1,3-Butadiene

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Vibrational and/or electronic energy levels, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas108.8 ± 0.79kJ/molCmProsen, Maron, et al., 1951ALS
Δfgas111.9 ± 0.96kJ/molCcbProsen and Rossini, 1945ALS
Quantity Value Units Method Reference Comment
Δcgas-2540.4 ± 0.75kJ/molCmProsen, Maron, et al., 1951Corresponding Δfgas = 108.8 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
35.0950.Thermodynamics Research Center, 1997p=1 bar. Recommended values are in excellent agreement with experiment and other statistically calculated values [ Sverdlov L.M., 1962, Compton D.A.C., 1976]. Discrepancies with earlier calculations [ Aston J.D., 1946] and [ Godnev I., 1947] amount to 4.7 and 2.7 J/mol*K, respectively, in S(T) and 3.6 and 2.4 J/mol*K in Cp(T).; GT
41.31100.
48.28150.
57.14200.
73.70273.15
79.81298.15
80.27300.
103.44400.
122.09500.
136.51600.
148.04700.
157.67800.
165.92900.
173.101000.
179.361100.
184.841200.
189.641300.
193.851400.
197.541500.

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Vibrational and/or electronic energy levels, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid90.50 ± 0.96kJ/molCcbProsen and Rossini, 1945ALS
Quantity Value Units Method Reference Comment
Δcliquid-2522.1 ± 0.96kJ/molCcbProsen and Rossini, 1945Corresponding Δfliquid = 90.54 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
liquid199.00J/mol*KN/AScott, Meyers, et al., 1945At vapor pressure of 2105 Torr.; DH

Constant pressure heat capacity of liquid

Cp,liquid (J/mol*K) Temperature (K) Reference Comment
123.65298.15Scott, Meyers, et al., 1945T = 15 to 303 K.; DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Vibrational and/or electronic energy levels, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Tboil268.6 ± 0.3KAVGN/AAverage of 10 out of 11 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus164.3 ± 0.2KAVGN/AAverage of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Ttriple164.24KN/AScott, Meyers, et al., 1945Uncertainty assigned by TRC = 0.02 K; TRC
Quantity Value Units Method Reference Comment
Tc425. ± 1.KN/ATsonopoulos and Ambrose, 1996 
Tc425.KN/AMajer and Svoboda, 1985 
Quantity Value Units Method Reference Comment
Pc43.2 ± 1.0barN/ATsonopoulos and Ambrose, 1996 
Quantity Value Units Method Reference Comment
Vc0.221l/molN/ATsonopoulos and Ambrose, 1996 
Quantity Value Units Method Reference Comment
ρc4.53 ± 0.10mol/lN/ATsonopoulos and Ambrose, 1996 
Quantity Value Units Method Reference Comment
Δvap21.47kJ/molN/AMajer and Svoboda, 1985 
Δvap21.1kJ/molN/AReid, 1972See also Prosen and Rossini, 1945, 2.; AC

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
22.47268.7N/AMajer and Svoboda, 1985 
0.08141273.15N/AScott, Meyers, et al., 1945P = 119.95 kPa; DH
23.285.AStephenson and Malanowski, 1987Based on data from 270. to 318. K.; AC
25.7203.AStephenson and Malanowski, 1987Based on data from 193. to 213. K.; AC
23.6261.AStephenson and Malanowski, 1987Based on data from 213. to 276. K.; AC
22.4330.AStephenson and Malanowski, 1987Based on data from 315. to 382. K.; AC
22.9395.AStephenson and Malanowski, 1987Based on data from 380. to 425. K.; AC
23.7256.N/ABoublik, Fried, et al., 1984Based on data from 198. to 271. K. See also Heisig, 1933.; AC
24.7235.N/AVaughan, 1932Based on data from 191. to 249. K. See also Boublik, Fried, et al., 1984.; AC

Enthalpy of vaporization

ΔvapH = A exp(-βTr) (1 − Tr)β
    ΔvapH = Enthalpy of vaporization (at saturation pressure) (kJ/mol)
    Tr = reduced temperature (T / Tc)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A (kJ/mol) β Tc (K) Reference Comment
247. to 296.34.850.2687425.Majer and Svoboda, 1985 

Entropy of vaporization

ΔvapS (J/mol*K) Temperature (K) Reference Comment
280.64273.15Scott, Meyers, et al., 1945P; DH

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
197.7 to 271.73.99798941.662-32.753Heisig, 1933Coefficents calculated by NIST from author's data.

Enthalpy of fusion

ΔfusH (kJ/mol) Temperature (K) Reference Comment
7.9839164.24Scott, Meyers, et al., 1945DH
7.98164.2Acree, 1991AC

Entropy of fusion

ΔfusS (J/mol*K) Temperature (K) Reference Comment
48.61164.24Scott, Meyers, et al., 1945DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Vibrational and/or electronic energy levels, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
B - John E. Bartmess
RCD - Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

1,3-Butadiene + 2Hydrogen = Butane

By formula: C4H6 + 2H2 = C4H10

Quantity Value Units Method Reference Comment
Δr-236.7 ± 0.42kJ/molChydKistiakowsky, Ruhoff, et al., 1936gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -238.8 ± 0.4 kJ/mol; At 355 °K; ALS

C4H5- + Hydrogen cation = 1,3-Butadiene

By formula: C4H5- + H+ = C4H6

Quantity Value Units Method Reference Comment
Δr1672. ± 13.kJ/molG+TSDevisser, Dekoning, et al., 1995gas phase; B
Quantity Value Units Method Reference Comment
Δr1637. ± 13.kJ/molIMRBDevisser, Dekoning, et al., 1995gas phase; B

Sodium ion (1+) + 1,3-Butadiene = (Sodium ion (1+) • 1,3-Butadiene)

By formula: Na+ + C4H6 = (Na+ • C4H6)

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
43.1298.IMREMcMahon and Ohanessian, 2000Anchor alanine=39.89; RCD

(CAS Reg. No. 88032-19-3 • 42949672951,3-Butadiene) + 1,3-Butadiene = CAS Reg. No. 88032-19-3

By formula: (CAS Reg. No. 88032-19-3 • 4294967295C4H6) + C4H6 = CAS Reg. No. 88032-19-3

Quantity Value Units Method Reference Comment
Δr61.5 ± 8.8kJ/molN/ADePuy, Gronert, et al., 1989gas phase; B

1,3-Isobenzofurandione, 3a,4,7,7a-tetrahydro- = 1,3-Butadiene + Maleic anhydride

By formula: C8H8O3 = C4H6 + C4H2O3

Quantity Value Units Method Reference Comment
Δr283.62 ± 0.96kJ/molCmGhitau, Ciopec, et al., 1983solid phase; At 65 to 90°C; ALS

1,3-Butadiene + Sulfur dioxide = 2,3-Dihydrothiophene 1,1-dioxide

By formula: C4H6 + O2S = C4H6O2S

Quantity Value Units Method Reference Comment
Δr-74.9kJ/molEqkMackle and McNally, 1969gas phase; ALS

1,3-Butadiene + Maleic anhydride = 1,3-Isobenzofurandione, 3a,4,7,7a-tetrahydro-

By formula: C4H6 + C4H2O3 = C8H8O3

Quantity Value Units Method Reference Comment
Δr-283.62kJ/molCmGhitau, Ciopec, et al., 1983liquid phase; ALS

1,3-Butadiene + Sulfur dioxide = 2,5-Dihydrothiophene sulfone

By formula: C4H6 + O2S = C4H6O2S

Quantity Value Units Method Reference Comment
Δr-69.0kJ/molEqkMackle and McNally, 1969gas phase; ALS

1,2-Butadiene = 1,3-Butadiene

By formula: C4H6 = C4H6

Quantity Value Units Method Reference Comment
Δr53.47 ± 0.67kJ/molCcbProsen, Maron, et al., 1949gas phase; ALS

Gold ion (1+) + 1,3-Butadiene = (Gold ion (1+) • 1,3-Butadiene)

By formula: Au+ + C4H6 = (Au+ • C4H6)

Quantity Value Units Method Reference Comment
Δr>310.kJ/molIMRBSchroeder, Hrusak, et al., 1995RCD

Henry's Law data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Vibrational and/or electronic energy levels, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference Comment
0.014 QN/A missing citation give several references for the Henry's law constants but don't assign them to specific species.
0.014 LN/A 
0.0144500.LN/A 
0.016 VN/A 

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Vibrational and/or electronic energy levels, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to C4H6+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)9.072 ± 0.007eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)783.4kJ/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity757.6kJ/molN/AHunter and Lias, 1998HL

Ionization energy determinations

IE (eV) Method Reference Comment
9.082 ± 0.004SMallard, Miller, et al., 1983LBLHLM
9.07PEMasclet, Mouvier, et al., 1981LLK
9.09PEKimura, Katsumata, et al., 1981LLK
9.03EIDannacher, Flamme, et al., 1980LLK
9.03PEBieri and Asbrink, 1980LLK
9.03 ± 0.02PEBieri, Burger, et al., 1977LLK
9.0691SMcDiarmid, 1976LLK
9.06PEBrundle and Robin, 1970RDSH
9.06 ± 0.02PIMatthews and Warneck, 1969RDSH
9.09 ± 0.05PEEland, 1969RDSH
9.07 ± 0.02PIParr and Elder, 1968RDSH
9.07PEDewar and Worley, 1968RDSH
~9.2DERDewar and Worley, 1968RDSH
9.18 ± 0.04EIBock and Seidl, 1968RDSH
9.09 ± 0.03EIFranklin and Mogenis, 1967RDSH
9.075 ± 0.005PIBrehm, 1966RDSH
9.07 ± 0.01PIWatanabe, 1954RDSH
9.06 ± 0.01SPrice and Walsh, 1940RDSH
9.03PESchmidt, Schweig, et al., 1976Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
C2H2+15.4 ± 0.1?EIDannacher, Flamme, et al., 1980LLK
C2H2+16.5 ± 0.1?EIFranklin and Mogenis, 1967RDSH
C2H3+15.1 ± 0.1?EIDannacher, Flamme, et al., 1980LLK
C2H3+15.7 ± 0.2?EIFranklin and Mogenis, 1967RDSH
C2H4+12.6 ± 0.1C2H2EIDannacher, Flamme, et al., 1980LLK
C2H4+12.5 ± 0.1C2H2PIBrehm, 1966RDSH
C3H+12.44?EIField, Franklin, et al., 1957RDSH
C3H3+11.3 ± 0.1CH3EIDannacher, Flamme, et al., 1980LLK
C3H3+11.39 ± 0.03CH3PIMatthews and Warneck, 1969RDSH
C3H3+11.40 ± 0.02CH3PIParr and Elder, 1968RDSH
C3H3+11.35 ± 0.05CH3PIBrehm, 1966RDSH
C4H+15.752H2+HEIField, Franklin, et al., 1957RDSH
C4H2+16.87 ± 0.05?EIFranklin and Mogenis, 1967RDSH
C4H3+14.9 ± 0.1H3EIDannacher, Flamme, et al., 1980LLK
C4H3+16.25 ± 0.05H2+HEIFranklin and Mogenis, 1967RDSH
C4H4+13.0 ± 0.1H2EIDannacher, Flamme, et al., 1980LLK
C4H4+13.84 ± 0.07H2EIFranklin and Mogenis, 1967RDSH
C4H5+11.4 ± 0.1HPIDannacher, Flamme, et al., 1980LLK
C4H5+11.56 ± 0.04HPIParr and Elder, 1968RDSH
C4H5+11.39 ± 0.05HPIBrehm, 1966RDSH

De-protonation reactions

C4H5- + Hydrogen cation = 1,3-Butadiene

By formula: C4H5- + H+ = C4H6

Quantity Value Units Method Reference Comment
Δr1672. ± 13.kJ/molG+TSDevisser, Dekoning, et al., 1995gas phase; B
Quantity Value Units Method Reference Comment
Δr1637. ± 13.kJ/molIMRBDevisser, Dekoning, et al., 1995gas phase; B

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Mass spectrum (electron ionization), UV/Visible spectrum, Vibrational and/or electronic energy levels, Gas Chromatography, References, Notes

Data compiled by: Coblentz Society, Inc.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Data compiled by: Pamela M. Chu, Franklin R. Guenther, George C. Rhoderick, and Walter J. Lafferty


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, UV/Visible spectrum, Vibrational and/or electronic energy levels, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
NIST MS number 18901

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


UV/Visible spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Victor Talrose, Eugeny B. Stern, Antonina A. Goncharova, Natalia A. Messineva, Natalia V. Trusova, Margarita V. Efimkina

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

UVVis spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Source Rosenbaum and Symons, 1961
Owner INEP CP RAS, NIST OSRD
Collection (C) 2007 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin INSTITUTE OF ENERGY PROBLEMS OF CHEMICAL PHYSICS, RAS
Source reference RAS UV No. 1478
Instrument Unicam SP 500
Melting point -109
Boiling point -4.4

Vibrational and/or electronic energy levels

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Takehiko Shimanouchi

Symmetry:   C2h     Symmetry Number σ = 2


 Sym.   No   Approximate   Selected Freq.  Infrared   Raman   Comments 
 Species   type of mode   Value   Rating   Value  Phase  Value  Phase

ag 1 CH2 a-str 3087  D  ia 3087 M sln.
ag 2 CH str 3003  D  ia 3003 M sln.
ag 3 CH2 s-str 2992  D  ia 2992 S sln.
ag 4 C=C str 1630  D  ia 1630 VS sln.
ag 5 CH2 scis 1438  D  ia 1438 S sln.
ag 6 CH bend 1280  D  ia 1280 S sln.
ag 7 C-C str 1196  D  ia 1196 S sln.
ag 8 CH2 rock 894  D  ia 894 W sln.
ag 9 CCC deform 512  D  ia 512 S sln.
au 10 CH bend 1013  B 1013.4 VS  ia
au 11 CH2 wag 908  B 907.8 VS  ia
au 12 CH2 twist 522  B 522.2 M  ia
au 13 C-C torsion 162  B 162.3 VW  ia
bg 14 CH bend 976  D  ia 976 W sln.
bg 15 CH2 wag 912  D  ia 912 S sln.
bg 16 CH2 twist 770  D  ia 770 VW sln.
bu 17 CH2 a-str 3101  B 3100.6 S  ia
bu 18 CH str 3055  B 3054.9 S  ia
bu 19 CH2 s-str 2984  B 2984.3 S  ia
bu 20 C=C str 1596  B 1596.0 S  ia
bu 21 CH2 scis 1381  B 1380.7 W  ia
bu 22 CH bend 1294  B 1294.3 W  ia
bu 23 CH2 rock 990  B 989.7 M  ia
bu 24 CCC deform 301  B 300.6 VW  ia

Source: Shimanouchi, 1972

Notes

VSVery strong
SStrong
MMedium
WWeak
VWVery weak
iaInactive
B1~3 cm-1 uncertainty
D6~15 cm-1 uncertainty

Gas Chromatography

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Kovats' RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryBPX-530.400.Aflalaye, Sternberg, et al., 199512. m/0.15 mm/0.25 μm, H2
CapillaryBPX-530.400.Aflalaye, Sternberg, et al., 199512. m/0.15 mm/0.25 μm, H2
CapillaryCP Sil 5 CB20.394.3Do and Raulin, 199225. m/0.15 mm/2. μm, H2
CapillarySE-3060.397.Bredael, 1982Column length: 100. m; Column diameter: 0.5 mm
CapillarySqualane50.385.6Schröder, 1980 
PackedSqualane27.386.Hively and Hinton, 1968He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm
PackedSqualane49.386.Hively and Hinton, 1968He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm
PackedSqualane67.387.Hively and Hinton, 1968He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm
PackedSqualane86.388.Hively and Hinton, 1968He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm
PackedSE-3070.405.Widmer, 1967Diatoport S; Column length: 7.9 m
PackedSqualane26.389.Zulaïca and Guiochon, 1966Column length: 10. m

Kovats' RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryPetrocol DH-100393.Haagen-Smit Laboratory, 1997He; Column length: 100. m; Column diameter: 0.2 mm; Program: 5C(10min) => 5C/min => 50C(48min) => 1.5C/min => 195C(91min)
CapillaryDB-1395.Hoekman, 199360. m/0.32 mm/1.0 μm, He; Program: -40 C for 12 min; -40 - 125 C at 3 deg.min; 125-185 C at 6 deg/min; 185 - 220 C at 20 deg/min; hold 220 C for 2 min

Kovats' RI, polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
PackedCarbowax 20M130.507.Widmer, 1967Diatoport P; Column length: 7.9 m
PackedCarbowax 20M70.487.Widmer, 1967Diatoport P; Column length: 7.9 m

Van Den Dool and Kratz RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryPetrocol DH403.White, Hackett, et al., 1992100. m/0.25 mm/0.5 μm, He, 1. K/min; Tstart: 30. C; Tend: 220. C
PackedSE-30395.Fischer and Kusch, 1990Chromosorb W AW (80-100 mesh), 5. K/min; Column length: 1.5 m; Tstart: 60. C; Tend: 280. C

Van Den Dool and Kratz RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
PackedSE-30395.Peng, Ding, et al., 1988Supelcoport; Chromosorb; Column length: 3.05 m; Program: 40C(5min) => 10C/min => 200C or 250C (60min)

Normal alkane RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillarySqualane70.390.Schomburg, 1966 
PackedMethyl Silicone50.412.Huguet, 1961Nitrogen, Celite C-22; Column length: 2.5 m

Normal alkane RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryPolydimethyl siloxane: CP-Sil 5 CB394.Bramston-Cook, 201360. m/0.25 mm/1.0 μm, Helium, 45. C @ 1.45 min, 3.6 K/min, 210. C @ 2.72 min
CapillaryUltra-ALLOY-5395.Tsuge, Ohtan, et al., 201130. m/0.25 mm/0.25 μm, 40. C @ 2. min, 20. K/min, 320. C @ 13. min
CapillaryOV-101389.Zenkevich, 200525. m/0.20 mm/0.10 μm, N2/He, 6. K/min; Tstart: 50. C; Tend: 250. C
CapillaryOV-101398.Chupalov and Zenkevich, 1996N2, 3. K/min; Column length: 52. m; Column diameter: 0.26 mm; Tstart: 50. C; Tend: 220. C

Normal alkane RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryMethyl Silicone395.Blunden, Aneja, et al., 200560. m/0.32 mm/1.0 μm, Helium; Program: -50 0C (2 min) 8 0C/min -> 200 0C (7.75 min) 25 0C -> 225 0C (8 min)
CapillaryPONA396.Perkin Elmer Instruments, 2002Column length: 100. m; Phase thickness: 0.50 μm; Program: not specified
CapillaryOV-101390.Zenkevich, 1998He; Column length: 25. m; Column diameter: 0.20 mm; Program: not specified
CapillaryOV-101392.Zenkevich, 1998He; Column length: 25. m; Column diameter: 0.20 mm; Program: not specified
CapillarySPB-1393.Flanagan, Streete, et al., 199760. m/0.53 mm/5. μm, He; Program: 40C(6min) => 5C/min => 80C => 10C/min => 200C
PackedSE-30395.Robinson and Odell, 1971N2, Chromosorb W; Column length: 6.1 m; Program: 50C910min) => 20C/min => 90(6min) => 10C/min => 150C(hold)
PackedSqualane404.Robinson and Odell, 1971N2, Embacel; Column length: 3.0 m; Program: 25C(5min) => 2C/min => 35 => 4C/min => 95C(hold)

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Vibrational and/or electronic energy levels, Gas Chromatography, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Prosen, Maron, et al., 1951
Prosen, E.J.; Maron, F.W.; Rossini, F.D., Heats of combustion, formation, and insomerization of ten C4 hydrocarbons, J. Res. NBS, 1951, 46, 106-112. [all data]

Prosen and Rossini, 1945
Prosen, E.J.; Rossini, F.D., Heats of formation and combustion of 1,3-butadiene and styrene, J. Res. NBS, 1945, 34, 59-63. [all data]

Thermodynamics Research Center, 1997
Thermodynamics Research Center, Selected Values of Properties of Chemical Compounds., Thermodynamics Research Center, Texas A&M University, College Station, Texas, 1997. [all data]

Sverdlov L.M., 1962
Sverdlov L.M., Calculation of thermodynamic functions of gaseous 1,3-butadiene from spectroscopic data, Zh. Fiz. Khim., 1962, 36, 2765-2767. [all data]

Compton D.A.C., 1976
Compton D.A.C., Conformations of conjugated hydrocarbons. Part 1. A spectroscopic and thermodynamic study of buta-1,3-diene and 2-methylbuta-1,3-diene, J. Chem. Soc. Perkin Trans. 2, 1976, 1666-1671. [all data]

Aston J.D., 1946
Aston J.D., Thermodynamic properties of gaseous 1,3-butadiene and normal butenes above 25 C. Equilibria in the system 1,3-butadiene, n-butenes, and n-butane, J. Chem. Phys., 1946, 14, 67-79. [all data]

Godnev I., 1947
Godnev I., Thermodynamic functions of divinyl and equilibrium constant of formation of divinyl from alcohol, Zh. Fiz. Khim., 1947, 21, 799-809. [all data]

Scott, Meyers, et al., 1945
Scott, R.B.; Meyers, C.H.; Rands, R.D., Jr.; Brickwedde, F.G.; Bekkedahl, N., Thermodynamic properties of 1,3-butadiene in the solid, liquid, and vapor states, J. Res. NBS, 1945, 35, 39-85. [all data]

Tsonopoulos and Ambrose, 1996
Tsonopoulos, C.; Ambrose, D., Vapor-Liquid Critical Properties of Elements and Compounds. 6. Unsaturated Aliphatic Hydrocarbons, J. Chem. Eng. Data, 1996, 41, 645-656. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Reid, 1972
Reid, Robert C., Handbook on vapor pressure and heats of vaporization of hydrocarbons and related compounds, R. C. Wilhort and B. J. Zwolinski, Texas A Research Foundation. College Station, Texas(1971). 329 pages.$10.00, AIChE J., 1972, 18, 6, 1278-1278, https://doi.org/10.1002/aic.690180637 . [all data]

Prosen and Rossini, 1945, 2
Prosen, E.J.; Rossini, F.D., Heats of formation and combustion of 1,3-butadiene and styrene, J. RES. NATL. BUR. STAN., 1945, 34, 1, 59-17, https://doi.org/10.6028/jres.034.031 . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Boublik, Fried, et al., 1984
Boublik, T.; Fried, V.; Hala, E., The Vapour Pressures of Pure Substances: Selected Values of the Temperature Dependence of the Vapour Pressures of Some Pure Substances in the Normal and Low Pressure Region, 2nd ed., Elsevier, New York, 1984, 972. [all data]

Heisig, 1933
Heisig, G.B., Action of Radon on Some Unsaturated Hydrocarbons. III. Vinylacetylene and Butadiene, J. Am. Chem. Soc., 1933, 55, 6, 2304-2311, https://doi.org/10.1021/ja01333a015 . [all data]

Vaughan, 1932
Vaughan, William E., THE HOMOGENEOUS THERMAL POLYMERIZATION OF 1,3-BUTADIENE, J. Am. Chem. Soc., 1932, 54, 10, 3863-3876, https://doi.org/10.1021/ja01349a008 . [all data]

Acree, 1991
Acree, William E., Thermodynamic properties of organic compounds: enthalpy of fusion and melting point temperature compilation, Thermochimica Acta, 1991, 189, 1, 37-56, https://doi.org/10.1016/0040-6031(91)87098-H . [all data]

Kistiakowsky, Ruhoff, et al., 1936
Kistiakowsky, G.B.; Ruhoff, J.R.; Smith, H.A.; Vaughan, W.E., Heats of organic reactions. IV. Hydrogenation of some dienes and of benzene, J. Am. Chem. Soc., 1936, 58, 146-153. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Devisser, Dekoning, et al., 1995
Devisser, S.P.; Dekoning, L.J.; Vanderhart, W.J.; Nibbering, N.M.M., Chemical properties of butadienyl anions in the gas-phase, Recl. Trav. Chim. Pays-Bas, 1995, 114, 6, 267, https://doi.org/10.1002/recl.19951140603 . [all data]

McMahon and Ohanessian, 2000
McMahon, T.B.; Ohanessian, G., An Experimental and Ab Initio Study of the Nature of the Binding in Gas-Phase Complexes of Sodium Ions, Chem. Eur. J., 2000, 6, 16, 2931, https://doi.org/10.1002/1521-3765(20000818)6:16<2931::AID-CHEM2931>3.0.CO;2-7 . [all data]

DePuy, Gronert, et al., 1989
DePuy, C.H.; Gronert, S.; Barlow, S.E.; Bierbaum, V.M.; Damrauer, R., The Gas Phase Acidities of the Alkanes, J. Am. Chem. Soc., 1989, 111, 6, 1968, https://doi.org/10.1021/ja00188a003 . [all data]

Ghitau, Ciopec, et al., 1983
Ghitau, M.; Ciopec, M.; Pintea, O., Study on Diels-Alder reaction for the synthesis of tetrahydrophthalic anhydride, Rev. Chim. (Bucharest), 1983, 34, 299-305. [all data]

Mackle and McNally, 1969
Mackle, H.; McNally, D.V., Studies in the thermochemistry of sulphones. Part 9 - Thermochemistry of the butadiene and isoprene sulphones, Trans. Faraday Soc., 1969, 65, 1738-1741. [all data]

Prosen, Maron, et al., 1949
Prosen, E.J.; Maron, F.W.; Rossini, F.D., Heat of isomerization of the two butadienes, J. Res. NBS, 1949, 42, 269-275. [all data]

Schroeder, Hrusak, et al., 1995
Schroeder, D.; Hrusak, J.; Hertwig, R.H.; Koch, W.; Schwerdtfeger, P.; Schwarz, H., Experimental and Theoretical Studies of Gold(I) Complexes Au(L)+ (L=H2O, CO, NH3, C2H4, C3H6, C4H6, C6H6, C6F6), Organometallics, 1995, 14, 1, 312, https://doi.org/10.1021/om00001a045 . [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Mallard, Miller, et al., 1983
Mallard, W.G.; Miller, J.H.; Smyth, K.C., The ns Rydberg series of 1,3-trans-butadiene observed using multiphoton ionization, J. Chem. Phys., 1983, 79, 5900. [all data]

Masclet, Mouvier, et al., 1981
Masclet, P.; Mouvier, G.; Bocquet, J.F., Effets electroniques et effets steriques dus a la substitution alcoyle dans les dienes conjugues, J. Chim. Phys., 1981, 78, 99. [all data]

Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S., Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]

Dannacher, Flamme, et al., 1980
Dannacher, J.; Flamme, J.P.; Stadelmann, J.P.; Vogt, J., Unimolecular fragmentations of internal energy selected 1,3-butadiene cations, Chem. Phys., 1980, 51, 189. [all data]

Bieri and Asbrink, 1980
Bieri, G.; Asbrink, L., 30.4-nm He(II) photoelectron spectra of organic molecules, J. Electron Spectrosc. Relat. Phenom., 1980, 20, 149. [all data]

Bieri, Burger, et al., 1977
Bieri, G.; Burger, F.; Heilbronner, E.; Maier, J.P., Valence ionization enrgies of hydrocarbons, Helv. Chim. Acta, 1977, 60, 2213. [all data]

McDiarmid, 1976
McDiarmid, R., On the ultraviolet spectrum of trans-1,3-butadiene, J. Chem. Phys., 1976, 64, 514. [all data]

Brundle and Robin, 1970
Brundle, C.R.; Robin, M.B., Nonplanarity in hexafluorobutadiene as revealed by photoelectron and optical spectroscopy, J. Am. Chem. Soc., 1970, 92, 5550. [all data]

Matthews and Warneck, 1969
Matthews, C.S.; Warneck, P., Heats of formation of CHO+ and C3H3+ by photoionization, J. Chem. Phys. 5, 1969, 1, 854. [all data]

Eland, 1969
Eland, J.H.D., Photoelectron spectra of conjugated hydrocarbons and heteromolecules, Intern. J. Mass Spectrom. Ion Phys., 1969, 2, 471. [all data]

Parr and Elder, 1968
Parr, A.C.; Elder, F.A., Photoionization of 1,3butadiene, 1,2-butadiene, allene, and propyne, J. Chem. Phys., 1968, 49, 2659. [all data]

Dewar and Worley, 1968
Dewar, M.J.S.; Worley, S.D., Ionization potential of cis-1,3-butadiene, J. Chem. Phys., 1968, 49, 2454. [all data]

Bock and Seidl, 1968
Bock, H.; Seidl, H., 'd-Orbital effects' in silicon- substituted π-electron systems. XI. Syntheses and properties of the isomeric bis(trimethylsilyl)-1,3-butadienes, J. Am. Chem. Soc., 1968, 90, 5694. [all data]

Franklin and Mogenis, 1967
Franklin, J.L.; Mogenis, A., An electron impact study of ions from several dienes, J. Phys. Chem., 1967, 71, 2820. [all data]

Brehm, 1966
Brehm, B., Massenspektrometrische Untersuchung der Photoionisation von Molekulen, Z. Naturforsch., 1966, 21a, 196. [all data]

Watanabe, 1954
Watanabe, K., Photoionization and total absorption cross section of gases. I. Ionization potentials of several molecules. Cross sections of NH3 and NO, J. Chem. Phys., 1954, 22, 1564. [all data]

Price and Walsh, 1940
Price, W.C.; Walsh, A.D., The absorption spectra of conjugated dienes in the vacuum ultra-violet (1), Proc. Roy. Soc. (London), 1940, A174, 220. [all data]

Schmidt, Schweig, et al., 1976
Schmidt, H.; Schweig, A.; Anastassiou, A.G.; Wetzel, J.C., The dominant role of hyperconjugation in the 9-oxabicyclo[4.2.1]nona-2,4,7-triene series, Tetrahedron, 1976, 32, 2239. [all data]

Field, Franklin, et al., 1957
Field, F.H.; Franklin, J.L.; Lampe, F.W., Reactions of gaseous ions. II. Acetylene, J. Am. Chem. Soc., 1957, 79, 2665. [all data]

Rosenbaum and Symons, 1961
Rosenbaum, J.; Symons, M.C.R., Unstable intermediates. Part XI. Allylic carbonium ions, J. Chem. Soc., 1961, 1-7. [all data]

Shimanouchi, 1972
Shimanouchi, T., Tables of Molecular Vibrational Frequencies Consolidated Volume I, National Bureau of Standards, 1972, 1-160. [all data]

Aflalaye, Sternberg, et al., 1995
Aflalaye, A.; Sternberg, R.; Raulin, F.; Vidal-Madjar, C., Gas chromatography of Titan's atmosphere. VI. Analysis of low-molecular-mass hydrocarbons and nitriles with BPX5 capillary columns, J. Chromatogr. A, 1995, 708, 2, 283-291, https://doi.org/10.1016/0021-9673(95)00410-O . [all data]

Do and Raulin, 1992
Do, L.; Raulin, F., Gas chromatography of Titan's atmosphere. III. Analysis of low-molecular-weight hydrocarbons and nitriles with a CP-Sil-5 CB WCOT capillary column, J. Chromatogr., 1992, 591, 1-2, 297-301, https://doi.org/10.1016/0021-9673(92)80247-R . [all data]

Bredael, 1982
Bredael, P., Retention indices of hydrocarbons on SE-30, J. Hi. Res. Chromatogr. Chromatogr. Comm., 1982, 5, 6, 325-328, https://doi.org/10.1002/jhrc.1240050610 . [all data]

Schröder, 1980
Schröder, I.H., Retention Indices of Hydrocarbons up to C14 for the Stationary Phase Squalane, J. Hi. Res. Chromatogr. Chromatogr. Comm., 1980, 3, 1, 38-44, https://doi.org/10.1002/jhrc.1240030115 . [all data]

Hively and Hinton, 1968
Hively, R.A.; Hinton, R.E., Variation of the retention index with temperature on squalane substrates, J. Gas Chromatogr., 1968, 6, 4, 203-217, https://doi.org/10.1093/chromsci/6.4.203 . [all data]

Widmer, 1967
Widmer, H., Gas chromatographic identification of hydrocarbons using retention indices, J. Gas Chromatogr., 1967, 5, 10, 506-510, https://doi.org/10.1093/chromsci/5.10.506 . [all data]

Zulaïca and Guiochon, 1966
Zulaïca, J.; Guiochon, G., Analyse des hauts polymères par chromatographie en phase gazeuse de leurs produits de pyrolyse. II. Application à quelques hydrocarbures macromoléculaires purs, Bull. Soc. Chim. Fr., 1966, 4, 1351-1363. [all data]

Haagen-Smit Laboratory, 1997
Haagen-Smit Laboratory, Procedure for the detailed hydrocarbon analysis of gasolines by single column high efficiency (capillary) column gas chromatography, SOP NO. MLD 118, Revision No. 1.1, California Environmental Protection Agency, Air Resources Board, El Monte, California, 1997, 22. [all data]

Hoekman, 1993
Hoekman, S.K., Improved gas chromatography procedure for speciated hydrocarbon measurements of vehicle emissions, J. Chromatogr., 1993, 639, 2, 239-253, https://doi.org/10.1016/0021-9673(93)80260-F . [all data]

White, Hackett, et al., 1992
White, C.M.; Hackett, J.; Anderson, R.R.; Kail, S.; Spock, P.S., Linear temperature programmed retention indices of gasoline range hydrocarbons and chlorinated hydrocarbons on cross-linked polydimethylsiloxane, J. Hi. Res. Chromatogr., 1992, 15, 2, 105-120, https://doi.org/10.1002/jhrc.1240150211 . [all data]

Fischer and Kusch, 1990
Fischer, W.G.; Kusch, P., Automatic sampler for Curie-point pyrolysis-gas chromatography with on-column introduction of pyrolysates, J. Chromatogr., 1990, 518, 9-19, https://doi.org/10.1016/S0021-9673(01)93158-9 . [all data]

Peng, Ding, et al., 1988
Peng, C.T.; Ding, S.F.; Hua, R.L.; Yang, Z.C., Prediction of Retention Indexes I. Structure-Retention Index Relationship on Apolar Columns, J. Chromatogr., 1988, 436, 137-172, https://doi.org/10.1016/S0021-9673(00)94575-8 . [all data]

Schomburg, 1966
Schomburg, G., Gaschromatographische Retentionsdaten und Struktur Chemischer Verbindungen. II. Methylverzweigungen und Doppelbindungen in Offenkettigen Kohlenwasserstoffen, J. Chromatogr., 1966, 23, 1-17, https://doi.org/10.1016/S0021-9673(01)98652-2 . [all data]

Huguet, 1961
Huguet, M., Kovats retention indices in the qualitative analysis of light hydrocarbons by gas chromatography, Journees internationales d'etude des methodes de separation immediate et de chromatographie, 1961, 69. [all data]

Bramston-Cook, 2013
Bramston-Cook, R., Kovats indices for C2-C13 hydrocarbons and selected oxygenated/halocarbons with 100 % dimethylpolysiloxane columns, 2013, retrieved from http://lotusinstruments.com/monographs/List .... [all data]

Tsuge, Ohtan, et al., 2011
Tsuge, S.; Ohtan, H.; Watanabe, C., Pyrolysis - GC/MS Data Book of Synthetic Polymers, Elsevier, 2011, 420. [all data]

Zenkevich, 2005
Zenkevich, I.G., Experimentally measured retention indices., 2005. [all data]

Chupalov and Zenkevich, 1996
Chupalov, A.A.; Zenkevich, I.G., Chromatographic Characterization of Structural Transformations of Organic Compounds in Diels-Alder Reaction. Aliphatic Dienes and Dienophyls, Zh. Org. Khim., 1996, 32, 6, 675-684. [all data]

Blunden, Aneja, et al., 2005
Blunden, J.; Aneja, V.P.; Lonneman, W.A., Characterization of non-methane volatile organic compounds at swine facilities in eastern North Carolina, Atm. Environ., 2005, 39, 36, 6707-6718, https://doi.org/10.1016/j.atmosenv.2005.03.053 . [all data]

Perkin Elmer Instruments, 2002
Perkin Elmer Instruments, Detailed hydrocarbon analysis (DHAX) Model 4015, 2002, retrieved from http://www.perkinelmer.com/instruments. [all data]

Zenkevich, 1998
Zenkevich, I.G., Application of Methods of Molecular Dynamics in Chromato-Spectral Identification of ISomeric Products of Organic reactions (in Russian), Zh. Org. Khim., 1998, 34, 10, 1463-1470. [all data]

Flanagan, Streete, et al., 1997
Flanagan, R.J.; Streete, P.J.; Ramsey, J.D., Volatile Substance Abuse, UNODC Technical Series, No 5, United Nations, Office on Drugs and Crime, Vienna International Centre, PO Box 500, A-1400 Vienna, Austria, 1997, 56, retrieved from http://www.odccp.org/pdf/technicalseries1997-01-011.pdf. [all data]

Robinson and Odell, 1971
Robinson, P.G.; Odell, A.L., A system of standard retention indices and its uses. The characterisation of stationary phases and the prediction of retention indices, J. Chromatogr., 1971, 57, 1-10, https://doi.org/10.1016/0021-9673(71)80001-8 . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Vibrational and/or electronic energy levels, Gas Chromatography, References