Pentane, 2-methyl-
- Formula: C6H14
- Molecular weight: 86.1754
- IUPAC Standard InChIKey: AFABGHUZZDYHJO-UHFFFAOYSA-N
- CAS Registry Number: 107-83-5
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Isohexane; 2-Methylpentane; (CH3)2CH(CH2)2CH3; Methyl pentane; UN 1208; UN 2462; Esano isomeri
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Reaction thermochemistry data
Go To: Top, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
By formula: H2 + C6H12 = C6H14
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -116.3 ± 0.43 | kJ/mol | Chyd | Rogers, Crooks, et al., 1987 | liquid phase |
ΔrH° | -115.6 ± 2.2 | kJ/mol | Chyd | Molnar, Rachford, et al., 1984 | liquid phase; solvent: Dioxane |
By formula: H2 + C6H12 = C6H14
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -116.9 ± 0.38 | kJ/mol | Chyd | Rogers, Crooks, et al., 1987 | liquid phase |
ΔrH° | -114. | kJ/mol | Chyd | Turner, Nettleton, et al., 1958 | liquid phase; solvent: Acetic acid |
By formula: H2 + C6H12 = C6H14
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -114.2 ± 0.57 | kJ/mol | Chyd | Rogers, Crooks, et al., 1987 | liquid phase |
ΔrH° | -110. | kJ/mol | Chyd | Turner, Nettleton, et al., 1958 | liquid phase; solvent: Acetic acid |
By formula: 2H2 + C6H10 = C6H14
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -270. ± 0.4 | kJ/mol | Chyd | Roth, Kirmse, et al., 1982 | liquid phase; solvent: Isooctane |
By formula: C6H14 = C6H14
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -5.44 ± 0.88 | kJ/mol | Ciso | Prosen and Rossini, 1941 | liquid phase; Calculated from ΔHc |
By formula: H2 + C6H12 = C6H14
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -126.7 ± 0.43 | kJ/mol | Chyd | Rogers, Crooks, et al., 1987 | liquid phase |
By formula: H2 + C6H12 = C6H14
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -111.6 ± 0.74 | kJ/mol | Chyd | Rogers, Crooks, et al., 1987 | liquid phase |
By formula: C6H14 = C6H14
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 0.92 ± 0.46 | kJ/mol | Eqk | Roganov, Kabo, et al., 1972 | gas phase; At 368 K |
Gas phase ion energetics data
Go To: Top, Reaction thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
LL - Sharon G. Lias and Joel F. Liebman
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
10.04 | EST | Luo and Pacey, 1992 | LL |
9.89 ± 0.15 | EQ | Mautner(Meot-Ner), Sieck, et al., 1981 | LLK |
10.12 | PI | Watanabe, Nakayama, et al., 1962 | RDSH |
Appearance energy determinations
Ion | AE (eV) | Other Products | Method | Reference | Comment |
---|---|---|---|---|---|
C3H6+ | 10.91 ± 0.05 | C3H8 | PI | Steiner, Giese, et al., 1961 | RDSH |
C3H7+ | ~11.35 ± 0.10 | C3H7 | PI | Steiner, Giese, et al., 1961 | RDSH |
C4H8+ | 10.65 ± 0.015 | C2H6 | PI | Steiner, Giese, et al., 1961 | RDSH |
C4H9+ | 10.73 ± 0.02 | C2H5 | PI | Steiner, Giese, et al., 1961 | RDSH |
C5H10+ | 10.835 ± 0.025 | CH4 | PI | Steiner, Giese, et al., 1961 | RDSH |
C5H11+ | 10.865 ± 0.085 | CH3 | PI | Steiner, Giese, et al., 1961 | RDSH |
References
Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Rogers, Crooks, et al., 1987
Rogers, D.W.; Crooks, E.; Dejroongruang, K.,
Enthalpies of hydrogenation of the hexenes,
J. Chem. Thermodyn., 1987, 19, 1209-1215. [all data]
Molnar, Rachford, et al., 1984
Molnar, A.; Rachford, R.; Smith, G.V.; Liu, R.,
Heats of hydrogenation by a simple and rapid flow calorimetric method,
Appl. Catal., 1984, 9, 219-223. [all data]
Turner, Nettleton, et al., 1958
Turner, R.B.; Nettleton, J.E.; Perelman,
Heats of Hydrogenation. VI. Heats of hydrogenation of some substituted ethylenes,
J. Am. Chem. Soc., 1958, 80, 1430-1433. [all data]
Roth, Kirmse, et al., 1982
Roth, W.R.; Kirmse, W.; Hoffmann, W.; Lennartz, H.W.,
Heats of hydrogenation. III. Effect of fluoro substituents on the thermal rearrangement of cyclopropane systems,
Chem. Ber., 1982, 115, 2508-2515. [all data]
Prosen and Rossini, 1941
Prosen, E.J.R.; Rossini, F.D.,
Heats of isomerization of the five hexanes,
J. Res. NBS, 1941, 27, 289-310. [all data]
Roganov, Kabo, et al., 1972
Roganov, G.N.; Kabo, G.Ya.; Andreevskii, D.N.,
Thermodynamics of the isomerization of methylpentanes and methylheptanes,
Neftekhimiya, 1972, 12, 495-500. [all data]
Luo and Pacey, 1992
Luo, Y.-R.; Pacey, P.D.,
Effects of alkyl substitution on ionization energies of alkanes and haloalkanes and on heats of formation of their molecular cations. Part 2. Alkanes and chloro-, bromo- and iodoalkanes,
Int. J. Mass Spectrom. Ion Processes, 1992, 112, 63. [all data]
Mautner(Meot-Ner), Sieck, et al., 1981
Mautner(Meot-Ner), M.; Sieck, L.W.; Ausloos, P.,
Ionization of normal alkanes: Enthalpy, entropy, structural, and isotope effects,
J. Am. Chem. Soc., 1981, 103, 5342. [all data]
Watanabe, Nakayama, et al., 1962
Watanabe, K.; Nakayama, T.; Mottl, J.,
Ionization potentials of some molecules,
J. Quant. Spectry. Radiative Transfer, 1962, 2, 369. [all data]
Steiner, Giese, et al., 1961
Steiner, B.; Giese, C.F.; Inghram, M.G.,
Photoionization of alkanes. Dissociation of excited molecular ions,
J. Chem. Phys., 1961, 34, 189. [all data]
Notes
Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, References
- Symbols used in this document:
AE Appearance energy ΔrH° Enthalpy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.