Phenol, 4-chloro-
- Formula: C6H5ClO
- Molecular weight: 128.556
- IUPAC Standard InChIKey: WXNZTHHGJRFXKQ-UHFFFAOYSA-N
- CAS Registry Number: 106-48-9
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: p-Chlorophenol; Phenol, p-chloro-; 4-Chlorophenol; 4-Hydroxychlorobenzene; p-Chlorfenol; Applied 3-78; NSC 2877; p-Chlorophenic acid; Parachlorophenol
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Phase change data
Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 492.9 | K | N/A | Weast and Grasselli, 1989 | BS |
Tboil | 492.90 | K | N/A | Lecat, 1926 | Uncertainty assigned by TRC = 0.4 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 316.0 | K | N/A | Poeti, Faneli, et al., 1982 | Uncertainty assigned by TRC = 0.2 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 64.4 ± 0.3 | kJ/mol | GS | Verevkin, Emel'yanenko, et al., 2007 | Based on data from 318. to 351. K.; AC |
Quantity | Value | Units | Method | Reference | Comment |
ΔsubH° | 77.1 ± 0.2 | kJ/mol | GS | Verevkin, Emel'yanenko, et al., 2007 | Based on data from 283. to 313. K.; AC |
Enthalpy of vaporization
ΔvapH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
61.9 | 335. | GS | Verevkin, Emel'yanenko, et al., 2007 | Based on data from 318. to 351. K.; AC |
60.6 | 388. | A | Stephenson and Malanowski, 1987 | Based on data from 373. to 493. K.; AC |
52.8 | 338. | N/A | Stull, 1947 | Based on data from 323. to 493. K.; AC |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (bar)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
322.9 to 493. | 4.92975 | 2278.849 | -30.80 | Stull, 1947 | Coefficents calculated by NIST from author's data. |
Enthalpy of sublimation
ΔsubH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
60.8 | 278. | A | Stephenson and Malanowski, 1987 | Based on data from 252. to 293. K.; AC |
54. ± 1. | 297. | V | Wolf and Weghofer, 1938 | ALS |
Enthalpy of fusion
ΔfusH (kJ/mol) | Temperature (K) | Reference | Comment |
---|---|---|---|
14.067 | 316.0 | Poeti, Fanelli, et al., 1982 | DH |
14.07 | 315.9 | Acree, 1991 | AC |
Entropy of fusion
ΔfusS (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
44.51 | 316.0 | Poeti, Fanelli, et al., 1982 | DH |
Reaction thermochemistry data
Go To: Top, Phase change data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
By formula: Cl- + C6H5ClO = (Cl- • C6H5ClO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 124. ± 8.4 | kJ/mol | TDEq | Cummings, French, et al., 1977 | gas phase; Re-anchored to data in French, Ikuta, et al., 1982.; B,M |
ΔrH° | 126. | kJ/mol | PHPMS | Paul and Kebarle, 1990 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 100. | J/mol*K | N/A | Paul and Kebarle, 1990 | gas phase; Entropy change calculated or estimated; M |
ΔrS° | 110. | J/mol*K | N/A | Cummings, French, et al., 1977 | gas phase; switching reaction(Cl-)C6H5OH, Entropy change calculated or estimated; French, Ikuta, et al., 1982; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 92.5 ± 8.4 | kJ/mol | TDEq | Cummings, French, et al., 1977 | gas phase; Re-anchored to data in French, Ikuta, et al., 1982.; B |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
81.6 | 423. | PHPMS | Paul and Kebarle, 1990 | gas phase; Entropy change calculated or estimated; M |
87.9 | 300. | PHPMS | Cummings, French, et al., 1977 | gas phase; switching reaction(Cl-)C6H5OH, Entropy change calculated or estimated; French, Ikuta, et al., 1982; M |
C6H4ClO- + =
By formula: C6H4ClO- + H+ = C6H5ClO
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1435. ± 8.8 | kJ/mol | G+TS | Fujio, McIver, et al., 1981 | gas phase; Exptl ΔHf(AH) more stable than group additivity by ca. 8 kcal/mol; value altered from reference due to change in acidity scale; B |
ΔrH° | 1438. ± 9.6 | kJ/mol | G+TS | Kebarle and McMahon, 1977 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1407. ± 8.4 | kJ/mol | IMRE | Fujio, McIver, et al., 1981 | gas phase; Exptl ΔHf(AH) more stable than group additivity by ca. 8 kcal/mol; value altered from reference due to change in acidity scale; B |
ΔrG° | 1409. ± 8.4 | kJ/mol | IMRE | Kebarle and McMahon, 1977 | gas phase; B |
By formula: Br- + C6H5ClO = (Br- • C6H5ClO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 102. ± 7.5 | kJ/mol | IMRE | Paul and Kebarle, 1990 | gas phase; ΔGaff at 423 K; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 96. | J/mol*K | N/A | Paul and Kebarle, 1990 | gas phase; switching reaction,Thermochemical ladder(Br-)C6H5OH, Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 61.5 ± 4.2 | kJ/mol | IMRE | Paul and Kebarle, 1990 | gas phase; ΔGaff at 423 K; B |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
61.5 | 423. | PHPMS | Paul and Kebarle, 1990 | gas phase; switching reaction,Thermochemical ladder(Br-)C6H5OH, Entropy change calculated or estimated; M |
By formula: I- + C6H5ClO = (I- • C6H5ClO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 85.8 ± 7.5 | kJ/mol | IMRE | Paul and Kebarle, 1990 | gas phase; ΔGaff at 423 K; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 88. | J/mol*K | N/A | Paul and Kebarle, 1990 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 48.5 ± 4.2 | kJ/mol | IMRE | Paul and Kebarle, 1990 | gas phase; ΔGaff at 423 K; B |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
48.5 | 423. | PHPMS | Paul and Kebarle, 1990 | gas phase; Entropy change calculated or estimated; M |
Gas phase ion energetics data
Go To: Top, Phase change data, Reaction thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
View reactions leading to C6H5ClO+ (ion structure unspecified)
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
9.07 | EI | Crable and Kearns, 1962 | RDSH |
8.69 | PE | Baker, May, et al., 1968 | Vertical value; RDSH |
De-protonation reactions
C6H4ClO- + =
By formula: C6H4ClO- + H+ = C6H5ClO
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1435. ± 8.8 | kJ/mol | G+TS | Fujio, McIver, et al., 1981 | gas phase; Exptl ΔHf(AH) more stable than group additivity by ca. 8 kcal/mol; value altered from reference due to change in acidity scale; B |
ΔrH° | 1438. ± 9.6 | kJ/mol | G+TS | Kebarle and McMahon, 1977 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1407. ± 8.4 | kJ/mol | IMRE | Fujio, McIver, et al., 1981 | gas phase; Exptl ΔHf(AH) more stable than group additivity by ca. 8 kcal/mol; value altered from reference due to change in acidity scale; B |
ΔrG° | 1409. ± 8.4 | kJ/mol | IMRE | Kebarle and McMahon, 1977 | gas phase; B |
References
Go To: Top, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Weast and Grasselli, 1989
CRC Handbook of Data on Organic Compounds, 2nd Editon, Weast,R.C and Grasselli, J.G., ed(s)., CRC Press, Inc., Boca Raton, FL, 1989, 1. [all data]
Lecat, 1926
Lecat, M.,
New binary azeotropes: 3rd list,
Ann. Soc. Sci. Bruxelles, Ser. B, 1926, 45, 284-94. [all data]
Poeti, Faneli, et al., 1982
Poeti, G.; Faneli, E.; Braghetti, M.J.,
A differential scanning calorimetric study of some phenol derivatives,
Therm. Anal., 1982, 24, 2, 273, https://doi.org/10.1007/BF01913681
. [all data]
Verevkin, Emel'yanenko, et al., 2007
Verevkin, Sergey P.; Emel'yanenko, Vladimir N.; Klamt, Andreas,
Thermochemistry of Chlorobenzenes and Chlorophenols: Ambient Temperature Vapor Pressures and Enthalpies of Phase Transitions,
J. Chem. Eng. Data, 2007, 52, 2, 499-510, https://doi.org/10.1021/je060429r
. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Stull, 1947
Stull, Daniel R.,
Vapor Pressure of Pure Substances. Organic and Inorganic Compounds,
Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022
. [all data]
Wolf and Weghofer, 1938
Wolf, K.L.; Weghofer, H.,
Uber sublimationswarmen,
Z. Phys. Chem., 1938, 39, 194-208. [all data]
Poeti, Fanelli, et al., 1982
Poeti, G.; Fanelli, E.; Braghetti, M.,
A differential scanning calorimetric study of some phenol derivatives,
J. Therm. Anal., 1982, 24(2), 273-279. [all data]
Acree, 1991
Acree, William E.,
Thermodynamic properties of organic compounds: enthalpy of fusion and melting point temperature compilation,
Thermochimica Acta, 1991, 189, 1, 37-56, https://doi.org/10.1016/0040-6031(91)87098-H
. [all data]
Cummings, French, et al., 1977
Cummings, J.B.; French, M.A.; Kebarle, P.,
Effect of charge delocalization on hydrogen bonding to negative ions and solvation of negative ions. Substituted phenols and phenoxide ions,
J. Am. Chem. Soc., 1977, 99, 6999. [all data]
French, Ikuta, et al., 1982
French, M.A.; Ikuta, S.; Kebarle, P.,
Hydrogen bonding of O-H and C-H hydrogen donors to Cl-. Results from mass spectrometric measurement of the ion-molecule equilibria RH + Cl- = RHCl-,
Can. J. Chem., 1982, 60, 1907. [all data]
Paul and Kebarle, 1990
Paul, G.J.C.; Kebarle, P.,
Stabilities in the Gas Phase of the Hydrogen Bonded Complexes, YC6H4OH-X-, of Substituted Phenols, YC6H4OH, with the Halide Anions X-(Cl-, Br-),
Can. J. Chem., 1990, 68, 11, 2070, https://doi.org/10.1139/v90-316
. [all data]
Fujio, McIver, et al., 1981
Fujio, M.; McIver, R.T., Jr.; Taft, R.W.,
Effects on the acidities of phenols from specific substituent-solvent interactions. Inherent substituent parameters from gas phase acidities,
J. Am. Chem. Soc., 1981, 103, 4017. [all data]
Kebarle and McMahon, 1977
Kebarle, P.; McMahon, T.B.,
Intrinsic Acidities of Substituted Phenols and Benzoic Acids Determined by Gas Phase Proton Transfer Equilibria,
J. Am. Chem. Soc., 1977, 99, 7, 2222, https://doi.org/10.1021/ja00449a032
. [all data]
Crable and Kearns, 1962
Crable, G.F.; Kearns, G.L.,
Effect of substituent groups on the ionization potentials of benzenes,
J. Phys. Chem., 1962, 66, 436. [all data]
Baker, May, et al., 1968
Baker, A.D.; May, D.P.; Turner, D.W.,
Molecular photoelectron spectroscopy. Part VII. The vertical ionisation potentials of benzene and some of its monosubstituted and 1,4-disubstituted derivatives,
J. Chem. Soc. B, 1968, 22. [all data]
Notes
Go To: Top, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, References
- Symbols used in this document:
T Temperature Tboil Boiling point Tfus Fusion (melting) point ΔfusH Enthalpy of fusion ΔfusS Entropy of fusion ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions ΔsubH Enthalpy of sublimation ΔsubH° Enthalpy of sublimation at standard conditions ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.