Benzene, ethoxy-
- Formula: C8H10O
- Molecular weight: 122.1644
- IUPAC Standard InChIKey: DLRJIFUOBPOJNS-UHFFFAOYSA-N
- CAS Registry Number: 103-73-1
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Phenetole; Ethoxybenzene; Ethyl phenyl ether; Phenyl ethyl ether; Ether, ethyl phenyl-; Phenoxyethane; Benzyl methyl ether
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Condensed phase thermochemistry data
Go To: Top, Phase change data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | -36.48 ± 0.28 | kcal/mol | Ccb | Fenwick, Harrop, et al., 1975 | Author was aware that data differs from previously reported values; ALS |
ΔfH°liquid | -38.10 | kcal/mol | Ccb | Badoche, 1941 | Author's hf298-condensed=-41.22 kcal/mol; ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -1057.50 | kcal/mol | Ccb | Fenwick, Harrop, et al., 1975 | Author was aware that data differs from previously reported values; Corresponding ΔfHºliquid = -36.482 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°liquid | -1055.89 | kcal/mol | Ccb | Badoche, 1941 | Author's hf298-condensed=-41.22 kcal/mol; Corresponding ΔfHºliquid = -38.09 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
Constant pressure heat capacity of liquid
Cp,liquid (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
54.61 | 298.15 | Fenwick, Harrop, et al., 1975, 2 | DH |
Phase change data
Go To: Top, Condensed phase thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 443.4 ± 0.4 | K | AVG | N/A | Average of 11 out of 12 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 243.63 | K | N/A | Dreisbach and Martin, 1949 | Uncertainty assigned by TRC = 0.05 K; TRC |
Tfus | 243.68 | K | N/A | Olson, Hipsher, et al., 1947 | Uncertainty assigned by TRC = 0.3 K; TRC |
Tfus | 243.48 | K | N/A | Boord, Greenlee, et al., 1945 | Uncertainty assigned by TRC = 0.3 K; TRC |
Tfus | 242.95 | K | N/A | Timmermans, 1921 | Uncertainty assigned by TRC = 0.3 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 647.0 | K | N/A | Guye and Mallet, 1902 | Uncertainty assigned by TRC = 2. K; TRC |
Tc | 647.15 | K | N/A | Guye and Mallet, 1902, 2 | Uncertainty assigned by TRC = 2.5 K; accompanied by some decomposition; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Pc | 33.75 | atm | N/A | Guye and Mallet, 1902 | Uncertainty assigned by TRC = 0.8000 atm; TRC |
Pc | 33.9000 | atm | N/A | Guye and Mallet, 1902, 2 | Uncertainty assigned by TRC = 0.99995 atm; TRC |
Pc | 33.7000 | atm | N/A | Guye and Mallet, 1902, 2 | Uncertainty assigned by TRC = 0.99995 atm; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 12.20 | kcal/mol | N/A | Majer and Svoboda, 1985 | |
ΔvapH° | 12.1 | kcal/mol | N/A | Ambrose, Ellender, et al., 1976 | Based on data from 390. to 454. K.; AC |
ΔvapH° | 12.20 ± 0.029 | kcal/mol | C | Fenwick, Harrop, et al., 1975 | Author was aware that data differs from previously reported values; ALS |
ΔvapH° | 12.2 | kcal/mol | N/A | Fenwick, Harrop, et al., 1975 | DRB |
ΔvapH° | 12.2 ± 0.02 | kcal/mol | C | Fenwick, Harrop, et al., 1975 | AC |
Reduced pressure boiling point
Tboil (K) | Pressure (atm) | Reference | Comment |
---|---|---|---|
333.2 | 0.01 | Weast and Grasselli, 1989 | BS |
Enthalpy of vaporization
ΔvapH (kcal/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
10.6 | 405. | A | Stephenson and Malanowski, 1987 | Based on data from 390. to 454. K. See also Ambrose, Ellender, et al., 1976.; AC |
9.73 | 443. | N/A | Ambrose, Ellender, et al., 1976 | Based on data from 390. to 454. K.; AC |
10.5 | 415. | N/A | Collerson, Counsell, et al., 1965 | Based on data from 400. to 454. K. See also Boublik, Fried, et al., 1984.; AC |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (atm)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference |
---|---|---|---|---|
390.58 to 453.8 | 4.1390 | 1507.267 | -78.793 | Collerson, Counsell, et al., 1965, 2 |
Gas phase ion energetics data
Go To: Top, Condensed phase thermochemistry data, Phase change data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
View reactions leading to C8H10O+ (ion structure unspecified)
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
8.6 | EI | Williams, Cooks, et al., 1968 | RDSH |
8.13 ± 0.02 | PI | Watanabe, Nakayama, et al., 1962 | RDSH |
8.36 | PE | Friege and Klessinger, 1979 | Vertical value; LLK |
8.41 | PE | Dewar, Ernstbrunner, et al., 1974 | Vertical value; LLK |
Appearance energy determinations
Ion | AE (eV) | Other Products | Method | Reference | Comment |
---|---|---|---|---|---|
C6H6O+ | 10.03 ± 0.19 | C2H4 | EI | Bouchoux, 1978 | LLK |
C6H6O+ | 11.3 | C2H4 | EI | Williams, Cooks, et al., 1968 | RDSH |
C6H6O+ | 10.73 | C2H4 | EI | Gillis, Long, et al., 1968 | RDSH |
References
Go To: Top, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Fenwick, Harrop, et al., 1975
Fenwick, J.O.; Harrop, D.; Head, A.J.,
Thermodynamic properties of organic oxygen compounds. 41. Enthalpies of formation of eight ethers,
J. Chem. Thermodyn., 1975, 7, 943-954. [all data]
Badoche, 1941
Badoche, M.,
No 19. - Chaleurs de combustion du phenol, du-m-cresol et del leurs ethers; par M. Marius BADOCHE.,
Bull. Soc. Chim. Fr., 1941, 8, 212-220. [all data]
Fenwick, Harrop, et al., 1975, 2
Fenwick, J.O.; Harrop, D.; Head, A.J.,
Thermodynamic properties of organic oxygen compounds. 41. Enthalpies of formation of eight ethers,
J. Chem. Thermodynam., 1975, 7, 944-954. [all data]
Dreisbach and Martin, 1949
Dreisbach, R.R.; Martin, R.A.,
Physical Data on Some Organic Compounds,
Ind. Eng. Chem., 1949, 41, 2875-8. [all data]
Olson, Hipsher, et al., 1947
Olson, W.T.; Hipsher, H.F.; Buess, C.M.; Goodman, I.A.; Hart, I.; Lamneck, J.H.; Gibbons, L.C.,
The Synthesis and Purification of Ethers,
J. Am. Chem. Soc., 1947, 69, 2451-4. [all data]
Boord, Greenlee, et al., 1945
Boord, C.E.; Greenlee, K.W.; Perilstein, W.L.,
, Am. Pet. Inst. Res. Proj. 45, Seventh Annu. Rep., Ohio State Univ., June 30, 1945. [all data]
Timmermans, 1921
Timmermans, J.,
The Freezing Points of Organic Substances IV. New Exp. Determinations,
Bull. Soc. Chim. Belg., 1921, 30, 62. [all data]
Guye and Mallet, 1902
Guye, P.A.; Mallet, E.,
Critical Constant and Molecular Complexity of Several Organic Compds.,
C. R. Hebd. Seances Acad. Sci., 1902, 133, 168. [all data]
Guye and Mallet, 1902, 2
Guye, P.A.; Mallet, E.,
Measurement of Critical Constants,
Arch. Sci. Phys. Nat., 1902, 13, 274-296. [all data]
Majer and Svoboda, 1985
Majer, V.; Svoboda, V.,
Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]
Ambrose, Ellender, et al., 1976
Ambrose, D.; Ellender, J.H.; Sprake, C.H.S.; Townsend, R.,
Thermodynamic properties of organic oxygen compounds XLIII. Vapour pressures of some ethers,
The Journal of Chemical Thermodynamics, 1976, 8, 2, 165-178, https://doi.org/10.1016/0021-9614(76)90090-2
. [all data]
Weast and Grasselli, 1989
CRC Handbook of Data on Organic Compounds, 2nd Editon, Weast,R.C and Grasselli, J.G., ed(s)., CRC Press, Inc., Boca Raton, FL, 1989, 1. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Collerson, Counsell, et al., 1965
Collerson, R.R.; Counsell, J.F.; Handley, R.; Martin, J.F.; Sprake, C.H.S.,
677. Thermodynamic properties of organic oxygen compounds. Part XV. Purification and vapour pressures of some ketones and ethers,
J. Chem. Soc., 1965, 3697, https://doi.org/10.1039/jr9650003697
. [all data]
Boublik, Fried, et al., 1984
Boublik, T.; Fried, V.; Hala, E.,
The Vapour Pressures of Pure Substances: Selected Values of the Temperature Dependence of the Vapour Pressures of Some Pure Substances in the Normal and Low Pressure Region, 2nd ed., Elsevier, New York, 1984, 972. [all data]
Collerson, Counsell, et al., 1965, 2
Collerson, R.R.; Counsell, J.F.; Handley, R.; Martin, J.F.; Sprake, C.H.S.,
Thermodynamic Properties of Organic Oxygen Compounds. Part XV. Purification and Vapour Pressures of Some Ketones and Ethers,
J. Chem. Soc., 1965, 3697-3700, https://doi.org/10.1039/jr9650003697
. [all data]
Williams, Cooks, et al., 1968
Williams, D.H.; Cooks, R.G.; Howe, I.,
Studies in mass spectrometry. XXXI. A comparison of reaction rates in common ions generated via fragmentation and direct ionization,
J. Am. Chem. Soc., 1968, 90, 6759. [all data]
Watanabe, Nakayama, et al., 1962
Watanabe, K.; Nakayama, T.; Mottl, J.,
Ionization potentials of some molecules,
J. Quant. Spectry. Radiative Transfer, 1962, 2, 369. [all data]
Friege and Klessinger, 1979
Friege, H.; Klessinger, M.,
Elektronenstruktur von Alkyl-aryl- und Alkyl-vinyl-ethern,
Chem. Ber., 1979, 112, 1614. [all data]
Dewar, Ernstbrunner, et al., 1974
Dewar, P.S.; Ernstbrunner, E.; Gilmore, J.R.; Godfrey, M.; Mellor, J.M.,
Conformational analysis of alkyl aryl ethers and alkyl aryl sulphides by photoelectron spectroscopy,
Tetrahedron, 1974, 30, 2455. [all data]
Bouchoux, 1978
Bouchoux, G.,
Ionisation et fragmentation en spectrometrie de masse,
Org. Mass Spectrom., 1978, 13, 184. [all data]
Gillis, Long, et al., 1968
Gillis, R.G.; Long, G.J.; Moritz, A.G.; Occolowitz, J.L.,
Energetics of the electron-impact fragmentation of alkoxybenzenes and alkylthiobenzenes,
Org. Mass Spectrom., 1968, 1, 527. [all data]
Notes
Go To: Top, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, References
- Symbols used in this document:
AE Appearance energy Cp,liquid Constant pressure heat capacity of liquid Pc Critical pressure Tboil Boiling point Tc Critical temperature Tfus Fusion (melting) point ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.