1-Butene

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-0.63 ± 0.79kJ/molCmProsen, Maron, et al., 1951ALS
Quantity Value Units Method Reference Comment
Δcgas-2716.8 ± 0.75kJ/molCmProsen, Maron, et al., 1951Corresponding Δfgas = -0.54 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
41.0550.Thermodynamics Research Center, 1997p=1 bar. Calculated values of the thermodynamic functions [ Aston J.D., 1946, Kilpatrick J.E., 1946, Durig J.R., 1980, Thermodynamics Research Center, 1997] show some disagreement between authors as well as with experimental data [ Aston J.D., 1946, 2, Wacker P.F., 1947] (up to 3-4 J/mol*K). More reliable experimental data are required to solve available inconsistency.; GT
48.05100.
56.41150.
65.19200.
80.03273.15
85.56298.15
85.98300.
108.48400.
129.06500.
146.75600.
161.88700.
174.91800.
186.21900.
196.021000.
204.551100.
211.961200.
218.411300.
224.021400.
228.911500.
238.641750.
245.702000.
250.922250.
254.852500.
257.852750.
260.163000.

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
89.58 ± 0.06313.55Wacker P.F., 1947GT
101.21 ± 0.07363.25

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
liquid229.06J/mol*KN/ATakeda, Yamamuro, et al., 1991 
liquid227.0J/mol*KN/AChao, Hall, et al., 1983 
liquid213.84J/mol*KN/AAston, Fink, et al., 1946 

Constant pressure heat capacity of liquid

Cp,liquid (J/mol*K) Temperature (K) Reference Comment
128.96298.15Takeda, Yamamuro, et al., 1991T = 5 to 300 K.
118.298.15Chao, Hall, et al., 1983T = 12 to 360 K.
128.6294.Schlinger and Sage, 1949T = 294 to 378 K. Cp given as 0.548 Btu/lb*R at 70°F at bubble point.
119.45260.Aston, Fink, et al., 1946T = 11.5 to 260 K.
119.16253.4Todd and Parks, 1936T = 81 to 253 K. Value is unsmoothed experimental datum.

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
DH - Eugene S. Domalski and Elizabeth D. Hearing
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Quantity Value Units Method Reference Comment
Tboil266.8 ± 0.5KAVGN/AAverage of 15 out of 17 values; Individual data points
Quantity Value Units Method Reference Comment
Ttriple87.800KN/ATakeda, Yamamuro, et al., 1991, 2Uncertainty assigned by TRC = 0.005 K; TRC
Ttriple87.82KN/AChao, Hall, et al., 1983, 2Uncertainty assigned by TRC = 0.02 K; TRC
Ttriple87.8KN/AAston, Finke, et al., 1946Uncertainty assigned by TRC = 0.05 K; TRC
Ttriple87.83KN/AAston, Finke, et al., 1946Uncertainty assigned by TRC = 0.05 K; TRC
Quantity Value Units Method Reference Comment
Tc419.5 ± 0.5KN/ATsonopoulos and Ambrose, 1996 
Tc419.6KN/AMajer and Svoboda, 1985 
Tc417.15KN/ACoffin and Maass, 1928Uncertainty assigned by TRC = 2. K; TRC
Quantity Value Units Method Reference Comment
Pc40.2 ± 0.5barN/ATsonopoulos and Ambrose, 1996 
Quantity Value Units Method Reference Comment
Vc0.2408l/molN/ATsonopoulos and Ambrose, 1996 
Quantity Value Units Method Reference Comment
ρc4.15 ± 0.05mol/lN/ATsonopoulos and Ambrose, 1996 
Quantity Value Units Method Reference Comment
Δvap20.88kJ/molN/AMajer and Svoboda, 1985 
Δvap20.1kJ/molN/AReid, 1972AC

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
21.866266.91N/AAston, Fink, et al., 1946P = 101.325 kPa; DH
22.07266.9N/AMajer and Svoboda, 1985 
23.3259.AStephenson and Malanowski, 1987Based on data from 200. to 274. K.; AC
28.3177.AStephenson and Malanowski, 1987Based on data from 126. to 192. K.; AC
22.8282.AStephenson and Malanowski, 1987Based on data from 267. to 345. K.; AC
22.0357.AStephenson and Malanowski, 1987Based on data from 342. to 411. K.; AC
22.5282.AStephenson and Malanowski, 1987Based on data from 267. to 411. K.; AC
23.701202.CAston, Fink, et al., 1946ALS
25.3202.N/AAston, Fink, et al., 1946AC
24.5219.N/AAston, Fink, et al., 1946AC
23.3242.N/AAston, Fink, et al., 1946AC
21.9267.N/AAston, Fink, et al., 1946AC
23.2258.N/ALamb and Roper, 1940Based on data from 216. to 273. K. See also Boublik, Fried, et al., 1984.; AC

Enthalpy of vaporization

ΔvapH = A exp(-αTr) (1 − Tr)β
    ΔvapH = Enthalpy of vaporization (at saturation pressure) (kJ/mol)
    Tr = reduced temperature (T / Tc)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) 203. to 378.
A (kJ/mol) 32.51
α 0.0052
β 0.38
Tc (K) 419.6
ReferenceMajer and Svoboda, 1985

Entropy of vaporization

ΔvapS (J/mol*K) Temperature (K) Reference Comment
81.92266.91Aston, Fink, et al., 1946P; DH

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
195.7 to 269.44.246961099.207-8.256Coffin and Maass, 1928, 2Coefficents calculated by NIST from author's data.

Enthalpy of fusion

ΔfusH (kJ/mol) Temperature (K) Reference Comment
3.958687.81Takeda, Yamamuro, et al., 1991DH
3.84887.82Chao, Hall, et al., 1983DH
3.84987.82Aston, Fink, et al., 1946DH
3.8587.8Domalski and Hearing, 1996AC

Entropy of fusion

ΔfusS (J/mol*K) Temperature (K) Reference Comment
45.0987.81Takeda, Yamamuro, et al., 1991DH
43.887.82Chao, Hall, et al., 1983DH
43.8387.82Aston, Fink, et al., 1946DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
B - John E. Bartmess

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

1-Butene = 2-Butene, (E)-

By formula: C4H8 = C4H8

Quantity Value Units Method Reference Comment
Δr-12.6 ± 0.84kJ/molEqkMeyer and Stroz, 1972gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -11.0 kJ/mol; At 300 K; ALS
Δr-12.4 ± 1.7kJ/molEqkHappel, Hnatow, et al., 1971gas phase; ALS
Δr-12.7kJ/molEqkMaccoll and Ross, 1965gas phase; GC; ALS
Δr-11.7 ± 0.84kJ/molEqkGolden, Egger, et al., 1964gas phase; ALS
Δr-11.5kJ/molCisoLevanova and Andreevskii, 1964gas phase; At 420.3 K; ALS

C4H7- + Hydrogen cation = 1-Butene

By formula: C4H7- + H+ = C4H8

Quantity Value Units Method Reference Comment
Δr1724. ± 8.4kJ/molBranDePuy, Gronert, et al., 1989gas phase; B
Δr1729. ± 20.kJ/molBranPeerboom, Rademaker, et al., 1992gas phase; B
Quantity Value Units Method Reference Comment
Δr1690. ± 8.8kJ/molH-TSDePuy, Gronert, et al., 1989gas phase; B
Δr1695. ± 21.kJ/molH-TSPeerboom, Rademaker, et al., 1992gas phase; B

1-Butene + Bromine = Butane, 1,2-dibromo-

By formula: C4H8 + Br2 = C4H8Br2

Quantity Value Units Method Reference Comment
Δr-120.9kJ/molCmLister, 1941gas phase; Heat of bromination at 300 K; ALS
Δr-123.2 ± 0.84kJ/molCmConn, Kistiakowsky, et al., 1938gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -123.8 ± 0.84 kJ/mol; At 355 °K; ALS

Hydrogen bromide + 1-Butene = Butane, 2-bromo-

By formula: HBr + C4H8 = C4H9Br

Quantity Value Units Method Reference Comment
Δr-83.85 ± 0.50kJ/molCmLacher, Billings, et al., 1952gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -84.3 ± 7.5 kJ/mol; Heat of hydrobromination at 367 K; ALS

C4H7- + Hydrogen cation = 1-Butene

By formula: C4H7- + H+ = C4H8

Quantity Value Units Method Reference Comment
Δr1707. ± 15.kJ/molCIDTGraul and Squires, 1990gas phase; B
Quantity Value Units Method Reference Comment
Δr1674. ± 15.kJ/molH-TSGraul and Squires, 1990gas phase; B

1-Butene = 2-Butene, (Z)-

By formula: C4H8 = C4H8

Quantity Value Units Method Reference Comment
Δr-10.6 ± 2.1kJ/molEqkHappel, Hnatow, et al., 1971gas phase; ALS
Δr-8.16kJ/molCisoLevanova and Andreevskii, 1964gas phase; At 420.3 K; ALS

1,2-Diiodobutane = 1-Butene + Iodine

By formula: C4H8I2 = C4H8 + I2

Quantity Value Units Method Reference Comment
Δr50.2 ± 6.3kJ/molCmCline and Kistiakowsky, 1937gas phase; Heat of formation derived by Cox and Pilcher, 1970; ALS

1-Butene + Hydrogen = Butane

By formula: C4H8 + H2 = C4H10

Quantity Value Units Method Reference Comment
Δr-125.9 ± 0.42kJ/molChydKistiakowsky, Ruhoff, et al., 1935gas phase; At 355 °K; ALS

Butane, 2-chloro- = 1-Butene + Hydrogen chloride

By formula: C4H9Cl = C4H8 + HCl

Quantity Value Units Method Reference Comment
Δr75.31kJ/molEqkLevanova and Andreevskii, 1964gas phase; At 420 K; ALS

1-Butene + Iodine = 1,2-Diiodobutane

By formula: C4H8 + I2 = C4H8I2

Quantity Value Units Method Reference Comment
Δr-50.2 ± 6.3kJ/molCmCline and Kistiakowsky, 1937gas phase; ALS

Phenol, 2-(1-methylpropyl)- = 1-Butene + Phenol

By formula: C10H14O = C4H8 + C6H6O

Quantity Value Units Method Reference Comment
Δr77.8kJ/molCmKukui, Potolovskii, et al., 1973liquid phase; ALS

Phenol, 4-(1-methylpropyl)- = 1-Butene + Phenol

By formula: C10H14O = C4H8 + C6H6O

Quantity Value Units Method Reference Comment
Δr82.8kJ/molCmKukui, Potolovskii, et al., 1973liquid phase; ALS

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
L - Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to C4H8+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)9.55 ± 0.06eVN/AN/AL

Ionization energy determinations

IE (eV) Method Reference Comment
9.55 ± 0.06PIPECOVan der Meij, Van Eck, et al., 1989LL
9.57PITraeger, 1986LBLHLM
9.58PITraeger, 1984LBLHLM
9.62 ± 0.05EIHolmes and Lossing, 1983LBLHLM
9.59 ± 0.02PIWood and Taylor, 1979LLK
9.63 ± 0.02PEBieri, Burger, et al., 1977LLK
9.625 ± 0.003PEMasclet, Grosjean, et al., 1973LLK
9.58EILossing, 1972LLK
9.59PEDewar and Worley, 1969RDSH
9.62CICermak, 1968RDSH
9.61 ± 0.02PISteiner, Giese, et al., 1961RDSH
9.58 ± 0.01PIWatanabe, 1957RDSH
9.77 ± 0.01PEKrause, Taylor, et al., 1978Vertical value; LLK
10.0PEWhite, Carlson, et al., 1974Vertical value; LLK
9.72PEMollere, Bock, et al., 1972Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
CH3+14.1C3H5EISenSharma and Franklin, 1973LLK
C2H3+13.6?EIOmura, 1962RDSH
C2H4+11.65 ± 0.06C2H4PIPECOVan der Meij, Van Eck, et al., 1989LL
C2H4+11.7 ± 0.2?EIMeisels, Park, et al., 1970RDSH
C2H5+14.22 ± 0.06C2H3PIPECOVan der Meij, Van Eck, et al., 1989LL
C3H3+14.07 ± 0.10H2+CH3PIPECOVan der Meij, Van Eck, et al., 1989LL
C3H3+13.82?EIOmura, 1961RDSH
C3H5+11.36 ± 0.06CH3PIPECOVan der Meij, Van Eck, et al., 1989LL
C3H5+11.20CH3PITraeger, 1984LBLHLM
C3H5+11.8CH3EISenSharma and Franklin, 1973LLK
C3H5+11.28CH3EILossing, 1971LLK
C4H5+14.33 ± 0.07H2+HPIPECOVan der Meij, Van Eck, et al., 1989LL
C4H7+11.17 ± 0.06HPIPECOVan der Meij, Van Eck, et al., 1989LL
C4H7+11.13HPITraeger, 1986LBLHLM
C4H7+11.26HEILossing, 1972LLK

De-protonation reactions

C4H7- + Hydrogen cation = 1-Butene

By formula: C4H7- + H+ = C4H8

Quantity Value Units Method Reference Comment
Δr1724. ± 8.4kJ/molBranDePuy, Gronert, et al., 1989gas phase; B
Δr1729. ± 20.kJ/molBranPeerboom, Rademaker, et al., 1992gas phase; B
Quantity Value Units Method Reference Comment
Δr1690. ± 8.8kJ/molH-TSDePuy, Gronert, et al., 1989gas phase; B
Δr1695. ± 21.kJ/molH-TSPeerboom, Rademaker, et al., 1992gas phase; B

C4H7- + Hydrogen cation = 1-Butene

By formula: C4H7- + H+ = C4H8

Quantity Value Units Method Reference Comment
Δr1707. ± 15.kJ/molCIDTGraul and Squires, 1990gas phase; B
Quantity Value Units Method Reference Comment
Δr1674. ± 15.kJ/molH-TSGraul and Squires, 1990gas phase; B

Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
NIST MS number 18918

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Prosen, Maron, et al., 1951
Prosen, E.J.; Maron, F.W.; Rossini, F.D., Heats of combustion, formation, and insomerization of ten C4 hydrocarbons, J. Res. NBS, 1951, 46, 106-112. [all data]

Thermodynamics Research Center, 1997
Thermodynamics Research Center, Selected Values of Properties of Chemical Compounds., Thermodynamics Research Center, Texas A&M University, College Station, Texas, 1997. [all data]

Aston J.D., 1946
Aston J.D., Thermodynamic properties of gaseous 1,3-butadiene and normal butenes above 25 C. Equilibria in the system 1,3-butadiene, n-butenes, and n-butane, J. Chem. Phys., 1946, 14, 67-79. [all data]

Kilpatrick J.E., 1946
Kilpatrick J.E., Heat content, free energy function, entropy, and heat capacity of ethylene, propylene, and the four butenes to 1500 K, J. Res. Nat. Bur. Stand, 1946, 37, 163-171. [all data]

Durig J.R., 1980
Durig J.R., Spectroscopic and thermodynamic study of conformational properties and torsional potential functions of 1-butene, J. Phys. Chem., 1980, 84, 773-781. [all data]

Aston J.D., 1946, 2
Aston J.D., The heat capacity and entropy, heats of fusion and vaporization and the vapor pressure of butene-1. The zero point entropy of the glass. The entropy of the gas from molecular data, J. Am. Chem. Soc., 1946, 68, 52-57. [all data]

Wacker P.F., 1947
Wacker P.F., Heat capacities of gaseous oxygen, isobutane, and 1-butene from -30 to +90 C, J. Res. Nat. Bur. Stand., 1947, 38, 651-659. [all data]

Takeda, Yamamuro, et al., 1991
Takeda, K.; Yamamuro, O.; Suga, H., Thermodynamic study of 1-butene. Exothermic and endothermic enthalpy relaxations near the glass transition, J. Phys. Chem. Solids, 1991, 22, 607-615. [all data]

Chao, Hall, et al., 1983
Chao, J.; Hall, K.R.; Yao, J.M., Thermodynamic properties of simple alkenes, Thermochim. Acta, 1983, 64(3), 285-303. [all data]

Aston, Fink, et al., 1946
Aston, J.G.; Fink, H.L.; Bestul, A.B.; Pace, E.L.; Szasz, G.J., The heat capacity and entropy, heats of fusion and vaporization and the vapor pressure of butene-1. The zero point entropy of the glass. The entropy of the gas from molecular data, J. Am. Chem. Soc., 1946, 68, 52-57. [all data]

Schlinger and Sage, 1949
Schlinger, W.G.; Sage, B.H., Isobaric heat capacity of 1-butene and 1-pentene at bubble point, Ind. Eng. Chem., 1949, 41, 1779-1782. [all data]

Todd and Parks, 1936
Todd, S.S.; Parks, G.S., Thermal data on organic compounds. XV. Some heat capacity, entropy and free energy data for the isomeric butenes, J. Am. Chem. Soc., 1936, 58, 134-137. [all data]

Takeda, Yamamuro, et al., 1991, 2
Takeda, K.; Yamamuro, O.; Suga, H., Thermodynamic study of 1-butene. Exothermic and endothermic enthalpy relaxations near the glass transition, J. Phys. Chem. Solids, 1991, 52, 607. [all data]

Chao, Hall, et al., 1983, 2
Chao, J.; Hall, K.R.; Yao, J.M., Thermodynamic Properties of Simple Alkenes, Thermochim. Acta, 1983, 64, 285. [all data]

Aston, Finke, et al., 1946
Aston, J.G.; Finke, H.L.; Bestul, A.B.; Pace, E.L.; Szasz, G.J., The Heat Capacity and Entropy, Heats of Fusion and Vaporization and the Vapor Pressure of Butene-1. The Zero Point Entropy of the Glass. The Entropy of the Gas from Molecular Data, J. Am. Chem. Soc., 1946, 68, 52. [all data]

Tsonopoulos and Ambrose, 1996
Tsonopoulos, C.; Ambrose, D., Vapor-Liquid Critical Properties of Elements and Compounds. 6. Unsaturated Aliphatic Hydrocarbons, J. Chem. Eng. Data, 1996, 41, 645-656. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Coffin and Maass, 1928
Coffin, C.C.; Maass, O., The Preparation and Physical Properties of α-,β- and γ-Butylene and Normal and Isobutane, J. Am. Chem. Soc., 1928, 50, 1427-37. [all data]

Reid, 1972
Reid, Robert C., Handbook on vapor pressure and heats of vaporization of hydrocarbons and related compounds, R. C. Wilhort and B. J. Zwolinski, Texas A Research Foundation. College Station, Texas(1971). 329 pages.$10.00, AIChE J., 1972, 18, 6, 1278-1278, https://doi.org/10.1002/aic.690180637 . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Lamb and Roper, 1940
Lamb, Arthur B.; Roper, Edwin E., The Vapor Pressures of Certain Unsaturated Hydrocarbons, J. Am. Chem. Soc., 1940, 62, 4, 806-814, https://doi.org/10.1021/ja01861a032 . [all data]

Boublik, Fried, et al., 1984
Boublik, T.; Fried, V.; Hala, E., The Vapour Pressures of Pure Substances: Selected Values of the Temperature Dependence of the Vapour Pressures of Some Pure Substances in the Normal and Low Pressure Region, 2nd ed., Elsevier, New York, 1984, 972. [all data]

Coffin and Maass, 1928, 2
Coffin, C.C.; Maass, O., The Preparation and Physical Properties of α, β- and γ-Butylene and Normal and Isobutane, J. Am. Chem. Soc., 1928, 50, 5, 1427-1437, https://doi.org/10.1021/ja01392a028 . [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Meyer and Stroz, 1972
Meyer, E.F.; Stroz, D.G., Thermodynamics of n-butene isomerization, J. Am. Chem. Soc., 1972, 94, 6344-6347. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Happel, Hnatow, et al., 1971
Happel, J.; Hnatow, M.A.; Mezaki, R., Isomerization equilibrium constants of n-butenes, J. Chem. Eng. Data, 1971, 16, 206-209. [all data]

Maccoll and Ross, 1965
Maccoll, A.; Ross, R.A., The hydrogen bromide catalyzed isomerization of n-butenes. I. equilibrium values, J. Am. Chem. Soc., 1965, 87, 1169-1170. [all data]

Golden, Egger, et al., 1964
Golden, D.M.; Egger, K.W.; Benson, S.W., Iodine-catalyzed isomerization of olefins. I. Thermodynamics data from equilibrium studies of positional and geometrical isomerization of 1-butene and 2-butene, J. Am. Chem. Soc., 1964, 86, 5416-5420. [all data]

Levanova and Andreevskii, 1964
Levanova, S.V.; Andreevskii, D.N., The equilibrium of 2-chlorobutane dehydrochlorination, Neftekhimiya, 1964, 4, 329-336. [all data]

DePuy, Gronert, et al., 1989
DePuy, C.H.; Gronert, S.; Barlow, S.E.; Bierbaum, V.M.; Damrauer, R., The Gas Phase Acidities of the Alkanes, J. Am. Chem. Soc., 1989, 111, 6, 1968, https://doi.org/10.1021/ja00188a003 . [all data]

Peerboom, Rademaker, et al., 1992
Peerboom, R.A.L.; Rademaker, G.J.; Dekoning, L.J.; Nibbering, N.M.M., Stabilization of Cycloalkyl Carbanions in the Gas Phase, Rapid Commun. Mass Spectrom., 1992, 6, 6, 394, https://doi.org/10.1002/rcm.1290060608 . [all data]

Lister, 1941
Lister, M.W., Heats of organic reactions. X. Heats of bromination of cyclic olefins, J. Am. Chem. Soc., 1941, 63, 143-149. [all data]

Conn, Kistiakowsky, et al., 1938
Conn, J.B.; Kistiakowsky, G.B.; Smith, E.A., Heats of organic reactions. VII. Addition of halogens to olefins, J. Am. Chem. Soc., 1938, 60, 2764-2771. [all data]

Lacher, Billings, et al., 1952
Lacher, J.R.; Billings, T.J.; Campion, D.E., Vapor phase heats of hydrobromination of the isomeric butenes, J. Am. Chem. Soc., 1952, 74, 5291-52. [all data]

Graul and Squires, 1990
Graul, S.T.; Squires, R.R., Gas-Phase Acidities Derived from Threshold Energies for Activated Reactions, J. Am. Chem. Soc., 1990, 112, 7, 2517, https://doi.org/10.1021/ja00163a007 . [all data]

Cline and Kistiakowsky, 1937
Cline, J.E.; Kistiakowsky, G.B., The gaseous equilibrium of 1,2-diiodobutane, butene-1 and iodine, J. Chem. Phys., 1937, 5, 990. [all data]

Kistiakowsky, Ruhoff, et al., 1935
Kistiakowsky, G.B.; Ruhoff, J.R.; Smith, H.A.; Vaughan, W.E., Heats of organic reactions. II. Hydrogenation of some simpler olefinic hydrocarbons, J. Am. Chem. Soc., 1935, 57, 876-882. [all data]

Kukui, Potolovskii, et al., 1973
Kukui, N.M.; Potolovskii, L.A.; Vasileva, V.N., Thermochemical and thermodynamic calculation of the alkylation of phenol by normal α-olefins, Khim. Tekhnol. Topl. Masel, 1973, 18, 10-13. [all data]

Van der Meij, Van Eck, et al., 1989
Van der Meij, C.E.; Van Eck, J.; Niehaus, A., The decomposition of C4H8 complexes at controlled internal energies, Chem. Phys., 1989, 130, 325. [all data]

Traeger, 1986
Traeger, J.C., Heat of formation for the 1-methylallyl cation by photoionization mass spectrometry, J. Phys. Chem., 1986, 90, 4114. [all data]

Traeger, 1984
Traeger, J.C., A study of the allyl cation thermochemistry by photoionization mass spectrometry, Int. J. Mass Spectrom. Ion Processes, 1984, 58, 259. [all data]

Holmes and Lossing, 1983
Holmes, J.L.; Lossing, F.P., The need for adequate thermochemical data for the interpretation of fragmentation mechanisms and ion structure assignments, Int. J. Mass Spectrom. Ion Phys., 1983, 47, 133. [all data]

Wood and Taylor, 1979
Wood, K.V.; Taylor, J.W., A photoionization mass spectrometric study of autoionization in ethylene and trans-2-butene, Int. J. Mass Spectrom. Ion Phys., 1979, 30, 307. [all data]

Bieri, Burger, et al., 1977
Bieri, G.; Burger, F.; Heilbronner, E.; Maier, J.P., Valence ionization enrgies of hydrocarbons, Helv. Chim. Acta, 1977, 60, 2213. [all data]

Masclet, Grosjean, et al., 1973
Masclet, P.; Grosjean, D.; Mouvier, G., Alkene ionization potentials. Part I. Quantitative determination of alkyl group structural effects, J. Electron Spectrosc. Relat. Phenom., 1973, 2, 225. [all data]

Lossing, 1972
Lossing, F.P., Free radicals by mass spectrometry. XLV. Ionization potentials and heats of formation of C3H3, C3H5, and C4H7 radicals and ions, Can. J. Chem., 1972, 50, 3973. [all data]

Dewar and Worley, 1969
Dewar, M.J.S.; Worley, S.D., Photoelectron spectra of molecules. I. Ionization potentials of some organic molecules and their interpretation, J. Chem. Phys., 1969, 50, 654. [all data]

Cermak, 1968
Cermak, V., Penning ionization electron spectroscopy, Advan. Mass Spectrom., 1968, 4, 697. [all data]

Steiner, Giese, et al., 1961
Steiner, B.; Giese, C.F.; Inghram, M.G., Photoionization of alkanes. Dissociation of excited molecular ions, J. Chem. Phys., 1961, 34, 189. [all data]

Watanabe, 1957
Watanabe, K., Ionization potentials of some molecules, J. Chem. Phys., 1957, 26, 542. [all data]

Krause, Taylor, et al., 1978
Krause, D.A.; Taylor, J.W.; Fenske, R.F., An analysis of the effects of alkyl substituents on the ionization potentials of n-alkenes, J. Am. Chem. Soc., 1978, 100, 718. [all data]

White, Carlson, et al., 1974
White, R.M.; Carlson, T.A.; Spears, D.P., Angular distribution of the photoelectron spectra for ethylene, propylene, butene and butadiene, J. Electron Spectrosc. Relat. Phenom., 1974, 3, 59. [all data]

Mollere, Bock, et al., 1972
Mollere, P.; Bock, H.; Becker, G.; Fritz, G., Photoelectron spectra and molecular properties. XV. The effects of α- and β-silyl substituents on π-systems, J. Organomet. Chem., 1972, 46, 89. [all data]

SenSharma and Franklin, 1973
SenSharma, D.K.; Franklin, J.L., Heat of formation of free radicals by mass spectrometry, J. Am. Chem. Soc., 1973, 95, 6562. [all data]

Omura, 1962
Omura, I., Study on unimolecular decomposition of excited olefin ions, Bull. Chem. Soc. Japan, 1962, 35, 1845. [all data]

Meisels, Park, et al., 1970
Meisels, G.G.; Park, J.Y.; Giessner, B.G., Ionization and dissociation of C4H8 isomers, J. Am. Chem. Soc., 1970, 92, 254. [all data]

Omura, 1961
Omura, I., Mass spectra at low ionizing voltage and bond dissociation energies of molecular ions from hydrocarbons, Bull. Chem. Soc. Japan, 1961, 34, 1227. [all data]

Lossing, 1971
Lossing, F.P., Free radicals by mass spectrometry. XLIII. Ionization potentials and ionic heats of formation for vinyl, allyl, and benzyl radicals, Can. J. Chem., 1971, 49, 357. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), References