Resorcinol
- Formula: C6H6O2
- Molecular weight: 110.1106
- IUPAC Standard InChIKey: GHMLBKRAJCXXBS-UHFFFAOYSA-N
- CAS Registry Number: 108-46-3
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: 1,3-Benzenediol; α-Resorcinol; m-Benzenediol; m-Dihydroxybenzene; m-Dioxybenzene; m-Hydroquinone; m-Hydroxyphenol; Benzene, 1,3-dihydroxy-; C.I. Developer 4; C.I. Oxidation Base 31; C.I. 76505; Developer O; Developer R; Developer RS; Durafur Developer G; Fouramine RS; Fourrine EW; Fourrine 79; Nako TGG; Pelagol Grey RS; Pelagol RS; Resorcin; 1,3-Dihydroxybenzene; 3-Hydroxyphenol; Benzene, m-dihydroxy-; Phenol, m-hydroxy-; NCI-C05970; Rcra waste number U201; Resorcine; UN 2876; NSC 1571; Rodol RS; 1,3-Dihydroxybenzene (resorcinol)
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -284.7 ± 1.2 | kJ/mol | Ccr | Sabbah and Buluku, 1991 | ΔHfusion =15.25±0.52 kJ/mol; ALS |
ΔfH°gas | -275. | kJ/mol | Ccb | Desai, Wilhoit, et al., 1968 | ALS |
ΔfH°gas | -265.2 | kJ/mol | N/A | Pushin, 1954 | Value computed using ΔfHsolid° value of -351.2 kj/mol from Pushin, 1954 and ΔsubH° value of 86.0 kj/mol from Sabbah and Buluku, 1991.; DRB |
Constant pressure heat capacity of gas
Cp,gas (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
34.69 | 50. | Kudchadker S.A., 1979 | GT |
47.46 | 100. | ||
65.81 | 150. | ||
85.45 | 200. | ||
114.24 | 273.15 | ||
123.75 | 298.15 | ||
124.44 | 300. | ||
158.69 | 400. | ||
185.86 | 500. | ||
206.73 | 600. | ||
222.95 | 700. | ||
235.90 | 800. | ||
246.52 | 900. | ||
255.42 | 1000. | ||
262.97 | 1100. | ||
269.45 | 1200. | ||
275.04 | 1300. | ||
279.88 | 1400. | ||
284.11 | 1500. |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°solid | -370.7 ± 1.1 | kJ/mol | Ccr | Sabbah and Buluku, 1991 | ΔHfusion =15.25±0.52 kJ/mol; ALS |
ΔfH°solid | -368.0 ± 0.50 | kJ/mol | Ccb | Desai, Wilhoit, et al., 1968 | crystal phase; ALS |
ΔfH°solid | -351.2 | kJ/mol | Ccb | Pushin, 1954 | Author's hf298_condensed=-85.6 kcal/mol; ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°solid | -2847.9 ± 1.1 | kJ/mol | Ccr | Sabbah and Buluku, 1991 | ΔHfusion =15.25±0.52 kJ/mol; Corresponding ΔfHºsolid = -370.7 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°solid | -2850.6 ± 0.42 | kJ/mol | Ccb | Desai, Wilhoit, et al., 1968 | crystal phase; Corresponding ΔfHºsolid = -368.0 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°solid | -2867. | kJ/mol | Ccb | Pushin, 1954 | Author's hf298_condensed=-85.6 kcal/mol; Corresponding ΔfHºsolid = -351. kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°solid | -2861. | kJ/mol | Ccb | Barker, 1925 | Author was aware that data differs from previously reported values; Corresponding ΔfHºsolid = -357. kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
Constant pressure heat capacity of solid
Cp,solid (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
135.53 | 298.15 | Bret-Dibat and Lichanot, 1989 | T = 200 to 500 K. Cp(c) = 126.876 + 0.3316t + 5.6228x10-4t2 + 9.5321x10-6t3 J/mol*K (t/°C). Cp value caluclated from equation.; DH |
139.3 | 298.15 | Ueberreiter and Orthmann, 1950 | T = 293 to 368 K. Equation only.; DH |
151.0 | 323. | Satoh and Sogabe, 1941 | T = 0 to 100°C. Mean value.; DH |
131.0 | 298. | Andrews, Lynn, et al., 1926 | T = 22 to 200°C.; DH |
131.4 | 297.9 | Andrews, 1926 | T = 110 to 344 K. Value is unsmoothed experimental datum.; DH |
Phase change data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
DH - Eugene S. Domalski and Elizabeth D. Hearing
CAL - James S. Chickos, William E. Acree, Jr., Joel F. Liebman, Students of Chem 202 (Introduction to the Literature of Chemistry), University of Missouri -- St. Louis
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 550. | K | N/A | Buckingham and Donaghy, 1982 | BS |
Tboil | 549.1 | K | N/A | Krupatkin and Rozhentsova, 1971 | Uncertainty assigned by TRC = 0.4 K; TRC |
Tboil | 554.55 | K | N/A | Lecat, 1943 | Uncertainty assigned by TRC = 0.5 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 384. ± 5. | K | AVG | N/A | Average of 7 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Ttriple | 383.54 | K | N/A | Sabbah and Buluku, 1991, 2 | Crystal phase 1 phase; Uncertainty assigned by TRC = 0.02 K; TRC |
Ttriple | 382.7 | K | N/A | Ebisuzaki, Askari, et al., 1987 | Crystal phase 1 phase; Uncertainty assigned by TRC = 0.2 K; TRC |
Ttriple | 382.8 | K | N/A | Andrews, Lynn, et al., 1926, 2 | Uncertainty assigned by TRC = 0.25 K; obtained from cooling curve in absence of air; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 78.4 ± 1.3 | kJ/mol | N/A | Verevkin and Kozlova, 2008 | AC |
Quantity | Value | Units | Method | Reference | Comment |
ΔsubH° | 86.00 ± 0.52 | kJ/mol | C | Sabbah and Buluku, 1991 | ΔHfusion =15.25±0.52 kJ/mol; ALS |
ΔsubH° | 86.0 | kJ/mol | N/A | Sabbah and Buluku, 1991 | DRB |
ΔsubH° | 87.5 ± 0.5 | kJ/mol | C | Sabbah and Buluku, 1991 | AC |
ΔsubH° | 93.0 | kJ/mol | N/A | Desai, Wilhoit, et al., 1968 | DRB |
Reduced pressure boiling point
Tboil (K) | Pressure (bar) | Reference | Comment |
---|---|---|---|
451.2 | 0.021 | Weast and Grasselli, 1989 | BS |
Enthalpy of vaporization
ΔvapH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
74.3 | 434. | A | Stephenson and Malanowski, 1987 | Based on data from 419. to 550. K.; AC |
74.3 | 407. | GC | Stephenson and Malanowski, 1987 | Based on data from 392. to 463. K. See also Kundel, Lille, et al., 1975.; AC |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (bar)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
424.7 to 549.7 | 5.52248 | 2687.152 | -62.164 | von Terres, Gebert, et al., 1955 | Coefficents calculated by NIST from author's data. |
Enthalpy of sublimation
ΔsubH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
85.3 ± 0.5 | 334. | C | Sabbah and Buluku, 1991 | AC |
92.3 | 353. | GS | Bender, Bieling, et al., 1983 | Based on data from 328. to 379. K.; AC |
93. ± 21. | 324. to 335. | N/A | Desai, Wilhoit, et al., 1968 | AC |
93.4 | 303. | N/A | Hoyer and Peperle, 1958 | Based on data from 283. to 323. K.; AC |
95. ± 1. | 329. | V | Wolf and Weghofer, 1938 | ALS |
Enthalpy of fusion
ΔfusH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
20.500 | 381. | N/A | Viikna, Gambino, et al., 1982 | DH |
18.9 | 382.6 | N/A | Bret-Dibat and Lichanot, 1989 | AC |
21.300 | 382.8 | N/A | Andrews, Lynn, et al., 1926 | DH |
21.3 | 382.9 | C | Andrews, Lynn, et al., 1926 | AC |
Entropy of fusion
ΔfusS (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
53.8 | 381. | Viikna, Gambino, et al., 1982 | DH |
55.6 | 382.8 | Andrews, Lynn, et al., 1926 | DH |
Entropy of fusion
ΔfusS (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
3.27 | 366.8 | Bret-Dibat and Lichanot, 1989, 2 | CAL |
49.41 | 382.6 |
Enthalpy of phase transition
ΔHtrs (kJ/mol) | Temperature (K) | Initial Phase | Final Phase | Reference | Comment |
---|---|---|---|---|---|
1.370 | 369. | crystaline, II | crystaline, I | Ebisuzaki, Askari, et al., 1987, 2 | DH |
20.890 | 382.7 | crystaline, I | liquid | Ebisuzaki, Askari, et al., 1987, 2 | DH |
1.200 | 366.75 | crystaline, II | crystaline, I | Bret-Dibat and Lichanot, 1989 | DH |
18.900 | 382.55 | crystaline, I | liquid | Bret-Dibat and Lichanot, 1989 | DH |
Entropy of phase transition
ΔStrs (J/mol*K) | Temperature (K) | Initial Phase | Final Phase | Reference | Comment |
---|---|---|---|---|---|
3.71 | 369. | crystaline, II, à | crystaline, I, á phase transition | Ebisuzaki, Askari, et al., 1987, 2 | DH |
54.59 | 382.7 | crystaline, I, Fusion of á | liquid, resorcinol | Ebisuzaki, Askari, et al., 1987, 2 | DH |
3.3 | 366.75 | crystaline, II | crystaline, I | Bret-Dibat and Lichanot, 1989 | DH |
59. | 382.55 | crystaline, I | liquid | Bret-Dibat and Lichanot, 1989 | DH |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: John E. Bartmess
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
C6H5O2- + =
By formula: C6H5O2- + H+ = C6H6O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1450. ± 8.8 | kJ/mol | G+TS | Fujio, McIver, et al., 1981 | gas phase; value altered from reference due to change in acidity scale |
ΔrH° | 1444. ± 11. | kJ/mol | G+TS | Kebarle and McMahon, 1977 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1422. ± 8.4 | kJ/mol | IMRE | Fujio, McIver, et al., 1981 | gas phase; value altered from reference due to change in acidity scale |
ΔrG° | 1415. ± 8.4 | kJ/mol | IMRE | Kebarle and McMahon, 1977 | gas phase |
Henry's Law data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Rolf Sander
Henry's Law constant (water solution)
kH(T) = k°H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
k°H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)
k°H (mol/(kg*bar)) | d(ln(kH))/d(1/T) (K) | Method | Reference |
---|---|---|---|
8.2×10+6 | 6300. | X | N/A |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
MM - Michael M. Meot-Ner (Mautner)
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
View reactions leading to C6H6O2+ (ion structure unspecified)
Proton affinity at 298K
Proton affinity (kJ/mol) | Reference | Comment |
---|---|---|
856.4 | Bouchoux, Defaye, et al., 2002 | T = 444-504K; MM |
Protonation entropy at 298K
Protonation entropy (J/mol*K) | Reference | Comment |
---|---|---|
-15. | Bouchoux, Defaye, et al., 2002 | T = 444-504K; MM |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
8.2 | PE | Palmer, Moyes, et al., 1979 | LLK |
8.63 | PE | Palmer, Moyes, et al., 1979 | Vertical value; LLK |
De-protonation reactions
C6H5O2- + =
By formula: C6H5O2- + H+ = C6H6O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1450. ± 8.8 | kJ/mol | G+TS | Fujio, McIver, et al., 1981 | gas phase; value altered from reference due to change in acidity scale; B |
ΔrH° | 1444. ± 11. | kJ/mol | G+TS | Kebarle and McMahon, 1977 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1422. ± 8.4 | kJ/mol | IMRE | Fujio, McIver, et al., 1981 | gas phase; value altered from reference due to change in acidity scale; B |
ΔrG° | 1415. ± 8.4 | kJ/mol | IMRE | Kebarle and McMahon, 1977 | gas phase; B |
Mass spectrum (electron ionization)
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
Due to licensing restrictions, this spectrum cannot be downloaded.
Owner | NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | Japan AIST/NIMC Database- Spectrum MS-NW- 285 |
NIST MS number | 228485 |
Gas Chromatography
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Kovats' RI, non-polar column, isothermal
Column type | Active phase | Temperature (C) | I | Reference | Comment |
---|---|---|---|---|---|
Packed | OV-1 | 180. | 1379. | Radecki and Grzybowski, 1978 | Chromosorb W HMDS (100-120 mesh); Column length: 2.1 m |
Kovats' RI, non-polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Packed | OV-101 | 1376. | Alley and Dykes, 1972 | 6. K/min; Tstart: 70. C; Tend: 220. C |
Kovats' RI, non-polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Packed | SE-30 | 1368. | Grzybowski, Lamparczyk, et al., 1980 | Chromosorb W HMDS (80-100 mesh); Column length: 2.9 m; Program: not specified |
Normal alkane RI, non-polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | SE-30 | 1368. | Peterson, 1992 | Program: not specified |
Lee's RI, non-polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | DB-5MS | 213.50 | Chen, Keeran, et al., 2002 | 30. m/0.25 mm/0.5 μm, 40. C @ 1. min, 10. K/min; Tend: 310. C |
Capillary | DB-5MS | 216.79 | Chen, Keeran, et al., 2002 | 30. m/0.25 mm/0.5 μm, 40. C @ 1. min, 4. K/min; Tend: 310. C |
Lee's RI, non-polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | Polydimethyl siloxanes | 219.64 | Eckel and Kind, 2003 | Program: not specified |
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Mass spectrum (electron ionization), Gas Chromatography, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Sabbah and Buluku, 1991
Sabbah, R.; Buluku, E.N.L.E.,
Thermodynamic study of three isomers of dihydroxybenzene,
Can. J. Chem., 1991, 69, 481-488. [all data]
Desai, Wilhoit, et al., 1968
Desai, P.D.; Wilhoit, R.C.; Zwolinski, B.J.,
Heat of combustion of resorcinol and enthalpies of isomerization of dihydroxybenzenes,
J. Chem. Eng. Data, 1968, 13, 334-335. [all data]
Pushin, 1954
Pushin, N.A.,
Heats of combustion and heats of formation of isomeric organic compounds,
Bull. Soc. Chim. Belgrade, 1954, 19, 531-547. [all data]
Kudchadker S.A., 1979
Kudchadker S.A.,
Ideal gas thermodynamic properties of benzene diols: pyrocatechol, resorcinol, and hydroquinone,
Thermochim. Acta, 1979, 30, 319-326. [all data]
Barker, 1925
Barker, M.F.,
Calorific value and constitution,
J. Phys. Chem., 1925, 29, 1345-1363. [all data]
Bret-Dibat and Lichanot, 1989
Bret-Dibat, P.; Lichanot, A.,
Thermodynamic properties of positional isomers of disubstituted benzene in condensed phase,
Thermochim. Acta, 1989, 147(2), 261-271. [all data]
Ueberreiter and Orthmann, 1950
Ueberreiter, K.; Orthmann, H.-J.,
Specifische Wärme, spezifisches Volumen, Temperatur- und Wärme-leittähigkeit einiger disubstituierter Benzole und polycyclischer Systeme,
Z. Natursforsch. 5a, 1950, 101-108. [all data]
Satoh and Sogabe, 1941
Satoh, S.; Sogabe, T.,
The heat capacities of some organic compounds containing nitrogen and the atomic heat of nitrogen. (3), Sci.,
Pap. Inst. Phys. Chem. Res. (Tokyo), 1941, 38, 238-245. [all data]
Andrews, Lynn, et al., 1926
Andrews, D.H.; Lynn, G.; Johnston, J.,
The heat capacities and heat of crystallization of some isomeric aromatic compounds,
J. Am. Chem. Soc., 1926, 48, 1274-1287. [all data]
Andrews, 1926
Andrews, D.H.,
The specific heats of some isomers of the type ortho, meta and para C6H4XY from 110 to 340K,
J. Am. Chem. Soc., 1926, 48, 1287-1298. [all data]
Buckingham and Donaghy, 1982
Buckingham, J.; Donaghy, S.M.,
Dictionary of Organic Compounds: Fifth Edition, Chapman and Hall, New York, 1982, 1. [all data]
Krupatkin and Rozhentsova, 1971
Krupatkin, I.L.; Rozhentsova, E.P.,
Some properties of systems with latent liquid immiscibility,
Russ. J. Phys. Chem. (Engl. Transl.), 1971, 45, 1700. [all data]
Lecat, 1943
Lecat, M.,
Azeotropes of Ethyl Urethane and other Azeotropes,
C. R. Hebd. Seances Acad. Sci., 1943, 217, 273. [all data]
Sabbah and Buluku, 1991, 2
Sabbah, R.; Buluku, E.N.L.E.,
Thermodynamic stury of the three isomers of dihydroxybenzene,
Can. J. Chem., 1991, 69, 481. [all data]
Ebisuzaki, Askari, et al., 1987
Ebisuzaki, Y.; Askari, L.H.; Bryan, A.M.,
Phase transitions in resorcinol,
J. Chem. Phys., 1987, 87, 6659-64. [all data]
Andrews, Lynn, et al., 1926, 2
Andrews, D.H.; Lynn, G.; Johnston, J.,
The Heat Capacities and Heat of Crystallization of Some Isomeric Aromatic Compounds,
J. Am. Chem. Soc., 1926, 48, 1274. [all data]
Verevkin and Kozlova, 2008
Verevkin, Sergey P.; Kozlova, Svetlana A.,
Di-hydroxybenzenes: Catechol, resorcinol, and hydroquinone,
Thermochimica Acta, 2008, 471, 1-2, 33-42, https://doi.org/10.1016/j.tca.2008.02.016
. [all data]
Weast and Grasselli, 1989
CRC Handbook of Data on Organic Compounds, 2nd Editon, Weast,R.C and Grasselli, J.G., ed(s)., CRC Press, Inc., Boca Raton, FL, 1989, 1. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Kundel, Lille, et al., 1975
Kundel, H.; Lille, U.; Kaidas, N.,
Tr. Tallin. Politekh. Inst., 1975, 390, 107. [all data]
von Terres, Gebert, et al., 1955
von Terres, E.; Gebert, F.; Hulsemann, H.; Petereit, H.; Toepsch, H.; Ruppert, W.,
Zur Kenntnis der physikalisch-chemischen Grundlagen der Gewinnung und Zerlegung der Phenolfraktionen von Steinkohlenteer und Braunkohlenschwelteer. IV. Mitteilung Die Dampfdrucke von Phenol und Phenolderivaten,
Brennst.-Chem., 1955, 36, 272-274. [all data]
Bender, Bieling, et al., 1983
Bender, R.; Bieling, V.; Maurer, G.,
The vapour pressures of solids: anthracene, hydroquinone, and resorcinol,
The Journal of Chemical Thermodynamics, 1983, 15, 6, 585-594, https://doi.org/10.1016/0021-9614(83)90058-7
. [all data]
Hoyer and Peperle, 1958
Hoyer, H.; Peperle, W.,
Z. Elektrochem., 1958, 62, 61. [all data]
Wolf and Weghofer, 1938
Wolf, K.L.; Weghofer, H.,
Uber sublimationswarmen,
Z. Phys. Chem., 1938, 39, 194-208. [all data]
Viikna, Gambino, et al., 1982
Viikna, A.; Gambino, M.; Pouzard, G.; Bros, J.P.,
Determination of partial enthalpies of mixing at infinite dilution of orcinol and resorcinol in water, dibutyl ether and diisopropyl ether,
Calorim. Anal. Therm., 1982, 13, III. [all data]
Bret-Dibat and Lichanot, 1989, 2
Bret-Dibat, P.; Lichanot, A.,
Proprietes thermodynamiques des isomeres de position de benzenes disubstitues en phase condensee,
Thermochim. Acta, 1989, 147, 2, 261, https://doi.org/10.1016/0040-6031(89)85181-0
. [all data]
Ebisuzaki, Askari, et al., 1987, 2
Ebisuzaki, Y.; Askari, L.H.; Bryan, A.M.,
Phase transitions in resorcinol,
J. Chem. Phys., 1987, 87, 6659-6664. [all data]
Fujio, McIver, et al., 1981
Fujio, M.; McIver, R.T., Jr.; Taft, R.W.,
Effects on the acidities of phenols from specific substituent-solvent interactions. Inherent substituent parameters from gas phase acidities,
J. Am. Chem. Soc., 1981, 103, 4017. [all data]
Kebarle and McMahon, 1977
Kebarle, P.; McMahon, T.B.,
Intrinsic Acidities of Substituted Phenols and Benzoic Acids Determined by Gas Phase Proton Transfer Equilibria,
J. Am. Chem. Soc., 1977, 99, 7, 2222, https://doi.org/10.1021/ja00449a032
. [all data]
Bouchoux, Defaye, et al., 2002
Bouchoux, G.; Defaye, D.; McMahon, T.B.; Likholyot, A.; Mo, O.; Yanez, M.,
Structural and energetic aspects of the protonation of phenol, catechol, resorcinol, and hydroquinone,
Chem. Eur. J., 2002, 8, 2900-2909. [all data]
Palmer, Moyes, et al., 1979
Palmer, M.H.; Moyes, W.; Speirs, M.; Ridyard, J.N.A.,
The electronic structure of substituted benzenes; ab initio calculations and photoelectron spectra for phenol, the methyl- and fluoro-derivatives, and the dihydroxybenzenes,
J. Mol. Struct., 1979, 52, 293. [all data]
Radecki and Grzybowski, 1978
Radecki, A.; Grzybowski, J.,
Linear relationship between retention indices and chemical structure of phenols,
J. Chromatogr., 1978, 152, 1, 211-213, https://doi.org/10.1016/S0021-9673(00)85352-2
. [all data]
Alley and Dykes, 1972
Alley, B.J.; Dykes, H.W.H.,
Gas-Liquid Chromatographic Determination of Nitrate Esters,Stabilizers and Plasticizers in Nitrocellulose-Base Propellants,
J. Chromatogr., 1972, 71, 1, 23-37, https://doi.org/10.1016/S0021-9673(01)85687-9
. [all data]
Grzybowski, Lamparczyk, et al., 1980
Grzybowski, J.; Lamparczyk, H.; Nasal, A.; Radecki, A.,
Relationship between the retention indices of phenols on polar and non-polar stationary phases,
J. Chromatogr., 1980, 196, 2, 217-223, https://doi.org/10.1016/S0021-9673(00)80441-0
. [all data]
Peterson, 1992
Peterson, K.L.,
Counter-Propagation Neural Networks in the Modeling and Prediction of Kovats Indices for Substituted Phenols,
Anal. Chem., 1992, 64, 4, 379-386, https://doi.org/10.1021/ac00028a011
. [all data]
Chen, Keeran, et al., 2002
Chen, P.H.; Keeran, W.S.; Van Ausdale, W.A.; Schindler, D.R.; Roberts, D.W.,
Application of Lee retention indices to the confirmation of tentatively identified compounds from GC/MS analysis of environmental samples, Technical paper, Analytical Services Division, Environmental ScienceEngineering, Inc, PO Box 1703, Gainesville, FL 32602, 2002, 11. [all data]
Eckel and Kind, 2003
Eckel, W.P.; Kind, T.,
Use of boiling point-Lee retention index correlation for rapid review of gas chromatography-mass spectrometry data,
Anal. Chim. Acta., 2003, 494, 1-2, 235-243, https://doi.org/10.1016/j.aca.2003.08.003
. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Mass spectrum (electron ionization), Gas Chromatography, References
- Symbols used in this document:
Cp,gas Constant pressure heat capacity of gas Cp,solid Constant pressure heat capacity of solid Tboil Boiling point Tfus Fusion (melting) point Ttriple Triple point temperature d(ln(kH))/d(1/T) Temperature dependence parameter for Henry's Law constant k°H Henry's Law constant at 298.15K ΔHtrs Enthalpy of phase transition ΔStrs Entropy of phase transition ΔcH°solid Enthalpy of combustion of solid at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfH°solid Enthalpy of formation of solid at standard conditions ΔfusH Enthalpy of fusion ΔfusS Entropy of fusion ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔsubH Enthalpy of sublimation ΔsubH° Enthalpy of sublimation at standard conditions ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.