hamlet, et al., 1978 | gas phase; M |
By formula: Cl- + C7H8 = (Cl- • C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 4.00 | kcal/mol | TDEq | French, Ikuta, et al., 1982 | gas phase; B |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
4.0 | 300. | PHPMS | French, Ikuta, et al., 1982 | gas phase; M |
By formula: Cr+ + C7H8 = (Cr+ • C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 42.1 ± 3.3 | kcal/mol | RAK | Lin and Dunbar, 1997 | RCD |
By formula: (Cr+ • C7H8) + C7H8 = (Cr+ • 2C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 53.1 ± 9.1 | kcal/mol | RAK | Lin and Dunbar, 1997 | RCD |
By formula: Cs+ + C7H8 = (Cs+ • C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 15.3 ± 1.1 | kcal/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: (Cs+ • C7H8) + C7H8 = (Cs+ • 2C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 14.7 ± 1.0 | kcal/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: I- + C7H8 = (I- • C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 11.0 ± 1.0 | kcal/mol | TDAs | Caldwell, Masucci, et al., 1989 | gas phase; B,M |
By formula: K+ + C7H8 = (K+ • C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 19.1 ± 1.2 | kcal/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: (K+ • C7H8) + C7H8 = (K+ • 2C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 17.9 ± 1.1 | kcal/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: Li+ + C7H8 = (Li+ • C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 43.7 ± 4.0 | kcal/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: (Li+ • C7H8) + C7H8 = (Li+ • 2C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 27.8 ± 0.7 | kcal/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: NO- + C7H8 = (NO- • C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 44.2 | kcal/mol | ICR | Reents and Freiser, 1981 | gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M |
By formula: Na+ + C7H8 = (Na+ • C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 26.8 ± 0.8 | kcal/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: (Na+ • C7H8) + C7H8 = (Na+ • 2C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 20.7 ± 0.5 | kcal/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: Rb+ + C7H8 = (Rb+ • C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 17.0 ± 1.0 | kcal/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: (Rb+ • C7H8) + C7H8 = (Rb+ • 2C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 16.2 ± 1.0 | kcal/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
IR Spectrum
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), References, Notes
Data compiled by: Coblentz Society, Inc.
- GAS (20 mmHg, N2 ADDED, TOTAL PRESSURE 600 mmHg); DOW KBr FOREPRISM-GRATING; DIGITIZED BY COBLENTZ SOCIETY (BATCH II) FROM HARD COPY; 2 cm-1 resolution
- LIQUID; PERKIN-ELMER; DIGITIZED BY NIST FROM HARD COPY (FROM TWO SEGMENTS); 4 cm-1 resolution
- SOLUTION (10% IN CCl4 FOR 3800-1330 AND 10% IN CS2 FOR 1330-450 CM-1); DOW KBr FOREPRISM-GRATING; DIGITIZED BY NIST FROM HARD COPY (FROM TWO SEGMENTS); 4 cm-1 resolution
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Data compiled by: Pamela M. Chu, Franklin R. Guenther, George C. Rhoderick, and Walter J. Lafferty
- gas; IFS66V (Bruker); 3-Term B-H Apodization
0.1250, 0.2410, 0.4820, 0.9640, 1.9290 cm-1 resolution - gas; IFS66V (Bruker); Boxcar Apodization
0.1250, 0.2410, 0.4820, 0.9640, 1.9290 cm-1 resolution - gas; IFS66V (Bruker); Happ Genzel Apodization
0.1250, 0.2410, 0.4820, 0.9640, 1.9290 cm-1 resolution - gas; IFS66V (Bruker); NB Strong Apodization
0.1250, 0.2410, 0.4820, 0.9640, 1.9290 cm-1 resolution - gas; IFS66V (Bruker); Triangular Apodization
0.1250, 0.2410, 0.4820, 0.9640, 1.9290 cm-1 resolution
Mass spectrum (electron ionization)
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
Due to licensing restrictions, this spectrum cannot be downloaded.
Owner | NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | Japan AIST/NIMC Database- Spectrum MS-NW- 67 |
NIST MS number | 227551 |
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Roux, Temprado, et al., 2008
Roux, M.V.; Temprado, M.; Chickos, J.S.; Nagano, Y.,
Critically Evaluated Thermochemical Properties of Polycyclic Aromatic Hydrocarbons,
J. Phys. Chem. Ref. Data, 2008, 37, 4, 1855-1996. [all data]
Prosen, Gilmont, et al., 1945
Prosen, E.J.; Gilmont, R.; Rossini, F.D.,
Heats of combustion of benzene, toluene, ethyl-benzene, o-xylene, m-xylene, p-xylene, n-propylbenzene, and styrene,
J. Res. NBS, 1945, 34, 65-70. [all data]
Prosen, Johnson, et al., 1946
Prosen, E.J.; Johnson, W.H.; Rossini, F.D.,
Heats of combustion and formation at 25°C of the alkylbenzenes through C10H14, and of the higher normal monoalkylbenzenes,
J. Res. NBS, 1946, 36, 455-461. [all data]
Schmidlin, 1906
Schmidlin, M.J.,
Recherches chimiques et thermochimiques sur la constitution des rosanilines,
Ann. Chim. Phys., 1906, 1, 195-256. [all data]
Draeger, 1985
Draeger, J.A.,
The methylbenzenes II. Fundamental vibrational shifts, statistical thermodynamic functions, and properties of formation,
J. Chem. Thermodyn., 1985, 17, 263-275. [all data]
Chao J., 1984
Chao J.,
Chemical thermodynamic properties of toluene, o-, m- and p-xylenes,
Thermochim. Acta, 1984, 72, 323-334. [all data]
Pitzer K.S., 1943
Pitzer K.S.,
The thermodynamics and molecular structure of benzene and its methyl derivatives,
J. Am. Chem. Soc., 1943, 65, 803-829. [all data]
Taylor W.J., 1946
Taylor W.J.,
Heats, equilibrium constants, and free energies of formation of the alkylbenzenes,
J. Res. Nat. Bur. Stand., 1946, 37, 95-122. [all data]
Scott D.W., 1962
Scott D.W.,
Toluene: thermodynamic properties, molecular vibrations, and internal rotation,
J. Phys. Chem., 1962, 66, 911-914. [all data]
Montgomery J.B., 1942
Montgomery J.B.,
The heat capacity of organic vapors. IV. Benzene, fluorobenzene, toluene, cyclohexane, methylcyclohexane and cyclohexene,
J. Am. Chem. Soc., 1942, 64, 2375-2377. [all data]
Scott, Guthrie, et al., 1962
Scott, D.W.; Guthrie, G.B.; Messerly, J.F.; Todd, S.S.; Berg, W.T.; Hossenlopp, I.A.; McCullough, J.P.,
Toluene: thermodynamic properties, molecular vibrations, and internal rotation,
J. Phys. Chem., 1962, 66, 911-914. [all data]
Kelley, 1929
Kelley, K.K.,
The heat capacity of toluene from 14K to 298K. The entropy and the free energy of formation,
J. Am. Chem. Soc., 1929, 51, 2738-2741. [all data]
Grolier, Roux-Desgranges, et al., 1993
Grolier, J.-P.E.; Roux-Desgranges, G.; Berkane, M.; Jimenez, E.; Wilhelm, E.,
Heat capacities and densities of mixtures of very polar substances 2. Mixtures containing N,N-dimethylformamide,
J. Chem. Thermodynam., 1993, 25(1), 41-50. [all data]
Shiohama, Ogawa, et al., 1988
Shiohama, Y.; Ogawa, H.; Murakami, S.; Fujihara, I.,
Excess molar isobaric heat capacities and isentropic compressibilities of (cis- or trans-decalin + benzene or toluene or iso-octane or n-heptane) at 298.15 K,
J. Chem. Thermodynam., 1988, 20, 1183-1189. [all data]
Reddy, 1986
Reddy, K.S.,
Isentropic compressibilities of binary liquid mixtures at 303.15 and 313.15 K,
J. Chem. Eng. Data, 1986, 31, 238-240. [all data]
Roux-Dexgranges, Grolier, et al., 1986
Roux-Dexgranges, G.; Grolier, J.-P.E.; Villamanan, M.A.; Casanova, C.,
Role of alcohol in microemulsions. III. Volumes and heat capacities in the continuious phase water-n-butanol-toluene of reverse micelles,
Fluid Phase Equilibria, 1986, 25, 209-230. [all data]
Tardajos, Aicart, et al., 1986
Tardajos, G.; Aicart, E.; Costas, M.; Patterson, D.,
Liquid structure and second-order mixing functions for benzene, toluene, and p-xylene with n-alkanes, J. Chem. Soc.,
Faraday Trans., 1986, 1 82, 2977-2987. [all data]
Stephens and Olson, 1984
Stephens, M.; Olson, J.D.,
Measurement of excess heat capacities by differential scanning calorimetry,
Thermochim. Acta, 1984, 76, 79-85. [all data]
Grolier, Inglese, et al., 1982
Grolier, J.-P.E.; Inglese, A.; Wilhelm, E.,
Excess volumes and excess heat capacities of tetrachloroethene + cyclohexane, + methylcyclohexane, + benzene, and + toluene at 298.15 K,
J. Chem. Thermodynam., 1982, 14, 523-529. [all data]
Wilhelm, Faradjzadeh, et al., 1982
Wilhelm, E.; Faradjzadeh, A.; Grolier, J.-P.E.,
Excess volumes and excess heat capacities of 2,3-dimethylbutane + butane and + toluene,
J. Chem. Thermodynam., 1982, 14, 1199-1200. [all data]
Atalla, El-Sharkawy, et al., 1981
Atalla, S.R.; El-Sharkawy, A.A.; Gasser, F.A.,
Measurement of thermal properties of liquids with an AC heated-wire technique,
Inter. J. Thermophys., 1981, 2(2), 155-162. [all data]
Andolenko and Grigor'ev, 1979
Andolenko, R.A.; Grigor'ev, B.A.,
Investigation of isobaric heat capacity of aromatic hydrocarbons at atmospheric pressure, Iaz. Vyssh. Ucheb. Zaved.,
Neft i Gaz (11), 1979, 78, 90. [all data]
Fortier and Benson, 1979
Fortier, J.-L.; Benson, G.C.,
Heat capacities of some binary aromatic hydrocarbon mixtures containing benzene or toluene,
J. Chem. Eng. Data, 1979, 24(1), 34-37. [all data]
Fortier and Benson, 1977
Fortier, J.-L.; Benson, G.C.,
Excess heat capacities of binary mixtures of tetrachloromethane witlh some aromatic liquids at 298.15 K,
J. Chem. Thermodynam., 1977, 9, 1181-1188. [all data]
Wilhelm, Grolier, et al., 1977
Wilhelm, E.; Grolier, J.-P.E.; Karbalai Ghassemi, M.H.,
Molar heat capacities of binary liquid mixtures: 1,2-dichloroethane + benzene, + toluene, and + p-xylene,
Ber. Bunsenges. Phys. Chem., 1977, 81, 925-930. [all data]
Fortier and Benson, 1976
Fortier, J.-L.; Benson, G.C.,
Excess heat capacities of binary liquid mixtures determined with a Picker flow calorimeter,
J. Chem. Thermodynam., 1976, 8, 411-423. [all data]
Holzhauer and Ziegler, 1975
Holzhauer, J.K.; Ziegler, W.T.,
Temperature dependence of excess thermodynamic properties of n-heptane-toluene, methylcyclohexane-toluene, and n-heptane-methylcyclohexane systems,
J. Phys. Chem., 1975, 79(6), 590-604. [all data]
Pedersen, Kay, et al., 1975
Pedersen, M.J.; Kay, W.B.; Hershey, H.C.,
Excess enthalpies, heat capacities, and excess heat capacities as a function of temperature in liquid mixtures of ethanol + toluene, ethanol + hexamethyldisiloxane, and hexamethyldisiloxane + toluene,
J. Chem. Thermodynam., 1975, 7, 1107-1118. [all data]
Rajagopal and Subrahmanyam, 1974
Rajagopal, E.; Subrahmanyam, S.V.,
Excess function of VE,(dVE/dp)T, and CpE of isooctane + benzene and + toluene,
J. Chem. Thermodynam., 1974, 6, 873-876. [all data]
Deshpande and Bhatagadde, 1971
Deshpande, D.D.; Bhatagadde, L.G.,
Heat capacities at constant volume, free volumes, and rotational freedom in some liquids,
Aust. J. Chem., 1971, 24, 1817-1822. [all data]
Rastorguev and Ganiev, 1967
Rastorguev, Yu.L.; Ganiev, Yu.A.,
Study of the heat capacity of selected solvents,
Izv. Vyssh. Uchebn. Zaved. Neft Gaz. 10, 1967, No.1, 79-82. [all data]
Hwa and Ziegler, 1966
Hwa, S.C.P.; Ziegler, W.T.,
Temperature dependence of excess thermodynamic properties of ethanol-methylcyclohexane and ethanol-toluene systems,
J. Phys. Chem., 1966, 70(8), 2572-2593. [all data]
Swietoslawski and Zielenkiewicz, 1958
Swietoslawski, W.; Zielenkiewicz, A.,
Mean specific heats of binary positive azeotropes,
Bull. Acad. Pol. Sci. Ser. Sci. Chim., 1958, 6, 367-369. [all data]
Tschamler, 1948
Tschamler, H.,
Uber binare flussige Mischungen I. Mischungswarment, Volumseffekte und Zustandsdiagramme von chlorex mit benzol und n-alkylbenzolen,
Monatsh. Chem., 1948, 79, 162-177. [all data]
Kurbatov, 1947
Kurbatov, V.Ya.,
Specific heat of liquids. I. Specific heat of benzenoid hydrocarbons,
Zhur. Obshch. Khim., 1947, 17, 1999-2003. [all data]
Zhdanov, 1941
Zhdanov, A.K.,
Specific heats of some liquids and azeotropic mixtures,
Zhur. Obshch. Khim., 1941, 11, 471-482. [all data]
Burlew, 1940
Burlew, J.S.,
Measurement of the heat capacity of a small volume of liquid by the piezo-thermometric method. III. Heat capacity of benzene and of toluene from 8°C. to the boiling point,
J. Am. Chem. Soc., 1940, 62, 696-700. [all data]
Vold, 1937
Vold, R.D.,
A calorimetric test of the solubility equation for regular solutions,
J. Am. Chem. Soc., 1937, 59, 1515-1521. [all data]
Aoyama and Kanda, 1935
Aoyama, S.; Kanda, E.,
Studies on the heat capacities at low temperature. Report I. Heat capacities of some organic substances at low temperature,
Sci. Rept. Tohoku Imp. Univ. [1]24, 1935, 107-115. [all data]
Richards and Wallace, 1932
Richards, W.T.; Wallace, J.H., Jr.,
The specific heats of five organic liquids from their adiabatic temperature-pressure coefficients,
J. Am. Chem. Soc., 1932, 54, 2705-2713. [all data]
Smith and Andrews, 1931
Smith, R.H.; Andrews, D.H.,
Thermal energy studies. I. Phenyl derivatives of methane,
ethane and some related compounds. J. Am. Chem. Soc., 1931, 53, 3644-3660. [all data]
Williams and Daniels, 1925
Williams, J.W.; Daniels, F.,
The specific heats of binary mixtures,
J. Am. Chem. Soc., 1925, 47, 1490-1503. [all data]
Willams and Daniels, 1924
Willams, J.W.; Daniels, F.,
The specific heats of certain organic liquids at elevated temperatures,
J. Am. Chem. Soc., 1924, 46, 903-917. [all data]
von Reis, 1881
von Reis, M.A.,
Die specifische Wärme flüssiger organischer Verbindungen und ihre Beziehung zu deren Moleculargewicht,
Ann. Physik [3], 1881, 13, 447-464. [all data]
Scott, Guthrie, et al., 1962, 2
Scott, D.W.; Guthrie, G.B.; Messerly, J.F.; Todd, S.S.; Berg, W.T.; Hossenlopp, I.A.; McCullough, J.P.,
Toluene: Thermodynamic Propoerties, Molecular Vibrations, and Internal Rotation,
J. Phys. Chem., 1962, 66, 911-4. [all data]
Ziegler and Andrews, 1942
Ziegler, W.T.; Andrews, D.H.,
The heat capacity of benzene-d6,
J. Am. Chem. Soc., 1942, 64, 2482. [all data]
Stull, 1937
Stull, D.R.,
A Semi-micro Calorimeter for Measuring Heat Capacities at Low Temp.,
J. Am. Chem. Soc., 1937, 59, 2726. [all data]
Kelley, 1929, 2
Kelley, K.K.,
The heat capacity of toluene from 14 deg K to 298 deg K. the entropy and the free energy of formation.,
J. Am. Chem. Soc., 1929, 51, 2738. [all data]
Tsonopoulos and Ambrose, 1995
Tsonopoulos, C.; Ambrose, D.,
Vapor-Liquid Critical Properties of Elements and Compounds. 3. Aromatic Hydrocarbons,
J. Chem. Eng. Data, 1995, 40, 547-558. [all data]
Chirico and Steele, 1994
Chirico, R.D.; Steele, W.V.,
Reconciliation of Calorimetrically and Spectroscopically Derived Methyl Benzene. The Importance of the Third Virial Coefficient,
Ind. Eng. Chem. Res., 1994, 33, 157-67. [all data]
Goodwin, 1989
Goodwin, R.D.,
Toluene thermophysical properties from 178 to 800 K at pressures to 1000 Bar,
J. Phys. Chem. Ref. Data, 1989, 18, 1565-636. [all data]
Steele, Chirico, et al., 1988
Steele, W.V.; Chirico, R.D.; Knipmeyer, S.E.; Smith, N.K.,
, Report, NIPPR-395, 1988. [all data]
Simon, 1957
Simon, M.,
Methods and Apparatus Used at the Bureau of Physicochemical Standards XV. Critical Constants and Straight-Line Diameters of Ten Hydrocarbons,
Bull. Soc. Chim. Belg., 1957, 66, 375-81. [all data]
Lenchitz and Velicky, 1970
Lenchitz, Charles; Velicky, Rodolf W.,
Vapor pressure and heat of sublimation of three nitrotoluenes,
J. Chem. Eng. Data, 1970, 15, 3, 401-403, https://doi.org/10.1021/je60046a022
. [all data]
Weast and Grasselli, 1989
CRC Handbook of Data on Organic Compounds, 2nd Editon, Weast,R.C and Grasselli, J.G., ed(s)., CRC Press, Inc., Boca Raton, FL, 1989, 1. [all data]
Majer and Svoboda, 1985
Majer, V.; Svoboda, V.,
Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]
Lee and Holder, 1993
Lee, Chang Ha; Holder, Gerald D.,
Vapor-liquid equilibria in the systems toluene/naphthalene and cyclohexane/naphthalene,
J. Chem. Eng. Data, 1993, 38, 2, 320-323, https://doi.org/10.1021/je00010a034
. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Forziati, Norris, et al., 1949
Forziati, Alphonse F.; Norris, William R.; Rossini, Frederick D.,
Vapor pressures and boiling points of sixty API-NBS hydrocarbons,
J. RES. NATL. BUR. STAN., 1949, 43, 6, 555-17, https://doi.org/10.6028/jres.043.050
. [all data]
Natarajan and Viswanath, 1985
Natarajan, Govindarajan; Viswanath, Dabir S.,
Enthalpy of vaporization and vapor pressure of benzene, toluene, p-xylene, and tetralin between 1 and 16 bar,
J. Chem. Eng. Data, 1985, 30, 2, 137-140, https://doi.org/10.1021/je00040a001
. [all data]
Eubank, Cediel, et al., 1984
Eubank, P.T.; Cediel, L.E.; Holste, J.C.; Hall, K.R.,
Enthalpies for toluene and methylcyclohexane in the fluid state,
J. Chem. Eng. Data, 1984, 29, 389-393. [all data]
Rivenq, 1975
Rivenq, F.,
Bull. Soc. Chim. Fr., 1975, 1, 2433. [all data]
Gaw and Swinton, 1968
Gaw, W.J.; Swinton, F.L.,
Thermodynamic properties of binary systems containing hexafluorobenzene. Part 4.?Excess Gibbs free energies of the three systems hexafluorobenzene + benzene, touene, and p-xylene,
Trans. Faraday Soc., 1968, 64, 2023, https://doi.org/10.1039/tf9686402023
. [all data]
Van Ness, Soczek, et al., 1967
Van Ness, Hendrick C.; Soczek, C.A.; Peloquin, G.L.; Machado, R.L.,
Thermodynamic excess properties of three alcohol-hydrocarbon systems,
J. Chem. Eng. Data, 1967, 12, 2, 217-224, https://doi.org/10.1021/je60033a017
. [all data]
Scott, Gutherie, et al., 1962
Scott, D.W.; Gutherie, G.B.; Messerly, J.F.; Todd, S.S.; Berg, W.T.; Hossenlopp, I.A.; McCullough, J.P.,
Toluene: Thermodynamic properties, molecular vibrations, and internal rotation,
J. Phys. Chem., 1962, 66, 911. [all data]
Milazzo, 1956
Milazzo, G.,
Ann. Chim. (Rome), 1956, 46, 1105. [all data]
Thomson, 1946
Thomson, George Wm.,
The Antoine Equation for Vapor-pressure Data.,
Chem. Rev., 1946, 38, 1, 1-39, https://doi.org/10.1021/cr60119a001
. [all data]
Willingham, Taylor, et al., 1945
Willingham, C.B.; Taylor, W.J.; Pignocco, J.M.; Rossini, F.D.,
Vapor pressures and boiling points of some paraffin, alkylcyclopentane, alkylcyclohexane, and alkylbenzene hydrocarbons,
J. RES. NATL. BUR. STAN., 1945, 35, 3, 219-17, https://doi.org/10.6028/jres.035.009
. [all data]
Pitzer and Scott, 1943
Pitzer, K.S.; Scott, D.W.,
The thermodynamics and molecular structure of benzene and its methyl derivatives,
J. Am. Chem. Soc., 1943, 65, 803-829. [all data]
Besley and Bottomley, 1974
Besley, L.M.; Bottomley, G.A.,
Vapour Pressure of Toluene from 273.15 to 298.15 K,
J. Chem. Thermodyn., 1974, 6, 6, 577-580, https://doi.org/10.1016/0021-9614(74)90045-7
. [all data]
Gaw and Swinton, 1968, 2
Gaw, W.J.; Swinton, F.L.,
Thermodynamic Properties of Binary Systems Containing Hexafluorobenzene. Part 3. Excess Gibbs Free Energy of the System Hexafluorobenzene + Cyclohexane,
Trans. Faraday Soc., 1968, 64, 637-647, https://doi.org/10.1039/tf9686400637
. [all data]
Ambrose, Broderick, et al., 1967
Ambrose, D.; Broderick, B.E.; Townsend, R.,
The Vapour Pressures Above the Normal Boiling Point and the Critical Pressures of Some Aromatic Hydrocarbons,
J. Chem. Soc. A:, 1967, 633-641, https://doi.org/10.1039/j19670000633
. [all data]
Williamham, Taylor, et al., 1945
Williamham, C.B.; Taylor, W.J.; Pignocco, J.M.; Rossini, F.D.,
Vapor Pressures and Boiling Points of Some Paraffin, Alkylcyclopentane, Alkylcyclohexane, and Alkylbenzene Hydrocarbons,
J. Res. Natl. Bur. Stand. (U.S.), 1945, 35, 3, 219-244, https://doi.org/10.6028/jres.035.009
. [all data]
Ziegler and Andrews, 1942, 2
Ziegler, W.T.; Andrews, D.H.,
The heat capacity of benzene-d6,
J. Am. Chem. Soc., 1942, 64, 2482-2485. [all data]
Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D.,
Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III,
J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985
. [all data]
Southard and Andrews, 1930
Southard, John C.; Andrews, Donald H.,
The heat capacities of organic compounds at low temperatures. iii. an adiabatic calorimeter for heat capacities at low temperatures,
Journal of the Franklin Institute, 1930, 209, 3, 349-360, https://doi.org/10.1016/S0016-0032(30)90040-3
. [all data]
Gunion, Gilles, et al., 1992
Gunion, R.F.; Gilles, M.K.; Polak, M.L.; Lineberger, W.C.,
Ultraviolet Photoelectron Spectroscopy of the Phenide, Benzyl, and Phenoxide Anions.,
Int. J. Mass Spectrom. Ion Proc., 1992, 117, 601, https://doi.org/10.1016/0168-1176(92)80115-H
. [all data]
Kim, Wenthold, et al., 1999
Kim, J.B.; Wenthold, P.G.; Lineberger, W.C.,
Ultraviolet photoelectron spectroscopy of o-, m-, and p-halobenzyl anions,
J. Phys. Chem. A, 1999, 103, 50, 10833-10841, https://doi.org/10.1021/jp992817o
. [all data]
Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr.,
The gas phase acidity scale from methanol to phenol,
J. Am. Chem. Soc., 1979, 101, 6047. [all data]
Gal, Decouzon, et al., 2001
Gal, J.F.; Decouzon, M.; Maria, P.C.; Gonzalez, A.I.; Mo, O.; Yanez, M.; El Chaouch, S.; Guillemin, J.C.,
Acidity trends in alpha,beta-unsaturated alkanes, silanes, germanes, and stannanes,
J. Am. Chem. Soc., 2001, 123, 26, 6353-6359, https://doi.org/10.1021/ja004079j
. [all data]
Graul and Squires, 1990
Graul, S.T.; Squires, R.R.,
Gas-Phase Acidities Derived from Threshold Energies for Activated Reactions,
J. Am. Chem. Soc., 1990, 112, 7, 2517, https://doi.org/10.1021/ja00163a007
. [all data]
Bohme and Young, 1971
Bohme, D.K.; Young, L.B.,
Electron affinities from thermal proton transfer reactions: C6H5 and C6H5CH2,
Can. J. Chem., 1971, 49, 2918. [all data]
Stone and Stone, 1991
Stone, J.M.; Stone, J.A.,
A High Pressure Mass Spectrometric Study of the Binding of (CH3)3Si+ and (CH3)3C+ to Toluene and Benzene,
Int. J. Mass Spectrom. Ion Proc., 1991, 109, 247, https://doi.org/10.1016/0168-1176(91)85107-W
. [all data]
Wojtyniak and Stone, 1986
Wojtyniak, A.C.M.; Stone, A.J.,
A High-Pressure Mass Spectrometric Study of the Bonding of Trimethylsilylium to Oxygen and Aromatic Bases,
Can. J. Chem., 1986, 74, 59. [all data]
Paul and Kebarle, 1991
Paul, G.J.C.; Kebarle, P.,
Stabilities of Complexes of Br- with Substituted Benzenes (SB) Based on Determinations of the Gas-Phase Equilibria Br- + SB = (BrSB)-,
J. Am. Chem. Soc., 1991, 113, 4, 1148, https://doi.org/10.1021/ja00004a014
. [all data]
Ernstberger, Krause, et al., 1990
Ernstberger, B.; Krause, H.; Kiermeier, A.; Neusser, H.J.,
Multiphoton ionization and dissociation of mixed van der Waals clusters in a linear reflectron time-of-flight mass spectrometer,
J. Chem. Phys., 1990, 92, 9, 5285, https://doi.org/10.1063/1.458603
. [all data]
Ruhl, Bisling, et al., 1986
Ruhl, E.; Bisling, P.G.F.; Brutschy, B.; Baumgartel, H.,
Photoionization of Aromatic van der Waals Complexes in a Supersonic Jet,
Chem. Phys. Lett., 1986, 126, 3-4, 232, https://doi.org/10.1016/S0009-2614(86)80075-6
. [all data]
Meot-Ner (Mautner), Hamlet, et al., 1978
Meot-Ner (Mautner), M.; Hamlet, P.; Hunter, E.P.; Field, F.H.,
Bonding Energies in Association Ions of Aromatic Molecules. Correlations with Ionization Energies,
J. Am. Chem. Soc., 1978, 100, 17, 5466, https://doi.org/10.1021/ja00485a034
. [all data]
Meot-Ner (Mautner) and El-Shall, 1986
Meot-Ner (Mautner), M.; El-Shall, M.S.,
Ionic Charge Transfer Complexes. 1. Cationic Complexes with Delocalized and Partially Localized pi Systems,
J. Am. Chem. Soc., 1986, 108, 15, 4386, https://doi.org/10.1021/ja00275a026
. [all data]
Reents and Freiser, 1981
Reents, W.D.; Freiser, B.S.,
Gas-Phase Binding Energies and Spectroscopic Properties of NO+ Charge-Transfer Complexes,
J. Am. Chem. Soc., 1981, 103, 2791. [all data]
Farid and McMahon, 1978
Farid, R.; McMahon, T.B.,
Gas-Phase Ion-Molecule Reactions of Alkyl Nitrites by Ion Cyclotron Resonance Spectroscopy,
Int. J. Mass Spectrom. Ion Phys., 1978, 27, 2, 163, https://doi.org/10.1016/0020-7381(78)80037-0
. [all data]
Benson and Buss, 1957
Benson, S.W.; Buss, J.H.,
The thermodynamics of bromination of toluene and the heat of formation of the benzyl radical,
J. Phys. Chem., 1957, 61, 104-109. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]
French, Ikuta, et al., 1982
French, M.A.; Ikuta, S.; Kebarle, P.,
Hydrogen bonding of O-H and C-H hydrogen donors to Cl-. Results from mass spectrometric measurement of the ion-molecule equilibria RH + Cl- = RHCl-,
Can. J. Chem., 1982, 60, 1907. [all data]
Graham, Nichol, et al., 1955
Graham, W.S.; Nichol, R.J.; Ubbelohde, A.R.,
A thermochemical evaluation of bond strengths in some carbon compounds. Part III. Bond strengths based on the reactions: (a) Ph·CH2I + HI=Ph·CH3 + I2 and (b) PhI + HI=PhH + I2,
J. Chem. Soc., 1955, 115-121. [all data]
Ashcroft, Carson, et al., 1963
Ashcroft, S.J.; Carson, A.S.; Pedley, J.B.,
Thermochemistry of reductions caused by lithium aluminium hydride. Part 2.-The heats of formation of benzyl bromide, benzyl iodide and the benzyl radical,
Trans. Faraday Soc., 1963, 59, 2713-2717. [all data]
Caldwell, Masucci, et al., 1989
Caldwell, G.W.; Masucci, J.A.; Ikonomou, M.G.,
Negative Ion Chemical Ionization Mass Spectrometry - Binding of Molecules to Bromide and Iodide Anions,
Org. Mass Spectrom., 1989, 24, 1, 8, https://doi.org/10.1002/oms.1210240103
. [all data]
Bartmess and Griffith, 1990
Bartmess, J.E.; Griffith, S.S.,
Tautomerization energetics of benzoannelated toluenes,
J. Am. Chem. Soc., 1990, 112, 2931-2936. [all data]
Amunugama and Rodgers, 2002
Amunugama, R.; Rodgers, M.T.,
Influence of substituents on cation-pi interactions. 1. Absolute binding energies of alkali metal cation-toluene complexes determined by threshold collision-induced dissociation and theoretical studies,
J. Phys. Chem. A, 2002, 106, 22, 5529, https://doi.org/10.1021/jp014307b
. [all data]
Lin and Dunbar, 1997
Lin, C.-Y.; Dunbar, R.C.,
Radiative Association Kinetics and Binding Energies of Chromium Ions with Benzene and Benzene Derivatives,
Organometallics, 1997, 16, 12, 2691, https://doi.org/10.1021/om960949n
. [all data]
Tsvetkov, Rozhnov, et al., 1985
Tsvetkov, V.F.; Rozhnov, A.M.; Nesterova, T.N.,
Study of the equilibrium of isomerization and transalkylation of isopropyltoluenes,
Neftekhimiya, 1985, 53-57. [all data]
Leighton and Calo, 1981
Leighton, D.T.; Calo, J.M.,
Distribution Coefficients of Chlorinated Hydrocarbons in Dilute Air-Water Systems for Groundwater Contamination Applications,
J. Chem. Eng. Data, 1981, 26, 382-385. [all data]
Mackay, Shiu, et al., 1979
Mackay, D.; Shiu, W.-Y.; Sutherland, R.P.,
Determination of Air-Water Henry's Law Constants for Hydrophobic Pollutants,
Environ. Sci. Technol., 1979, 13, 333-337. [all data]
Bohon and Claussen, 1951
Bohon, R.L.; Claussen, W.F.,
The solubility of aromatic hydrocarbons in water,
J. Am. Chem. Soc., 1951, 73, 1571-1578. [all data]
Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G.,
Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update,
J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018
. [all data]
Aue, Guidoni, et al., 2000
Aue, D.H.; Guidoni, M.; Betowski, L.D.,
Ab initio calculated gas-phase basicities of polynuclear aromatic hydrocarbons,
Int. J. Mass Spectrom., 2000, 201, 283. [all data]
Lu, Eiden, et al., 1992
Lu, K.-T.; Eiden, G.C.; Weisshaar, J.C.,
Toluene cation: nearly free rotation of the methyl group,
J. Phys. Chem., 1992, 96, 9742. [all data]
Klasinc, Kovac, et al., 1983
Klasinc, L.; Kovac, B.; Gusten, H.,
Photoelectron spectra of acenes. Electronic structure and substituent effects,
Pure Appl. Chem., 1983, 55, 289. [all data]
Selim and Helal, 1982
Selim, E.T.M.; Helal, A.I.,
The study of C1-C3 monosubstituted alkyl benzenes by the inverse convolution of first differential ionization efficiency curves,
Org. Mass Spectrom., 1982, 17, 539. [all data]
Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S.,
Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules
in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]
McLoughlin, Morrison, et al., 1979
McLoughlin, R.G.; Morrison, J.D.; Traeger, J.C.,
Photoionization of the C-1 - C-4 monosubstituted alkyl benzenes: Thermochemistry of [C7H7]+ and [C8H9]+ formation,
Org. Mass Spectrom., 1979, 14, 104. [all data]
Traeger and McLoughlin, 1978
Traeger, J.C.; McLoughlin, R.G.,
A photoionization study of the energetics of C7H7+ ion formed from C7H8 precursors,
Int. J. Mass Spectrom. Ion Phys., 1978, 27, 319. [all data]
Lias and Ausloos, 1978
Lias, S.G.; Ausloos, P.J.,
eIonization energies of organic compounds by equilibrium measurements,
J. Am. Chem. Soc., 1978, 100, 6027. [all data]
Bock, Kaim, et al., 1978
Bock, H.; Kaim, W.; Rohwer, H.E.,
Die hyperkonjugative Stabilisierung von p-Xylol-Radikalkationen durch (H3C)3Si-Substituenten,
Chem. Ber., 1978, 111, 3573. [all data]
Behan, Johnstone, et al., 1976
Behan, J.M.; Johnstone, R.A.W.; Bentley, T.W.,
An evaluation of empirical methods for calculating the ionization potentials of substituted benzenes,
Org. Mass Spectrom., 1976, 11, 207. [all data]
Hoffman, 1974
Hoffman, M.K.,
Hidden rearrangements in the mass spectral decomposition of cycloheptatriene,
Z. Naturforsch. A:, 1974, 29, 1077. [all data]
McLean, 1973
McLean, R.A.N.,
The bonding of a silicon atom with a phenyl ring: The photoelectron spectrum of phenylsilane,
Can. J. Chem., 1973, 51, 2089. [all data]
Maier and Turner, 1973
Maier, J.P.; Turner, D.W.,
Steric inhibition of resonance studied by molecular photoelectron spectroscopy. Part 2. Phenylethylenes,
J. Chem. Soc. Faraday Trans. 2, 1973, 69, 196. [all data]
Kobayashi, Kobayashi, et al., 1973
Kobayashi, H.; Kobayashi, M.; Kaizu, Y.,
Molecular complexes of arenetricarbonylchromium,
Bull. Chem. Soc. Jpn., 1973, 46, 3109. [all data]
Gilbert, Leach, et al., 1973
Gilbert, J.R.; Leach, W.P.; Miller, J.R.,
Ionisation appearance potential measurements in arene chromium tricarbonyls,
J. Organomet. Chem., 1973, 49, 219. [all data]
Debies and Rabalais, 1973
Debies, T.P.; Rabalais, J.W.,
Photoelectron spectra of substituted benzenes. II. Seven valence electron substituents,
J. Electron Spectrosc. Relat. Phenom., 1973, 1, 355. [all data]
Cooks, Bertrand, et al., 1973
Cooks, R.G.; Bertrand, M.; Beynon, J.H.; Rennekamp, M.E.; Setser, D.W.,
Energy partitioning data as an ion structure probe. Substituted anisoles,
J. Am. Chem. Soc., 1973, 95, 1732. [all data]
Stebbings and Taylor, 1972
Stebbings, W.L.; Taylor, J.W.,
Photoionization mass spectrometry. II. Contrasting fragmentation of toluene by photons and by electrons,
Int. J. Mass Spectrom. Ion Phys., 1972, 9, 471. [all data]
Johnstone and Mellon, 1972
Johnstone, R.A.W.; Mellon, F.A.,
Electron-impact ionization and appearance potentials,
J. Chem. Soc. Faraday Trans. 2, 1972, 68, 1209. [all data]
Pitt, 1970
Pitt, C.G.,
Hyperconjugation: An alternative to the concept of the pπ-dπ bond in Group IV chemistry,
J. Organomet. Chem., 1970, 23, 35. [all data]
Dewar and Worley, 1969
Dewar, M.J.S.; Worley, S.D.,
Photoelectron spectra of molecules. I. Ionization potentials of some organic molecules and their interpretation,
J. Chem. Phys., 1969, 50, 654. [all data]
Bock, Seidl, et al., 1968
Bock, H.; Seidl, H.; Fochler, M.,
d-Orbitaleffekte in silicium-substituierten π-Elektronensystemen. X. Vertikale Ionisierungsenergien von Alkyl- und Silyl-benzolen,
Chem. Ber., 1968, 101, 2815. [all data]
Akopyan and Vilesov, 1968
Akopyan, M.E.; Vilesov, F.I.,
Mass-spectrometric investigation of the photo-ionization of benzene and its methyl derivatives,
Khim. Vysokikh Energ., 1968, 2, 107, In original 89. [all data]
Bralsford, Harris, et al., 1960
Bralsford, R.; Harris, P.V.; Price, W.C.,
The effect of fluorine on the electronic spectra and ionization potentials of molecules,
Proc. Roy. Soc. (London), 1960, A258, 459. [all data]
Watanabe, 1954
Watanabe, K.,
Photoionization and total absorption cross section of gases. I. Ionization potentials of several molecules. Cross sections of NH3 and NO,
J. Chem. Phys., 1954, 22, 1564. [all data]
Price and Walsh, 1947
Price, W.C.; Walsh, A.D.,
The absorption spectra of benzene derivatives in the vacuum ultra-violet. I,
Proc. Roy. Soc. (London), 1947, A191, 22. [all data]
Howell, Goncalves, et al., 1984
Howell, J.O.; Goncalves, J.M.; Amatore, C.; Klasinc, L.; Wightman, R.M.; Kochi, J.K.,
Electron transfer from aromatic hydrocarbons and their π-complexes with metals. Comparison of the standard oxidation potentials and vertical ionization potentials,
J. Am. Chem. Soc., 1984, 106, 3968. [all data]
Kobayashi, 1978
Kobayashi, T.,
A simple general tendency in photoelectron angular distributions of some monosubstituted benzenes,
Phys. Lett., 1978, 69, 105. [all data]
Klasinc, Novak, et al., 1978
Klasinc, L.; Novak, I.; Scholz, M.; Kluge, G.,
Photoelektronenspektren substituierter Pyridine und Benzole und ihre Interpretation durch die CNDO/SWW-Methode,
Croat. Chem. Acta, 1978, 51, 43. [all data]
Marschner and Goetz, 1974
Marschner, F.; Goetz, H.,
Korrelation zwischen photoelektronen- und elektronen-spektren. III. Eine methode zur deutung der PE- und UV-spektren vom toluol,
Tetrahedron, 1974, 30, 3451. [all data]
Bischof, Dewar, et al., 1974
Bischof, P.K.; Dewar, M.J.S.; Goodman, D.W.; Jones, T.B.,
Photoelectron spectra of molecules. VI. Hyperconjugation versus pπ-dπ bonding in group IVb compounds,
J. Organomet. Chem., 1974, 82, 89. [all data]
Kobayashi and Nagakura, 1972
Kobayashi, T.; Nagakura, S.,
Photoelectron spectra of nitro-compounds,
Chem. Lett., 1972, 903. [all data]
Klessinger, 1972
Klessinger, M.,
Ionization potentials of substituted benzenes,
Angew. Chem. Int. Ed. Engl., 1972, 11, 525. [all data]
Tajima and Tsuchiya, 1973
Tajima, S.; Tsuchiya, T.,
Energetics consideration of C5H5+ ions produced from various precursors by electron impact,
Bull. Chem. Soc. Jpn., 1973, 46, 3291. [all data]
Harrison, Haynes, et al., 1965
Harrison, A.G.; Haynes, P.; McLean, S.; Meyer, F.,
The mass spectra of methyl-substituted cyclopentadienes,
J. Am. Chem. Soc., 1965, 87, 5099. [all data]
Majer and Patrick, 1962
Majer, J.R.; Patrick, C.R.,
Electron impact on some halogenated aromatic compounds,
J. Chem. Soc. Faraday Trans., 1962, 58, 17. [all data]
Huang and Dunbar, 1991
Huang, F.-S.; Dunbar, R.C.,
Time-resolved photodissociation of toluene ion [Eo(C6H5CH3+ Ü C7H7+ + H)=2.11 eV; cited data derived using evaluated IP for toluene. Modeling uncertainties give considerable latitude in the assignment of kinetic parameters.],
Int. J. Mass Spectrom. Ion Processes, 1991, 109, 151. [all data]
Traeger and McLoughlin, 1977
Traeger, J.C.; McLoughlin, R.G.,
Threshold photoionization and dissociation of toluene and cycloheptatriene,
J. Am. Chem. Soc., 1977, 99, 7351. [all data]
Nounou, 1966
Nounou, P.,
Etude des composes aromatiques par spectrometrie de masse. I. Mesure des potentials d'ionisation et d'apparition par la methode du potential retardateur et interpretation des courbes d'ionisation differentielle,
J. Chim. Phys., 1966, 63, 994. [all data]
Lifshitz, Gotkis, et al., 1993
Lifshitz, C.; Gotkis, Y.; Ioffe, A.; Laskin, J.; Shaik, S.,
Is the tropylium ion (Tr+) formed from toluene at its thermochemical threshold?,
Int. J. Mass Spectrom. Ion Processes, 1993, 125, R7. [all data]
Lifshitz, Gotkis, et al., 1993, 2
Lifshitz, C.; Gotkis, Y.; Laskin, J.; Ioffe, A.; Shaik, S.,
Threshold formation of benzylium (Bz+) and tropylium (Tr+) from toluene. Nonstatistical behavior in Franck-Condon gaps,
J. Phys. Chem., 1993, 97, 12291. [all data]
Bombach, Dannacher, et al., 1983
Bombach, R.; Dannacher, J.; Stadelmann, J.-P.,
Energy and time dependence of the decay processes of toluene molecular cations,
J. Am. Chem. Soc., 1983, 105, 4205. [all data]
Bombach, Dannacher, et al., 1983, 2
Bombach, R.; Dannacher, J.; Stadelmann, J.-P.,
The rate-energy functions for the formation of tropylium and benzylium ions from toluene molecular cations,
Chem. Phys. Lett., 1983, 95, 259. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), References
- Symbols used in this document:
AE Appearance energy Cp,gas Constant pressure heat capacity of gas Cp,liquid Constant pressure heat capacity of liquid IE (evaluated) Recommended ionization energy Pc Critical pressure S°liquid Entropy of liquid at standard conditions T Temperature Tboil Boiling point Tc Critical temperature Tfus Fusion (melting) point Ttriple Triple point temperature Vc Critical volume d(ln(kH))/d(1/T) Temperature dependence parameter for Henry's Law constant k°H Henry's Law constant at 298.15K ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔfusH Enthalpy of fusion ΔfusS Entropy of fusion ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions ΔsubH° Enthalpy of sublimation at standard conditions ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions ρc Critical density - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.