Benzonitrile, 4-methyl-

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Reaction thermochemistry data

Go To: Top, Gas phase ion energetics data, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: John E. Bartmess

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C8H6N- + Hydrogen cation = Benzonitrile, 4-methyl-

By formula: C8H6N- + H+ = C8H7N

Quantity Value Units Method Reference Comment
Δr360.5 ± 2.4kcal/molG+TSKahn, Hehre, et al., 1984gas phase; value altered from reference due to change in acidity scale
Quantity Value Units Method Reference Comment
Δr353.3 ± 2.3kcal/molIMREKahn, Hehre, et al., 1984gas phase; value altered from reference due to change in acidity scale

Gas phase ion energetics data

Go To: Top, Reaction thermochemistry data, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to C8H7N+ (ion structure unspecified)

Ionization energy determinations

IE (eV) Method Reference Comment
9.32EIVan Der Greef, Molenaar-Langeveld, et al., 1979LLK
9.31EIJohnstone and Mellon, 1973LLK
9.56 ± 0.05EIBuchs, 1970RDSH
9.76EICrable and Kearns, 1962RDSH
9.38PEPalmer, Moyes, et al., 1980Vertical value; LLK
9.33PEKobayashi and Nagakura, 1974Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
C7H6+12.22HCNEIVan Der Greef, Molenaar-Langeveld, et al., 1979LLK

De-protonation reactions

C8H6N- + Hydrogen cation = Benzonitrile, 4-methyl-

By formula: C8H6N- + H+ = C8H7N

Quantity Value Units Method Reference Comment
Δr360.5 ± 2.4kcal/molG+TSKahn, Hehre, et al., 1984gas phase; value altered from reference due to change in acidity scale; B
Quantity Value Units Method Reference Comment
Δr353.3 ± 2.3kcal/molIMREKahn, Hehre, et al., 1984gas phase; value altered from reference due to change in acidity scale; B

Gas Chromatography

Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Kovats' RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
PackedOV-101100.1072.West and Hall, 1975Gas Chrom Q; Column length: 2. m

Van Den Dool and Kratz RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-Wax1928.Shimoda, Shigematsu, et al., 199560. m/0.25 mm/0.25 μm, 2. K/min; Tstart: 50. C; Tend: 230. C

Normal alkane RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillarySE-301050.Ibrahim and Suffet, 1988N2; Column length: 60. m; Column diameter: 0.32 mm; Program: 50C(8min) => 3C/min => 150C => 35C/min => 275C (10min)

Lee's RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryHP-5177.8Wang, Hou, et al., 200730. m/0.30 mm/0.25 μm, Helium, 50. C @ 5. min, 5. K/min, 200. C @ 15. min
CapillaryHP-5178.1Shao, Wang, et al., 200630. m/0.3 mm/0.25 μm, He, 50. C @ 5. min, 5. K/min, 200. C @ 15. min

References

Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, Gas Chromatography, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Kahn, Hehre, et al., 1984
Kahn, S.D.; Hehre, W.J.; Bartmess, J.E.; Caldwell, G., Effect of Metal Complexation on the Gas-phase Acidities of Alkylbenzenes, Organomet., 1984, 3, 11, 1740, https://doi.org/10.1021/om00089a024 . [all data]

Van Der Greef, Molenaar-Langeveld, et al., 1979
Van Der Greef, J.; Molenaar-Langeveld, T.A.; Nibbering, N.M.M., The elimination of HCN (or HNC) from the molecular ions of some isomeric C8H7N compounds, studied by field ionization kinetic and kinetic energy release measurements, Int. J. Mass Spectrom. Ion Phys., 1979, 29, 11. [all data]

Johnstone and Mellon, 1973
Johnstone, R.A.W.; Mellon, F.A., Effects of induction and resonance in the calculation of ionization potentials of substituted benzenes by perturbation molecular orbital theory, J. Chem. Soc. Faraday Trans. 2, 1973, 69, 36. [all data]

Buchs, 1970
Buchs, A., Etude par spectrometrie de masse de l'ionisation de benzonitriles, de phenylacetonitriles et de N,N-dimethylanilines substitues, Helv. Chim. Acta, 1970, 53, 2026. [all data]

Crable and Kearns, 1962
Crable, G.F.; Kearns, G.L., Effect of substituent groups on the ionization potentials of benzenes, J. Phys. Chem., 1962, 66, 436. [all data]

Palmer, Moyes, et al., 1980
Palmer, M.H.; Moyes, W.; Spiers, M., The electronic structure of substituted benzenes: Ab initio calculations and photoelectron spectra for benzonitrile, the tolunitriles, fluorobenzonitriles, dicyanobenzenes and ethynylbenzene, J. Mol. Struct., 1980, 62, 165. [all data]

Kobayashi and Nagakura, 1974
Kobayashi, T.; Nagakura, S., Photoelectron spectra of substituted benzenes, Bull. Chem. Soc. Jpn., 1974, 47, 2563. [all data]

West and Hall, 1975
West, S.D.; Hall, R.C., Substituent contributions to the Kováts retention indices of benzene derivatives, J. Chromatogr. Sci., 1975, 13, 5-11. [all data]

Shimoda, Shigematsu, et al., 1995
Shimoda, M.; Shigematsu, H.; Shiratsuchi, H.; Osajima, Y., Comparison of the odor concentrates by SDE and adsorptive column method from green tea infusion, J. Agric. Food Chem., 1995, 43, 6, 1616-1620, https://doi.org/10.1021/jf00054a037 . [all data]

Ibrahim and Suffet, 1988
Ibrahim, E.A.; Suffet, I.H., Freon FC-113, an Alternative to Methylene Chloride for Liquid-Liquid Extraction of Trace Organics from Chlorinated Drinking Water, J. Chromatogr., 1988, 454, 217-232, https://doi.org/10.1016/S0021-9673(00)88615-X . [all data]

Wang, Hou, et al., 2007
Wang, G.; Hou, Z.; Sun, Y.; Liu, Y.; Xie, B.; Liu, S., Investigation of pyrolysis behavior of fenoxycarb using PY-GC-MS assisted with chemometric methods, Chem. Anal., 2007, 52, 141-156. [all data]

Shao, Wang, et al., 2006
Shao, X.; Wang, G.; Sun, Y.; Zhang, R.; Xie, K.; Liu, H., Determination and Characterization of the Pyrolysis Products of Isoprocarb by GC-MS, J. Chromatogr. Sci., 2006, 44, 3, 141-147, https://doi.org/10.1093/chromsci/44.3.141 . [all data]


Notes

Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, Gas Chromatography, References