p-Cresol
- Formula: C7H8O
- Molecular weight: 108.1378
- IUPAC Standard InChIKey: IWDCLRJOBJJRNH-UHFFFAOYSA-N
- CAS Registry Number: 106-44-5
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Phenol, 4-methyl-; p-Hydroxytoluene; p-Kresol; p-Methylhydroxybenzene; p-Methylphenol; p-Oxytoluene; p-Toluol; p-Tolyl alcohol; 1-Hydroxy-4-methylbenzene; 4-Cresol; 4-Hydroxytoluene; 4-Methylphenol; 1-Methyl-4-hydroxybenzene; Paracresol; Cresol, para; Paramethyl phenol; Rcra waste number U052; p-Cresylic acid; Cresol,p-; Phenol, 4-methyI; NSC 3696; 4-methylphenol ( p-cresol); p-Cresol (4-methylphenol)
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Condensed phase thermochemistry data
Go To: Top, IR Spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | -193. | kJ/mol | Ccb | Pushin, 1954 | Author's hf298_condensed=-48.3 kcal/mol; ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -3705. | kJ/mol | Ccb | Pushin, 1954 | Author's hf298_condensed=-48.3 kcal/mol; Corresponding ΔfHºliquid = -193. kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔfH°solid | -199.2 | kJ/mol | Ccb | Cox, 1961 | ALS |
ΔfH°solid | -199.3 ± 1.5 | kJ/mol | Ccb | Andon, Biddiscombe, et al., 1960 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°solid | -3698.7 ± 0.3 | kJ/mol | Ccb | Cox, 1961 | Corresponding ΔfHºsolid = -199.2 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°solid | -3698.6 ± 0.67 | kJ/mol | Ccb | Andon, Biddiscombe, et al., 1960 | Corresponding ΔfHºsolid = -199.3 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°solid | -3703. | kJ/mol | Ccb | Barker, 1925 | Author was aware that data differs from previously reported values; Corresponding ΔfHºsolid = -195. kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°solid,1 bar | 167.32 | J/mol*K | N/A | Andon, Counsell, et al., 1967 | DH |
Constant pressure heat capacity of solid
Cp,solid (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
163.5 | 298.15 | Meva'a and Lichanot, 1990 | T = 173 to 353 K. Cp(c) = 145.401 + 0.616T + 3.728x10-3T2 + 2.145x10-5T3 J/mol*K (-100 to 22 C). Cp(liq) = 232.122 + 0.178T J/mol*K (40 to 80 C).; DH |
221.03 | 298.15 | Nichols and Wads, 1975 | DH |
150.25 | 298.15 | Andon, Counsell, et al., 1967 | T = 10 to 400 K.; DH |
226.2 | 313. | Rastorguev and Ganiev, 1967 | T = 313 to 373 K.; DH |
IR Spectrum
Go To: Top, Condensed phase thermochemistry data, References, Notes
Data compiled by: Coblentz Society, Inc.
- SOLUTION (10% IN CCl4 FOR 3800-1333, 10% IN CS2 FOR 1333-400 CM-1); DOW KBr FOREPRISM-GRATING; DIGITIZED BY NIST FROM HARD COPY (FROM TWO SEGMENTS); 4 cm-1 resolution
- VAPOR (1.0 MICROLITER AT 245 C); NICOLET FTIR; DIGITIZED BY NIST FROM HARD COPY (FROM TWO SEGMENTS); 4 CM-1 cm-1 resolution
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
References
Go To: Top, Condensed phase thermochemistry data, IR Spectrum, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Pushin, 1954
Pushin, N.A.,
Heats of combustion and heats of formation of isomeric organic compounds,
Bull. Soc. Chim. Belgrade, 1954, 19, 531-547. [all data]
Cox, 1961
Cox, J.D.,
The heats of combustion of phenol and the three cresols,
Pure Appl. Chem., 1961, 2, 125-128. [all data]
Andon, Biddiscombe, et al., 1960
Andon, R.J.L.; Biddiscombe, D.P.; Cox, J.D.; Handley, R.; Harrop, D.; Herington, E.F.G.; Martin, J.F.,
Thermodynamic properties of organic oxygen compounds. Part I. Preparation and physical properties of pure phenol, cresols, and xylenols,
J. Chem. Soc., 1960, 5246-5254. [all data]
Barker, 1925
Barker, M.F.,
Calorific value and constitution,
J. Phys. Chem., 1925, 29, 1345-1363. [all data]
Andon, Counsell, et al., 1967
Andon, R.J.L.; Counsell, J.F.; Lees, E.B.; Martin, J.F.; Mash, C.J.,
Thermodynamic properties of organic oxygen compounds. Part 17. Low-temperature heat capacity and entropy of the cresols,
Trans. Faraday Soc., 1967, 63, 1115-1121. [all data]
Meva'a and Lichanot, 1990
Meva'a, L.M.; Lichanot, A.,
Proprietes thermodynamiques en phase condensee des ortho, meta et para fluorotoluene, cresol et toluidine,
Thermochim. Acta, 1990, 158, 335-345. [all data]
Nichols and Wads, 1975
Nichols, N.; Wads, I.,
Thermochemistry of solutions of biochemical model compounds. 3. Some benzene derivatives in aqueous solution,
J. Chem. Thermodynam., 1975, 7, 329-336. [all data]
Rastorguev and Ganiev, 1967
Rastorguev, Yu.L.; Ganiev, Yu.A.,
Study of the heat capacity of selected solvents,
Izv. Vyssh. Uchebn. Zaved. Neft Gaz. 10, 1967, No.1, 79-82. [all data]
Notes
Go To: Top, Condensed phase thermochemistry data, IR Spectrum, References
- Symbols used in this document:
Cp,solid Constant pressure heat capacity of solid S°solid,1 bar Entropy of solid at standard conditions (1 bar) ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔcH°solid Enthalpy of combustion of solid at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔfH°solid Enthalpy of formation of solid at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.