Acetic acid ethenyl ester
- Formula: C4H6O2
- Molecular weight: 86.0892
- IUPAC Standard InChIKey: XTXRWKRVRITETP-UHFFFAOYSA-N
- CAS Registry Number: 108-05-4
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Acetic acid vinyl ester; Vinyl acetate; Vinyl A monomer; VyAc; 1-Acetoxyethylene; CH3CO2CH=CH2; Ethenyl acetate; Ethenyl ethanoate; Acetate de vinyle; Ethanoic acid, ethenyl ester; Octan winylu; Vinile (acetato di); Vinyl acetate h.q.; Vinyl ethanoate; Vinylacetaat; Vinylacetat; Vinyle (acetate de); Zeset T; Acetic acid, ethylene ether; VAC; Vinylester kyseliny octove; Vinyl ester of acetic acid; Everflex 81L; Plyamul 40305-00; Unocal 76 Res 6206; Unocal 76 Res S-55; Vinnapas A 50; Vinyl acetate monomer; Acetoxyethene; NSC 8404
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -74.95 | kcal/mol | N/A | Vilcu and Perisanu, 1980 | Value computed using ΔfHliquid° value of -350.8 kj/mol from Vilcu and Perisanu, 1980 and ΔvapH° value of 37.2±0.84 kj/mol from missing citation.; DRB |
ΔfH°gas | -73.8 ± 2.4 | kcal/mol | N/A | Vilcu and Perisanu, 1980 | Value computed using ΔfHliquid° value of -346±10 kj/mol from Vilcu and Perisanu, 1980 and ΔvapH° value of 37.2±0.84 kj/mol from missing citation.; DRB |
Constant pressure heat capacity of gas
Cp,gas (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
12.64 | 100. | Kudchadker S.A., 1975 | GT |
17.91 | 200. | ||
22.17 | 273.15 | ||
23.66 | 298.15 | ||
23.77 | 300. | ||
29.567 | 400. | ||
34.649 | 500. | ||
38.901 | 600. | ||
42.440 | 700. | ||
45.418 | 800. | ||
47.947 | 900. | ||
50.105 | 1000. | ||
51.955 | 1100. | ||
53.547 | 1200. | ||
54.919 | 1300. | ||
56.107 | 1400. | ||
57.139 | 1500. |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | -83.84 | kcal/mol | Chyd | Vilcu and Perisanu, 1980 | ALS |
ΔfH°liquid | -82.7 ± 2.5 | kcal/mol | Ccb | Vilcu and Perisanu, 1980 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -498.5 ± 2.5 | kcal/mol | Ccb | Vilcu and Perisanu, 1980 | Corresponding ΔfHºliquid = -82.66 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
Constant pressure heat capacity of liquid
Cp,liquid (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
40.51 | 298. | Bengough and Thomson, 1959 | Mean value 23 to 50°C.; DH |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
By formula: C4H6O2 + H2 = C4H8O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -30.9 ± 1.1 | kcal/mol | Chyd | Vilcu and Perisanu, 1980 | liquid phase |
ΔrH° | -31.12 ± 0.06 | kcal/mol | Chyd | Dolliver, Gresham, et al., 1938 | gas phase; At 355 °K |
IR Spectrum
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes
Data compiled by: Coblentz Society, Inc.
- GAS (100 mmHg, N2 ADDED, TOTAL PRESSURE 600 mmHg); DOW KBr FOREPRISM-GRATING; DIGITIZED BY NIST FROM HARD COPY (FROM TWO SEGMENTS); 2 cm-1 resolution
- SOLUTION (10% IN CCl4 FOR 3800-1333, 10% IN CS2 FOR 1333-400 CM-1); DOW KBr FOREPRISM-GRATING; DIGITIZED BY NIST FROM HARD COPY (FROM TWO SEGMENTS); 4 cm-1 resolution
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Data compiled by: Pamela M. Chu, Franklin R. Guenther, George C. Rhoderick, and Walter J. Lafferty
- gas; IFS66V (Bruker); 3-Term B-H Apodization
0.1250, 0.2410, 0.4820, 0.9640, 1.9290 cm-1 resolution - gas; IFS66V (Bruker); Boxcar Apodization
0.1250, 0.2410, 0.4820, 0.9640, 1.9290 cm-1 resolution - gas; IFS66V (Bruker); Happ Genzel Apodization
0.1250, 0.2410, 0.4820, 0.9640, 1.9290 cm-1 resolution - gas; IFS66V (Bruker); NB Strong Apodization
0.1250, 0.2410, 0.4820, 0.9640, 1.9290 cm-1 resolution - gas; IFS66V (Bruker); Triangular Apodization
0.1250, 0.2410, 0.4820, 0.9640, 1.9290 cm-1 resolution
Mass spectrum (electron ionization)
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, UV/Visible spectrum, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
Due to licensing restrictions, this spectrum cannot be downloaded.
Owner | NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | Japan AIST/NIMC Database- Spectrum MS-NW-5546 |
NIST MS number | 228294 |
UV/Visible spectrum
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
View spectrum image in SVG format.
Download spectrum in JCAMP-DX format.
Source | Burnett and Melville, 1947 |
---|---|
Owner | INEP CP RAS, NIST OSRD Collection (C) 2007 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
Origin | INSTITUTE OF ENERGY PROBLEMS OF CHEMICAL PHYSICS, RAS |
Source reference | RAS UV No. 10573 |
Instrument | Hilger quartz spectrograph |
Melting point | - 93.2 |
Boiling point | 72.5 |
Gas Chromatography
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Kovats' RI, non-polar column, isothermal
Column type | Active phase | Temperature (C) | I | Reference | Comment |
---|---|---|---|---|---|
Packed | SE-30 | 100. | 564. | Winskowski, 1983 | Gaschrom Q; Column length: 2. m |
Packed | Apiezon L | 120. | 527. | Bogoslovsky, Anvaer, et al., 1978 | Celite 545 |
Packed | Apiezon L | 160. | 529. | Bogoslovsky, Anvaer, et al., 1978 | Celite 545 |
Packed | SE-30 | 150. | 545. | Allen and Haken, 1970 | Celite 560 silanized; Column length: 3.7 m |
Packed | SE-30 | 150. | 548. | Germaine and Haken, 1969 | Celite 560; Column length: 3.7 m |
Normal alkane RI, non-polar column, isothermal
Column type | Active phase | Temperature (C) | I | Reference | Comment |
---|---|---|---|---|---|
Capillary | SE-30 | 120. | 524. | Gröbler and Bálizs, 1981 | |
Packed | Synachrom | 150. | 546. | Dufka, Malinsky, et al., 1971 | Helium, Synachrom (60-80 mesh); Column length: 1.5 m |
Packed | Synachrom | 150. | 551. | Dufka, Malinsky, et al., 1971 | Helium, Synachrom (60-80 mesh); Column length: 1.5 m |
Packed | DC-400 | 150. | 570. | Anderson, 1968 | Helium, Gas-Pak (60-80 mesh); Column length: 3.0 m |
Normal alkane RI, non-polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | OV-101 | 570. | Zenkevich, 2005 | 25. m/0.20 mm/0.10 μm, N2/He, 6. K/min; Tstart: 50. C; Tend: 250. C |
Capillary | BP-1 | 560. | Health Safety Executive, 2000 | 50. m/0.22 mm/0.75 μm, He, 5. K/min; Tstart: 50. C; Tend: 200. C |
Normal alkane RI, non-polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | SE-30 | 562. | Vinogradov, 2004 | Program: not specified |
Capillary | DB-1 | 562. | Ciccioli, Cecinato, et al., 1994 | 60. m/0.32 mm/0.25 μm; Program: not specified |
Capillary | DB-1 | 562. | Ciccioli, Brancaleoni, et al., 1993 | 60. m/0.32 mm/0.25 μm; Program: 3 min at 5 C; 5 - 50 C at 3 deg/min; 50 - 220 C at 5 deg/min |
Capillary | OV-1, SE-30, Methyl silicone, SP-2100, OV-101, DB-1, etc. | 548. | Waggott and Davies, 1984 | Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified |
Capillary | OV-1, SE-30, Methyl silicone, SP-2100, OV-101, DB-1, etc. | 564. | Waggott and Davies, 1984 | Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified |
Normal alkane RI, polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | Carbowax 20M | 878. | Vinogradov, 2004 | Program: not specified |
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Vilcu and Perisanu, 1980
Vilcu, R.; Perisanu, S.,
The ideal gas state enthalpies of formation of some monomers,
Rev. Roum. Chim., 1980, 25, 619-624. [all data]
Kudchadker S.A., 1975
Kudchadker S.A.,
Thermodynamic properties of oxygen compounds. I. Vinyl acetate,
Thermochim. Acta, 1975, 11, 361-365. [all data]
Bengough and Thomson, 1959
Bengough, W.I.; Thomson, R.A.M.,
A dilatometric method of measuring the heats of radiation-induced reactions. Part 2.- The heat of photochemical addition of bromotrichloromethane to vinyl acetate,
Trans. Faraday Soc., 1959, 55, 268-271. [all data]
Dolliver, Gresham, et al., 1938
Dolliver, M.A.; Gresham, T.L.; Kistiakowsky, G.B.; Smith, E.A.; Vaughan, W.E.,
Heats of organic reactions. VI. Heats of hydrogenation of some oxygen-containing compounds,
J. Am. Chem. Soc., 1938, 60, 440-450. [all data]
Burnett and Melville, 1947
Burnett, G.M.; Melville, H.W.,
Proc. Roy. Soc., 1947, 189A, 456. [all data]
Winskowski, 1983
Winskowski, J.,
Gaschromatographische Identifizierung von Stoffen anhand von Indexziffem und unterschiedlichen Detektoren,
Chromatographia, 1983, 17, 3, 160-165, https://doi.org/10.1007/BF02271041
. [all data]
Bogoslovsky, Anvaer, et al., 1978
Bogoslovsky, Yu.N.; Anvaer, B.I.; Vigdergauz, M.S.,
Chromatographic constants in gas chromatography (in Russian), Standards Publ. House, Moscow, 1978, 192. [all data]
Allen and Haken, 1970
Allen, I.D.; Haken, J.K.,
Gas chromatography of homologous esters. Part IV. Influence of stationary phase polarity on retention of unsaturated esters,
J. Chromatogr., 1970, 51, 415-422, https://doi.org/10.1016/S0021-9673(01)96890-6
. [all data]
Germaine and Haken, 1969
Germaine, R.W.; Haken, J.K.,
Gas chromatography of homologous esters. Part 2. Unsaturated esters,
J. Chromatogr., 1969, 43, 43-47, https://doi.org/10.1016/S0021-9673(00)99163-5
. [all data]
Gröbler and Bálizs, 1981
Gröbler, A.; Bálizs, G.,
Investigations on mixed gas chromatographic stationary phases. Part 3: A generalized approximation of retention indices for polar-nonpoalar stationary phase mixtures,
J. Chromatogr. Sci., 1981, 19, 1, 46-51, https://doi.org/10.1093/chromsci/19.1.46
. [all data]
Dufka, Malinsky, et al., 1971
Dufka, O.; Malinsky, J.; Vladyka, J.,
Sorpcni materialy pro plynovou chromatographii - III,
Chemicky promysl., 1971, 21/46, 9, 459-463. [all data]
Anderson, 1968
Anderson, D.G.,
USe of Kovats retention indices and response factors for the qualitative and quantitative analysis of coating solvents,
J. Paint Technol., 1968, 40, 527, 549-557. [all data]
Zenkevich, 2005
Zenkevich, I.G.,
Experimentally measured retention indices., 2005. [all data]
Health Safety Executive, 2000
Health Safety Executive,
MDHS 96 Volatile organic compounds in air - Laboratory method using pumed solid sorbent tubes, solvent desorption and gas chromatography
in Methods for the Determination of Hazardous Substances (MDHS) guidance, Crown, Colegate, Norwich, 2000, 1-24, retrieved from http://www.hse.gov.uk/pubns/mdhs/pdfs/mdhs96.pdf. [all data]
Vinogradov, 2004
Vinogradov, B.A.,
Production, composition, properties and application of essential oils, 2004, retrieved from http://viness.narod.ru. [all data]
Ciccioli, Cecinato, et al., 1994
Ciccioli, P.; Cecinato, A.; Brancaleoni, E.; Brachetti, A.; Frattoni, M.; Sparapani, R.,
Composition and Distribution of Polar and Non-Polar VOCs in Urban, Rural, Forest and Remote Areas,
Eur Commission EUR, 1994, 549-568. [all data]
Ciccioli, Brancaleoni, et al., 1993
Ciccioli, P.; Brancaleoni, E.; Cecinato, A.; Sparapani, R.; Frattoni, M.,
Identification and determination of biogenic and anthropogenic volatile organic compounds in forest areas of Northern and Southern Europe and a remote site of the Himalaya region by high-resolution gas chromatography-mass spectrometry,
J. Chromatogr., 1993, 643, 1-2, 55-69, https://doi.org/10.1016/0021-9673(93)80541-F
. [all data]
Waggott and Davies, 1984
Waggott, A.; Davies, I.W.,
Identification of organic pollutants using linear temperature programmed retention indices (LTPRIs) - Part II, 1984, retrieved from http://dwi.defra.gov.uk/research/completed-research/reports/dwi0383.pdf. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References
- Symbols used in this document:
Cp,gas Constant pressure heat capacity of gas Cp,liquid Constant pressure heat capacity of liquid ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔrH° Enthalpy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.