Butane

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase ion energetics data

Go To: Top, Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
L - Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

Quantity Value Units Method Reference Comment
IE (evaluated)10.53 ± 0.02eVN/AN/AL

Ionization energy determinations

IE (eV) Method Reference Comment
10.57ESTLuo and Pacey, 1992LL
10.53 ± 0.10EVALLias, 1982LBLHLM
10.35 ± 0.15EQMautner(Meot-Ner), Sieck, et al., 1981LLK
10.6 ± 0.1PEBieri, Burger, et al., 1977LLK
10.61EQLias, Ausloos, et al., 1976LLK
10.87 ± 0.05EIFlesch and Svec, 1973LLK
10.89EIMatsumoto, Taniguchi, et al., 1970RDSH
10.67PIDewar and Worley, 1969RDSH
10.55 ± 0.05PIChupka and Berkowitz, 1967RDSH
10.50PIAl-Joboury and Turner, 1964RDSH
10.55 ± 0.05PISteiner, Giese, et al., 1961RDSH
10.63 ± 0.03PIWatanabe, 1957RDSH
11.09PEKimura, Katsumata, et al., 1981Vertical value; LLK
11.2PEBieri and Asbrink, 1980Vertical value; LLK
11.2 ± 0.1PEBieri, Burger, et al., 1977Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
CH3+29.7 ± 0.2?EIOlmsted, Street, et al., 1964RDSH
C2H4+~11.65C2H6PIChupka and Berkowitz, 1967RDSH
C2H5+12.55C2H5EIOmura, 1961RDSH
C3H5+13.40?EIOmura, 1961RDSH
C3H6+11.15CH4EIWolkoff and Holmes, 1978LLK
C3H6+11.06CH4EIMatsumoto, Taniguchi, et al., 1970RDSH
C3H6+11.18CH4PIChupka and Berkowitz, 1967RDSH
C3H6+11.16 ± 0.03CH4PISteiner, Giese, et al., 1961RDSH
C3H7+11.2CH3EIWolkoff and Holmes, 1978LLK
C3H7+11.09CH3EIMatsumoto, Taniguchi, et al., 1970RDSH
C3H7+11.10 ± 0.05CH3EIWilliams and Hamill, 1968RDSH
C3H7+11.18CH3PIChupka and Berkowitz, 1967RDSH
C3H7+11.19 ± 0.02CH3PISteiner, Giese, et al., 1961RDSH
C4H9+10.9 ± 0.1H-PIChupka and Berkowitz, 1967RDSH
C4H9+11.7 ± 0.1HPIChupka and Berkowitz, 1967RDSH
H3+31. ± 1.?EIFuchs, 1972LLK

De-protonation reactions

C4H9- + Hydrogen cation = Butane

By formula: C4H9- + H+ = C4H10

Quantity Value Units Method Reference Comment
Δr1739. ± 8.4kJ/molBranDePuy, Gronert, et al., 1989gas phase; The HOF(Et(Me)N.) in Seetula, Russell, et al., 1990 gives BDE(N-H) = 99 kcal/mol, ca. 5 kcal/mol too strong; B
Δr1745. ± 20.kJ/molBranPeerboom, Rademaker, et al., 1992gas phase; B
Quantity Value Units Method Reference Comment
Δr1703. ± 8.8kJ/molH-TSDePuy, Gronert, et al., 1989gas phase; The HOF(Et(Me)N.) in Seetula, Russell, et al., 1990 gives BDE(N-H) = 99 kcal/mol, ca. 5 kcal/mol too strong; B
Δr1709. ± 21.kJ/molH-TSPeerboom, Rademaker, et al., 1992gas phase; B

Vibrational and/or electronic energy levels

Go To: Top, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Takehiko Shimanouchi

Trans form     Symmetry:   C2h     Symmetry Number σ = 2


 Sym.   No   Approximate   Selected Freq.  Infrared   Raman   Comments 
 Species   type of mode   Value   Rating   Value  Phase  Value  Phase

ag 1 CH3 d-str 2965  C  ia 2965 sln. SF20)
ag 2 CH3 s-str 2872  C  ia 2872 sln.
ag 3 CH2 s-str 2853  D  ia 2853 sln.
ag 4 CH3 d-deform 1460  C  ia 1460 sln. SF22)
ag 5 CH2 scis 1442  D  ia 1442 sln.
ag 6 CH3 s-deform 1382  C  ia CF
ag 7 CH2 wag 1361  D  ia CF
ag 8 CH3 rock 1151  C  ia 1151 sln.
ag 9 CC str 1059  C  ia 1059 sln.
ag 10 CC str 837  C  ia 837 sln.
ag 11 CCC deform 425  C  ia 425 sln.
au 12 CH3 d-str 2968  C 2968 S solid solid  ia SF27)
au 13 CH2 a-str 2930  C 2930 S solid solid  ia
au 14 CH3 d-deform 1461  C 1461 S solid solid  ia SF30, )OV3031)
au 15 CH2 twist 1257  C 1257 W sln.  ia
au 16 CH3 rock 948  B 948 M solid solid  ia
au 17 CH2 rock 731  B 731 S solid solid  ia
au 18 CH3-CH2 torsion 194  E  ia CF
au 19 CH2-CH2 torsion 102  E  ia CF
bg 20 CH3 d-str 2965  C  ia 2965 sln. SF1)
bg 21 CH2 a-str 2912  C  ia 2912 sln.
bg 22 CH3 d-deform 1460  C  ia 1460 sln. SF4)
bg 23 CH2 twist 1300  C  ia 1300 sln.
bg 24 CH3 rock 1180  D  ia CF
bg 25 CH2 rock 803  D  ia CF
bg 26 CH3-CH2 torsion 225  E  ia CF
bu 27 CH3 d-str 2968  C 2968 S solid solid  ia SF12)
bu 28 CH3 s-str 2870  C 2870 S solid solid  ia
bu 29 CH2 s-str 2853  E  ia SF3)
bu 30 CH3 d-deform 1461  C 1461 S solid solid  ia SF14, )OV1431)
bu 31 CH2 scis 1461  C 1461 S solid solid  ia OV1430)
bu 32 CH3 s-deform 1379  B 1379 M solid solid  ia
bu 33 CH2 wag 1290  B 1290 W solid solid  ia
bu 34 CC str 1009  C 1009 W sln.  ia
bu 35 CH3 rock 964  B 964 M solid solid  ia
bu 36 CCC deform 271  E  ia CF

Source: Shimanouchi, 1972

Gauche form     Symmetry:   C2     Symmetry Number σ = 2


 Sym.   No   Approximate   Selected Freq.  Infrared   Raman   Comments 
 Species   type of mode   Value   Rating   Value  Phase  Value  Phase

a 1 CH3 d-str 2968  C Deduced from the corresponding frequencies of the trans form
a 2 CH3 d-str 2968  C Deduced from the corresponding frequencies of the trans form
a 3 CH2 a-str 2920  D Deduced from the corresponding frequencies of the trans form
a 4 CH3 s-str 2870  C Deduced from the corresponding frequencies of the trans form
a 5 CH2 s-str 2860  D Deduced from the corresponding frequencies of the trans form
a 6 CH3 d-deform 1460  C Deduced from the corresponding frequencies of the trans form
a 7 CH3 d-deform 1460  C Deduced from the corresponding frequencies of the trans form
a 8 CH2 scis 1450  D Deduced from the corresponding frequencies of the trans form
a 9 CH3 s-deform 1380  C Deduced from the corresponding frequencies of the trans form
a 10 CH2 wag 1350  C 1350 W liq.
a 11 CH2 twist 1281  C 1281 liq.
a 12 CH3 rock 1168  D 1168 liq.
a 13 CC str 1077  D 1077 liq.
a 14 CH3 rock 980  D 980 liq. OV32)
a 15 CC str 827  D 827 liq.
a 16 CH2 rock 788  C 788 M liq. 789 liq.
a 17 CCC deform 320  C 320 liq.
a 18 CH3-CH2 torsion 201  E CF
a 19 CH2-CH2 torsion 101  E CF
b 20 CH3 d-str 2968  C Deduced from the corresponding frequencies of the trans form
b 21 CH3 d-str 2968  C Deduced from the corresponding frequencies of the trans form
b 22 CH2 a-str 2920  D Deduced from the corresponding frequencies of the trans form
b 23 CH3 s-str 2870  C Deduced from the corresponding frequencies of the trans form
b 24 CH2 s-str 2860  D Deduced from the corresponding frequencies of the trans form
b 25 CH3 d-deform 1460  C Deduced from the corresponding frequencies of the trans form
b 26 CH3 d-deform 1460  C Deduced from the corresponding frequencies of the trans form
b 27 CH2 scis 1450  D Deduced from the corresponding frequencies of the trans form
b 28 CH3 s-deform 1380  C Deduced from the corresponding frequencies of the trans form
b 29 CH2 wag 1370  D 1370 VW liq.
b 30 CH2 twist 1233  C 1233 W liq.
b 31 CC str 1133  D 1133 M liq.
b 32 CH3 rock 980  D 980 liq. OV1430)
b 33 CH3 rock 955  C 955 liq.
b 34 CH2 rock 747  C 747 S liq.
b 35 CCC deform 469  D CF
b 36 CH3-CH2 torsion 197  E CF

Source: Shimanouchi, 1972

Notes

SStrong
MMedium
WWeak
VWVery weak
iaInactive
CFCalculated frequency
SFCalculation shows that the frequency approximately equals that of the vibration indicated in the parentheses.
OVOverlapped by band indicated in parentheses.
B1~3 cm-1 uncertainty
C3~6 cm-1 uncertainty
D6~15 cm-1 uncertainty
E15~30 cm-1 uncertainty

References

Go To: Top, Gas phase ion energetics data, Vibrational and/or electronic energy levels, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Luo and Pacey, 1992
Luo, Y.-R.; Pacey, P.D., Effects of alkyl substitution on ionization energies of alkanes and haloalkanes and on heats of formation of their molecular cations. Part 2. Alkanes and chloro-, bromo- and iodoalkanes, Int. J. Mass Spectrom. Ion Processes, 1992, 112, 63. [all data]

Lias, 1982
Lias, S.G., Thermochemical information from ion-molecule rate constants, Ion Cyclotron Reson. Spectrom. 1982, 1982, 409. [all data]

Mautner(Meot-Ner), Sieck, et al., 1981
Mautner(Meot-Ner), M.; Sieck, L.W.; Ausloos, P., Ionization of normal alkanes: Enthalpy, entropy, structural, and isotope effects, J. Am. Chem. Soc., 1981, 103, 5342. [all data]

Bieri, Burger, et al., 1977
Bieri, G.; Burger, F.; Heilbronner, E.; Maier, J.P., Valence ionization enrgies of hydrocarbons, Helv. Chim. Acta, 1977, 60, 2213. [all data]

Lias, Ausloos, et al., 1976
Lias, S.G.; Ausloos, P.; Horvath, Z., Charge transfer reactions in alkane and cycloalkane systems. Estimated ionization potentials, Int. J. Chem. Kinet., 1976, 8, 725. [all data]

Flesch and Svec, 1973
Flesch, G.D.; Svec, H.J., Fragmentation reactions in the mass spectrometer for C2-C5 alkanes, J. Chem. Soc. Faraday Trans. 2, 1973, 69, 1187. [all data]

Matsumoto, Taniguchi, et al., 1970
Matsumoto, A.; Taniguchi, S.; Hayakawa, T., Studies of dissociation of hydrogen and n-butane metastable ions by a pulsed ion source in Recent Developments in Mass Spectrometry, ed. K. Ogata and T. Hayakawa, Univ. Park Press, Baltimore, MD, 1970, 820. [all data]

Dewar and Worley, 1969
Dewar, M.J.S.; Worley, S.D., Photoelectron spectra of molecules. I. Ionization potentials of some organic molecules and their interpretation, J. Chem. Phys., 1969, 50, 654. [all data]

Chupka and Berkowitz, 1967
Chupka, W.A.; Berkowitz, J., Photoionization of ethane, propane, and n-butane with mass analysis, J. Chem. Phys., 1967, 47, 2921. [all data]

Al-Joboury and Turner, 1964
Al-Joboury, M.I.; Turner, D.W., Molecular photoelectron spectroscopy. Part II. A summary of ionization potentials, J. Chem. Soc., 1964, 4434. [all data]

Steiner, Giese, et al., 1961
Steiner, B.; Giese, C.F.; Inghram, M.G., Photoionization of alkanes. Dissociation of excited molecular ions, J. Chem. Phys., 1961, 34, 189. [all data]

Watanabe, 1957
Watanabe, K., Ionization potentials of some molecules, J. Chem. Phys., 1957, 26, 542. [all data]

Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S., Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]

Bieri and Asbrink, 1980
Bieri, G.; Asbrink, L., 30.4-nm He(II) photoelectron spectra of organic molecules, J. Electron Spectrosc. Relat. Phenom., 1980, 20, 149. [all data]

Olmsted, Street, et al., 1964
Olmsted, J., III; Street, K., Jr.; Newton, A.S., Excess-kinetic-energy ions in organic mass spectra, J. Chem. Phys., 1964, 40, 2114. [all data]

Omura, 1961
Omura, I., Mass spectra at low ionizing voltage and bond dissociation energies of molecular ions from hydrocarbons, Bull. Chem. Soc. Japan, 1961, 34, 1227. [all data]

Wolkoff and Holmes, 1978
Wolkoff, P.; Holmes, J.L., Fragmentations of alkane molecular ions, J. Am. Chem. Soc., 1978, 100, 7346. [all data]

Williams and Hamill, 1968
Williams, J.M.; Hamill, W.H., Ionization potentials of molecules and free radicals and appearance potentials by electron impact in the mass spectrometer, J. Chem. Phys., 1968, 49, 4467. [all data]

Fuchs, 1972
Fuchs, R., Die kinetische energie ionisierter molekulfragmente VII. H3 ALS fragmention bei der elektronenstrossionisierung von kohlenwasserstoffen, Int. J. Mass Spectrom. Ion Processes, 1972, 8, 193. [all data]

DePuy, Gronert, et al., 1989
DePuy, C.H.; Gronert, S.; Barlow, S.E.; Bierbaum, V.M.; Damrauer, R., The Gas Phase Acidities of the Alkanes, J. Am. Chem. Soc., 1989, 111, 6, 1968, https://doi.org/10.1021/ja00188a003 . [all data]

Seetula, Russell, et al., 1990
Seetula, J.A.; Russell, J.J.; Gutman, D., Kinetics and Thermochemistry of the Reactions of Alkyl Radicals with HI: A Reconciliation of the Alkyl Radical Heats of Formation, J. Am. Chem. Soc., 1990, 112, 4, 1347, https://doi.org/10.1021/ja00160a009 . [all data]

Peerboom, Rademaker, et al., 1992
Peerboom, R.A.L.; Rademaker, G.J.; Dekoning, L.J.; Nibbering, N.M.M., Stabilization of Cycloalkyl Carbanions in the Gas Phase, Rapid Commun. Mass Spectrom., 1992, 6, 6, 394, https://doi.org/10.1002/rcm.1290060608 . [all data]

Shimanouchi, 1972
Shimanouchi, T., Tables of Molecular Vibrational Frequencies Consolidated Volume I, National Bureau of Standards, 1972, 1-160. [all data]


Notes

Go To: Top, Gas phase ion energetics data, Vibrational and/or electronic energy levels, References