Butanoic acid, ethyl ester
- Formula: C6H12O2
- Molecular weight: 116.1583
- IUPAC Standard InChIKey: OBNCKNCVKJNDBV-UHFFFAOYSA-N
- CAS Registry Number: 105-54-4
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Isotopologues:
- Other names: Butyric acid, ethyl ester; Ethyl butanoate; Ethyl butyrate; Ethyl n-butyrate; Ethyl n-butanoate; n-Butyric acid ethyl ester; UN 1180; Ethyl ester of butanoic acid; NSC 8857; ethyl butanoate (ethyl butyrate); ethyl 1-butyrate
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -485. ± 1. | kJ/mol | Cm | Wiberg and Waldron, 1991 | Heat of hydrolysis |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, Phase change data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | -528.40 ± 0.79 | kJ/mol | Cm | Wiberg and Waldron, 1991 | Heat of hydrolysis; ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -3545. | kJ/mol | Ccb | Handrick, 1956 | National Bureau of Standards Report 5B116, 1952; Corresponding ΔfHºliquid = -531.4 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°liquid | -3539. | kJ/mol | Ccb | Schjanberg, 1935 | Corresponding ΔfHºliquid = -536.8 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
Constant pressure heat capacity of liquid
Cp,liquid (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
228.0 | 298.15 | Fuchs, 1979 | DH |
229.7 | 290. | Kurnakov and Voskresenskaya, 1936 | DH |
220.1 | 297.2 | Kolosovskii and Udovenko, 1934 | DH |
220.1 | 297.2 | de Kolossowsky and Udowenko, 1933 | DH |
Phase change data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
BS - Robert L. Brown and Stephen E. Stein
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
AC - William E. Acree, Jr., James S. Chickos
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 394. ± 2. | K | AVG | N/A | Average of 37 out of 40 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 175.3 | K | N/A | Timmermans, 1922 | Uncertainty assigned by TRC = 0.3 K; TRC |
Tfus | 170.65 | K | N/A | Timmermans and Mattaar, 1921 | Uncertainty assigned by TRC = 0.7 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 568.8 | K | N/A | Young, 1994 | Uncertainty assigned by TRC = 0.6 K; TRC |
Tc | 558.7 | K | N/A | De Heen, 1888 | Uncertainty assigned by TRC = 10. K; TRC |
Tc | 566.0 | K | N/A | Nadezhdin, 1887 | Uncertainty assigned by TRC = 2. K; TRC |
Tc | 577.5 | K | N/A | Pawlewski, 1882 | Uncertainty assigned by TRC = 6. K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Pc | 30.64 | bar | N/A | Nadezhdin, 1887 | Uncertainty assigned by TRC = 1.5199 bar; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ρc | 2.38 | mol/l | N/A | Nadezhdin, 1887 | Uncertainty assigned by TRC = 0.086 mol/l; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 42. ± 4. | kJ/mol | AVG | N/A | Average of 8 values; Individual data points |
Enthalpy of vaporization
ΔvapH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
39.4 | 345. | N/A | Hernández and Ortega, 1997 | Based on data from 330. to 435. K.; AC |
40.2 | 347. | N/A | Fárková and Wichterle, 1993 | Based on data from 332. to 393. K.; AC |
42.1 ± 0.1 | 323. | EB | Wiberg and Waldron, 1991 | Based on data from 310. to 336. K.; AC |
48.3 | 278. | A | Stephenson and Malanowski, 1987 | Based on data from 263. to 404. K.; AC |
35.47 | 394.6 | N/A | Majer and Svoboda, 1985 | |
41.8 | 270. | N/A | Stull, 1947 | Based on data from 254. to 394. K.; AC |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (bar)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
254.8 to 394. | 4.33187 | 1509.443 | -45.284 | Stull, 1947 | Coefficents calculated by NIST from author's data. |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
Appearance energy determinations
Ion | AE (eV) | Other Products | Method | Reference | Comment |
---|---|---|---|---|---|
C4H8O2+ | 10.06 | C2H4 | EI | Holmes and Lossing, 1980 |
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Wiberg and Waldron, 1991
Wiberg, K.B.; Waldron, R.F.,
Lactones. 2. Enthalpies of hydrolysis, reduction, and formation of the C4-C13 monocyclic lactones. strain energies and conformations,
J. Am. Chem. Soc., 1991, 113, 7697-7705. [all data]
Handrick, 1956
Handrick, G.R.,
Report of the study of pure explosive compounds. Part IV. Calculation of heat of combustion of organic compounds from structural features and calculation of power of high explosives, Rpt. C-58247 for the Office of the Chief of Ordnance, contract DA-19-020-ORD-47 by the Arthur D. Little, Inc., Cambridge, MA, 1956, 467-573. [all data]
Schjanberg, 1935
Schjanberg, E.,
Die Verbrennungswarmen und die Refraktionsdaten einiger chlorsubstituierter Fettsauren und Ester.,
Z. Phys. Chem. Abt. A, 1935, 172, 197-233. [all data]
Fuchs, 1979
Fuchs, R.,
Heat capacities of some liquid aliphatic, alicyclic, and aromatic esters at 298.15 K,
J. Chem. Thermodyn., 1979, 11, 959-961. [all data]
Kurnakov and Voskresenskaya, 1936
Kurnakov, N.S.; Voskresenskaya, N.K.,
Calorimetry of liquid binary systems, Izv. Akad. Nauk SSSR,
Otdel. Mat. i Estestv. Nauk. Ser. Khim, 1936, 1936, 439-461. [all data]
Kolosovskii and Udovenko, 1934
Kolosovskii, N.A.; Udovenko, W.W.,
Specific heat of liquids. II.,
Zhur. Obshchei Khim., 1934, 4, 1027-1033. [all data]
de Kolossowsky and Udowenko, 1933
de Kolossowsky, N.A.; Udowenko, W.W.,
Mesure des chaleurs specifique moleculaires de quelques liquides,
Compt. rend., 1933, 197, 519-520. [all data]
Timmermans, 1922
Timmermans, J.,
Investigation of the Freezing Point of Organic Substances VII,
Bull. Soc. Chim. Belg., 1922, 31, 389. [all data]
Timmermans and Mattaar, 1921
Timmermans, J.; Mattaar, J.F.,
Freezing points of orgainic substances VI. New experimental determinations.,
Bull. Soc. Chim. Belg., 1921, 30, 213. [all data]
Young, 1994
Young, C.L.,
Personal Commun. 1994 1994, 1994. [all data]
De Heen, 1888
De Heen, P.,
Research on Physics and Theory of Liquids, Experimental Part Paris, 1888. [all data]
Nadezhdin, 1887
Nadezhdin, A.,
Rep. Phys., 1887, 23, 708. [all data]
Pawlewski, 1882
Pawlewski, B.,
The critical temperatures of ester compounds,
Ber. Dtsch. Chem. Ges., 1882, 15, 2460-4. [all data]
Hernández and Ortega, 1997
Hernández, Pablo; Ortega, Juan,
Vapor-Liquid Equilibria and Densities for Ethyl Esters (Ethanoate to Butanoate) and Alkan-2-ol (C 3 -C 4 ) at 101.32 kPa,
J. Chem. Eng. Data, 1997, 42, 6, 1090-1100, https://doi.org/10.1021/je970077b
. [all data]
Fárková and Wichterle, 1993
Fárková, J.; Wichterle, I.,
Vapour pressures of some ethyl and propyl esters of fatty acids,
Fluid Phase Equilibria, 1993, 90, 1, 143-148, https://doi.org/10.1016/0378-3812(93)85009-B
. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Majer and Svoboda, 1985
Majer, V.; Svoboda, V.,
Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]
Stull, 1947
Stull, Daniel R.,
Vapor Pressure of Pure Substances. Organic and Inorganic Compounds,
Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022
. [all data]
Holmes and Lossing, 1980
Holmes, J.L.; Lossing, F.P.,
Gas-phase heats of formation of keto and enol ions of carbonyl compounds.,
J. Am. Chem. Soc., 1980, 102, 1591. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, References
- Symbols used in this document:
AE Appearance energy Cp,liquid Constant pressure heat capacity of liquid Pc Critical pressure Tboil Boiling point Tc Critical temperature Tfus Fusion (melting) point ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions ρc Critical density - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.