Ammonia
- Formula: H3N
- Molecular weight: 17.0305
- IUPAC Standard InChIKey: QGZKDVFQNNGYKY-UHFFFAOYSA-N
- CAS Registry Number: 7664-41-7
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Isotopologues:
- Other names: Ammonia gas; Nitro-Sil; Spirit of Hartshorn; NH3; Ammonia, anhydrous; Anhydrous ammonia; Aromatic Ammonia, Vaporole
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Gas phase thermochemistry data
- Phase change data
- Reaction thermochemistry data: reactions 1 to 50, reactions 51 to 100, reactions 101 to 146
- Henry's Law data
- Gas phase ion energetics data
- IR Spectrum
- Mass spectrum (electron ionization)
- Vibrational and/or electronic energy levels
- Gas Chromatography
- Fluid Properties
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Ion clustering data
Go To: Top, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess
RCD - Robert C. Dunbar
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.
Clustering reactions
By formula: (Ag+ • H3N) + H3N = (Ag+ • 2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 154. | kJ/mol | HPMS | Holland and Castleman, 1982 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 137. | J/mol*K | HPMS | Holland and Castleman, 1982 | gas phase; M |
By formula: (Ag+ • 2H3N) + H3N = (Ag+ • 3H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 61.1 | kJ/mol | HPMS | Holland and Castleman, 1982 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 103. | J/mol*K | HPMS | Holland and Castleman, 1982 | gas phase; M |
By formula: (Ag+ • 3H3N) + H3N = (Ag+ • 4H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 54.4 | kJ/mol | HPMS | Holland and Castleman, 1982 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 126. | J/mol*K | HPMS | Holland and Castleman, 1982 | gas phase; M |
By formula: (Ag+ • 4H3N) + H3N = (Ag+ • 5H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 53.6 | kJ/mol | HPMS | Holland and Castleman, 1982 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 143. | J/mol*K | HPMS | Holland and Castleman, 1982 | gas phase; M |
By formula: Bi+ + H3N = (Bi+ • H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 149. | kJ/mol | HPMS | Castleman, 1978 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 149. | J/mol*K | HPMS | Castleman, 1978 | gas phase; M |
By formula: (Bi+ • H3N) + H3N = (Bi+ • 2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 97.1 | kJ/mol | HPMS | Castleman, 1978 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 138. | J/mol*K | HPMS | Castleman, 1978 | gas phase; M |
By formula: (Bi+ • 2H3N) + H3N = (Bi+ • 3H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 56.1 | kJ/mol | HPMS | Castleman, 1978 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 109. | J/mol*K | HPMS | Castleman, 1978 | gas phase; M |
By formula: Br- + H3N = (Br- • H3N)
Bond type: Hydrogen bond (negative ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 32.2 ± 0.42 | kJ/mol | TDAs | Evans, Keesee, et al., 1987 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 79.9 | J/mol*K | HPMS | Evans, Keesee, et al., 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 8.37 ± 0.84 | kJ/mol | TDAs | Evans, Keesee, et al., 1987 | gas phase; B |
By formula: CH6N+ + H3N = (CH6N+ • H3N)
Bond type: Hydrogen bond (positive ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 89.5 | kJ/mol | PHPMS | Yamdagni and Kebarle, 1974 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 110. | J/mol*K | PHPMS | Yamdagni and Kebarle, 1974 | gas phase; M |
By formula: C2H8N+ + H3N = (C2H8N+ • H3N)
Bond type: Hydrogen bond (positive ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 86.2 | kJ/mol | PHPMS | Yamdagni and Kebarle, 1974 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 118. | J/mol*K | PHPMS | Yamdagni and Kebarle, 1974 | gas phase; M |
By formula: C3H9Si+ + H3N = (C3H9Si+ • H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 195. | kJ/mol | PHPMS | Li and Stone, 1990 | gas phase; switching reaction((CH3)3Si+)CH3COOC2H5; Wojtyniak and Stone, 1986; M |
By formula: C3H9Sn+ + H3N = (C3H9Sn+ • H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 154. | kJ/mol | PHPMS | Stone and Splinter, 1984 | gas phase; switching reaction((CH3)3Sn+)CH3OH/NH3, Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 122. | J/mol*K | N/A | Stone and Splinter, 1984 | gas phase; switching reaction((CH3)3Sn+)CH3OH/NH3, Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
90.4 | 525. | PHPMS | Stone and Splinter, 1984 | gas phase; switching reaction((CH3)3Sn+)CH3OH/NH3, Entropy change calculated or estimated; M |
By formula: C4H9+ + H3N = (C4H9+ • H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 196. | kJ/mol | PHPMS | Meot-Ner (Mautner) and Sieck, 1991 | gas phase; forms t-C4H9NH3+; M |
ΔrH° | 190. | kJ/mol | PHPMS | Szulejko and McMahon, 1991 | gas phase; forms t-C4H9NH3+; M |
ΔrH° | 195. | kJ/mol | PHPMS | Meot-Ner (Mautner) and Sieck, 1990 | gas phase; forms t-C4H9NH3+; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 183. | J/mol*K | PHPMS | Meot-Ner (Mautner) and Sieck, 1991 | gas phase; forms t-C4H9NH3+; M |
ΔrS° | 198. | J/mol*K | PHPMS | Szulejko and McMahon, 1991 | gas phase; forms t-C4H9NH3+; M |
ΔrS° | 184. | J/mol*K | PHPMS | Meot-Ner (Mautner) and Sieck, 1990 | gas phase; forms t-C4H9NH3+; M |
By formula: C5H10NO2+ + H3N = (C5H10NO2+ • H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 86.2 | kJ/mol | PHPMS | Meot-Ner and Field, 1974 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 121. | J/mol*K | PHPMS | Meot-Ner and Field, 1974 | gas phase; M |
By formula: C5H12NO2+ + H3N = (C5H12NO2+ • H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 87.4 | kJ/mol | PHPMS | Meot-Ner and Field, 1974 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 120. | J/mol*K | PHPMS | Meot-Ner and Field, 1974 | gas phase; M |
By formula: C6H15O3+ + H3N = (C6H15O3+ • H3N)
Bond type: Hydrogen bond (positive ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 127. | kJ/mol | PHPMS | Meot-Ner (Mautner), Sieck, et al., 1996 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 117. | J/mol*K | PHPMS | Meot-Ner (Mautner), Sieck, et al., 1996 | gas phase; M |
By formula: Cl- + H3N = (Cl- • H3N)
Bond type: Hydrogen bond (negative ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | <30.5 ± 1.7 | kJ/mol | N/A | Tschurl and Boesl, 2008 | gas phase; B |
ΔrH° | 34.3 ± 0.42 | kJ/mol | TDAs | Evans, Keesee, et al., 1987 | gas phase; B,M |
ΔrH° | 37. ± 5.0 | kJ/mol | N/A | Markovich, Chesnovsky, et al., 1993 | gas phase; B |
ΔrH° | 44. ± 17. | kJ/mol | IMRE | Larson and McMahon, 1984 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 64.4 | J/mol*K | HPMS | Evans, Keesee, et al., 1987 | gas phase; M |
ΔrS° | 83.3 | J/mol*K | N/A | Larson and McMahon, 1984 | gas phase; switching reaction(Cl-)CH3F, Entropy change calculated or estimated; Larson and McMahon, 1984, 2; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 15.1 ± 0.84 | kJ/mol | TDAs | Evans, Keesee, et al., 1987 | gas phase; B |
ΔrG° | 19. ± 8.4 | kJ/mol | IMRE | Larson and McMahon, 1984 | gas phase; B,M |
By formula: Co+ + H3N = (Co+ • H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 218. ± 15. | kJ/mol | CIDT | Walter and Armentrout, 1998 | RCD |
ΔrH° | 246. | kJ/mol | CID | Marinelli and Squires, 1989 | gas phase; M |
By formula: (Co+ • H3N) + H3N = (Co+ • 2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 248. ± 13. | kJ/mol | CIDT | Walter and Armentrout, 1998 | RCD |
ΔrH° | 256. | kJ/mol | CID | Marinelli and Squires, 1989 | gas phase; M |
By formula: (Co+ • 2H3N) + H3N = (Co+ • 3H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 64.0 ± 5.9 | kJ/mol | CIDT | Walter and Armentrout, 1998 | RCD |
By formula: (Co+ • 3H3N) + H3N = (Co+ • 4H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 49.0 ± 5.9 | kJ/mol | CIDT | Walter and Armentrout, 1998 | RCD |
By formula: Cr+ + H3N = (Cr+ • H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 182. ± 10. | kJ/mol | CIDT | Walter and Armentrout, 1998 | RCD |
ΔrH° | 156. | kJ/mol | CID | Marinelli and Squires, 1989 | gas phase; M |
By formula: (Cr+ • H3N) + H3N = (Cr+ • 2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 179. ± 9.2 | kJ/mol | CIDT | Walter and Armentrout, 1998 | RCD |
ΔrH° | 171. | kJ/mol | CID | Marinelli and Squires, 1989 | gas phase; M |
By formula: (Cr+ • 2H3N) + H3N = (Cr+ • 3H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 54.0 ± 5.9 | kJ/mol | CIDT | Walter and Armentrout, 1998 | RCD |
By formula: (Cr+ • 3H3N) + H3N = (Cr+ • 4H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 30. ± 9.2 | kJ/mol | CIDT | Walter and Armentrout, 1998 | RCD |
By formula: Cu+ + H3N = (Cu+ • H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 237. ± 14. | kJ/mol | CIDT | Walter and Armentrout, 1998 | RCD |
By formula: (Cu+ • H3N) + H3N = (Cu+ • 2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 246. ± 10. | kJ/mol | CIDT | Walter and Armentrout, 1998 | RCD |
By formula: (Cu+ • 2H3N) + H3N = (Cu+ • 3H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 46.9 ± 5.9 | kJ/mol | CIDT | Walter and Armentrout, 1998 | RCD |
ΔrH° | 58.6 | kJ/mol | HPMS | Holland and Castleman, 1982 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 99.6 | J/mol*K | HPMS | Holland and Castleman, 1982 | gas phase; M |
By formula: (Cu+ • 3H3N) + H3N = (Cu+ • 4H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 41.8 ± 5.9 | kJ/mol | CIDT | Walter and Armentrout, 1998 | RCD |
ΔrH° | 53.6 | kJ/mol | HPMS | Holland and Castleman, 1982 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 120. | J/mol*K | HPMS | Holland and Castleman, 1982 | gas phase; M |
By formula: (Cu+ • 4H3N) + H3N = (Cu+ • 5H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 53.6 | kJ/mol | HPMS | Holland and Castleman, 1982 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 138. | J/mol*K | HPMS | Holland and Castleman, 1982 | gas phase; M |
By formula: F- + H3N = (F- • H3N)
Bond type: Hydrogen bond (negative ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 96. | kJ/mol | FA | Spears and Ferguson, 1973 | gas phase; ΔrH>; M |
By formula: Fe+ + H3N = (Fe+ • H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 183. ± 12. | kJ/mol | CIDT | Walter and Armentrout, 1998 | RCD |
ΔrH° | 161. | kJ/mol | CID | Marinelli and Squires, 1989 | gas phase; M |
By formula: (Fe+ • H3N) + H3N = (Fe+ • 2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 225. ± 12. | kJ/mol | CIDT | Walter and Armentrout, 1998 | RCD |
ΔrH° | 204. | kJ/mol | CID | Marinelli and Squires, 1989 | gas phase; M |
By formula: (Fe+ • 2H3N) + H3N = (Fe+ • 3H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 68. ± 13. | kJ/mol | CIDT | Walter and Armentrout, 1998 | RCD |
By formula: (Fe+ • 3H3N) + H3N = (Fe+ • 4H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 41.8 ± 7.1 | kJ/mol | CIDT | Walter and Armentrout, 1998 | RCD |
By formula: H- + H3N = (H- • H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 29.7 | kJ/mol | Est | Snodgrass, Coe, et al., 1995 | gas phase; Stated electron affinity is the Vertical Detachment Energy; B |
ΔrH° | 35. | kJ/mol | PES | Coe, Snodgrass, et al., 1985 | gas phase; ΔrH<; M |
By formula: (H- • H3N) + H3N = (H- • 2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 33.9 | kJ/mol | Est | Snodgrass, Coe, et al., 1995 | gas phase; Affinity: shift in apparent EA from lesser-solvated ion. Ignores any neutral-neutral bond.; B |
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 50.21 | kJ/mol | N/A | Schwartz, Davico, et al., 2000 | gas phase; Vertical Detachment Energy: 2.54±0.015 eV. Affinity is from difference in EAs; B |
By formula: H2N- + H3N = (H2N- • H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 50.21 | kJ/mol | PDis | Snodgrass, Coe, et al., 1989 | gas phase; B |
By formula: (H2N- • H3N) + H3N = (H2N- • 2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 46.44 | kJ/mol | Est | Snodgrass, Coe, et al., 1989 | gas phase; Affinity: shift in apparent EA from lesser-solvated ion. Ignores any neutral-neutral bond.; B |
By formula: H3N+ + H3N = (H3N+ • H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 97. ± 19. | kJ/mol | EI | Stephan, Futrell, et al., 1982 | gas phase; M |
ΔrH° | 75.7 | kJ/mol | PI | Ng, Trevor, et al., 1977 | gas phase; M |
By formula: (H3N+ • H3N) + H3N = (H3N+ • 2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 40. ± 20. | kJ/mol | EI | Breen, Tzeng, et al., 1989 | gas phase; M |
ΔrH° | 38. ± 19. | kJ/mol | EI | Stephan, Futrell, et al., 1982 | gas phase; M |
By formula: (H4N+ • CHN) + H3N = (H4N+ • H3N • CHN)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 78.7 | kJ/mol | PHPMS | Deakyne, Knuth, et al., 1994 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 92. | J/mol*K | N/A | Deakyne, Knuth, et al., 1994 | gas phase; Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
39. | 429. | PHPMS | Deakyne, Knuth, et al., 1994 | gas phase; Entropy change calculated or estimated; M |
By formula: (H4N+ • C4H10O2) + H3N = (H4N+ • H3N • C4H10O2)
Bond type: Hydrogen bond (positive ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 58.6 | kJ/mol | PHPMS | Meot-Ner (Mautner), Sieck, et al., 1996 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 81.2 | J/mol*K | PHPMS | Meot-Ner (Mautner), Sieck, et al., 1996 | gas phase; M |
By formula: (H4N+ • H2O) + H3N = (H4N+ • H3N • H2O)
Bond type: Hydrogen bond (positive ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 77.0 | kJ/mol | PHPMS | Payzant, Cunningham, et al., 1973 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 96.2 | J/mol*K | PHPMS | Payzant, Cunningham, et al., 1973 | gas phase; M |
By formula: (H4N+ • 2H2O) + H3N = (H4N+ • H3N • 2H2O)
Bond type: Hydrogen bond (positive ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 76.1 | kJ/mol | PHPMS | Payzant, Cunningham, et al., 1973 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 127. | J/mol*K | PHPMS | Payzant, Cunningham, et al., 1973 | gas phase; M |
By formula: (H4N+ • 3H2O) + H3N = (H4N+ • H3N • 3H2O)
Bond type: Hydrogen bond (positive ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 72.4 | kJ/mol | PHPMS | Payzant, Cunningham, et al., 1973 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 147. | J/mol*K | PHPMS | Payzant, Cunningham, et al., 1973 | gas phase; M |
By formula: H4N+ + H3N = (H4N+ • H3N)
Bond type: Hydrogen bond (positive ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 107. ± 6. | kJ/mol | AVG | N/A | Average of 4 out of 9 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 111. ± 10. | J/mol*K | AVG | N/A | Average of 4 out of 6 values; Individual data points |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
26. | 400. | HPMS | Wincel, 1972 | gas phase; M |
By formula: (H4N+ • H3N • 2CHN) + H3N = (H4N+ • 2H3N • 2CHN)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 54.0 | kJ/mol | PHPMS | Deakyne, Knuth, et al., 1994 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 84. | J/mol*K | N/A | Deakyne, Knuth, et al., 1994 | gas phase; Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
28. | 315. | PHPMS | Deakyne, Knuth, et al., 1994 | gas phase; Entropy change calculated or estimated; M |
By formula: (H4N+ • H3N • C2H3N) + H3N = (H4N+ • 2H3N • C2H3N)
Bond type: Hydrogen bond (positive ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 64.9 | kJ/mol | MKER | Tzeng, Wei, et al., 1991 | gas phase; from graph; M |
By formula: (H4N+ • 2H3N • C2H3N) + H3N = (H4N+ • 3H3N • C2H3N)
Bond type: Hydrogen bond (positive ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 56.9 | kJ/mol | MKER | Tzeng, Wei, et al., 1991 | gas phase; from graph; M |
By formula: (H4N+ • 3H3N • C2H3N) + H3N = (H4N+ • 4H3N • C2H3N)
Bond type: Hydrogen bond (positive ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 31. | kJ/mol | MKER | Tzeng, Wei, et al., 1991 | gas phase; from graph; M |
By formula: (H4N+ • 4H3N • C2H3N) + H3N = (H4N+ • 5H3N • C2H3N)
Bond type: Hydrogen bond (positive ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 29. | kJ/mol | MKER | Tzeng, Wei, et al., 1991 | gas phase; from graph; M |
By formula: (H4N+ • 5H3N • C2H3N) + H3N = (H4N+ • 6H3N • C2H3N)
Bond type: Hydrogen bond (positive ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 25. | kJ/mol | MKER | Tzeng, Wei, et al., 1991 | gas phase; from graph; M |
By formula: (H4N+ • 6H3N • C2H3N) + H3N = (H4N+ • 7H3N • C2H3N)
Bond type: Hydrogen bond (positive ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 23. | kJ/mol | MKER | Tzeng, Wei, et al., 1991 | gas phase; from graph; M |
By formula: (H4N+ • 7H3N • C2H3N) + H3N = (H4N+ • 8H3N • C2H3N)
Bond type: Hydrogen bond (positive ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 25. | kJ/mol | MKER | Tzeng, Wei, et al., 1991 | gas phase; from graph; M |
By formula: (H4N+ • 8H3N • C2H3N) + H3N = (H4N+ • 9H3N • C2H3N)
Bond type: Hydrogen bond (positive ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 23. | kJ/mol | MKER | Tzeng, Wei, et al., 1991 | gas phase; from graph; M |
By formula: (H4N+ • H3N • H2O) + H3N = (H4N+ • 2H3N • H2O)
Bond type: Hydrogen bond (positive ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 71.5 | kJ/mol | PHPMS | Payzant, Cunningham, et al., 1973 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 133. | J/mol*K | PHPMS | Payzant, Cunningham, et al., 1973 | gas phase; M |
By formula: (H4N+ • H3N • 2H2O) + H3N = (H4N+ • 2H3N • 2H2O)
Bond type: Hydrogen bond (positive ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 65.7 | kJ/mol | PHPMS | Payzant, Cunningham, et al., 1973 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 142. | J/mol*K | PHPMS | Payzant, Cunningham, et al., 1973 | gas phase; M |
By formula: (H4N+ • 2H3N • H2O) + H3N = (H4N+ • 3H3N • H2O)
Bond type: Hydrogen bond (positive ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 62.8 | kJ/mol | PHPMS | Payzant, Cunningham, et al., 1973 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 144. | J/mol*K | PHPMS | Payzant, Cunningham, et al., 1973 | gas phase; M |
By formula: (H4N+ • H3N) + H3N = (H4N+ • 2H3N)
Bond type: Hydrogen bond (positive ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 70. ± 5. | kJ/mol | AVG | N/A | Average of 5 out of 8 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 100. | J/mol*K | HPMS | Tang and Castleman, 1975 | gas phase; M |
ΔrS° | 99.2 | J/mol*K | PHPMS | Arshadi and Futrell, 1974 | gas phase; M |
ΔrS° | 104. | J/mol*K | DT | Long and Franklin, 1973 | gas phase; M |
ΔrS° | 112. | J/mol*K | PHPMS | Searles and Kebarle, 1968 | gas phase; M |
ΔrS° | 95.8 | J/mol*K | PHPMS | Payzant, Cunningham, et al., 1973 | gas phase; typographical error in ΔrH; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
41. | 296. | FA | Fehsenfeld and Ferguson, 1973 | gas phase; DG>; M |
42.3 | 296. | SAMS | Puckett and Teague, 1971 | gas phase; M |
23. | 400. | HPMS | Wincel, 1972 | gas phase; M |
By formula: (H4N+ • 2H3N) + H3N = (H4N+ • 3H3N)
Bond type: Hydrogen bond (positive ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 50. ± 20. | kJ/mol | AVG | N/A | Average of 6 out of 9 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 105. ± 5. | J/mol*K | AVG | N/A | Average of 4 out of 7 values; Individual data points |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
27. | 296. | FA | Fehsenfeld and Ferguson, 1973 | gas phase; M |
27. | 296. | SAMS | Puckett and Teague, 1971 | gas phase; M |
By formula: (H4N+ • 3H3N) + H3N = (H4N+ • 4H3N)
Bond type: Hydrogen bond (positive ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 51. ± 4. | kJ/mol | AVG | N/A | Average of 5 out of 10 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 118. ± 8. | J/mol*K | AVG | N/A | Average of 3 out of 7 values; Individual data points |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
14. | 296. | FA | Fehsenfeld and Ferguson, 1973 | gas phase; M |
By formula: (H4N+ • 4H3N) + H3N = (H4N+ • 5H3N)
Bond type: Hydrogen bond (positive ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 29. | kJ/mol | PHPMS | Arshadi and Futrell, 1974 | gas phase; M |
ΔrH° | 31. | kJ/mol | PHPMS | Searles and Kebarle, 1968 | gas phase; M |
ΔrH° | 30. | kJ/mol | MKER | Wei, Tzeng, et al., 1990 | gas phase; from graph; M |
ΔrH° | 12. | kJ/mol | TPEPICO | Kamke, Herrmann, et al., 1988 | gas phase; M |
ΔrH° | 40. | kJ/mol | DT | Long and Franklin, 1973 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 90.0 | J/mol*K | PHPMS | Arshadi and Futrell, 1974 | gas phase; M |
ΔrS° | 100. | J/mol*K | PHPMS | Searles and Kebarle, 1968 | gas phase; M |
ΔrS° | 130. | J/mol*K | DT | Long and Franklin, 1973 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 2. | kJ/mol | HPMS | Hogg, Haynes, et al., 1966 | gas phase; M |
By formula: (H4N+ • 5H3N) + H3N = (H4N+ • 6H3N)
Bond type: Hydrogen bond (positive ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 27. | kJ/mol | PHPMS | Arshadi and Futrell, 1974 | gas phase; M |
ΔrH° | 30. | kJ/mol | MKER | Wei, Tzeng, et al., 1990 | gas phase; from graph; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 91.6 | J/mol*K | PHPMS | Arshadi and Futrell, 1974 | gas phase; M |
By formula: (H4N+ • 6H3N) + H3N = (H4N+ • 7H3N)
Bond type: Hydrogen bond (positive ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 20. | kJ/mol | MKER | Wei, Tzeng, et al., 1990 | gas phase; from graph; M |
By formula: (H4N+ • 7H3N) + H3N = (H4N+ • 8H3N)
Bond type: Hydrogen bond (positive ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 20. | kJ/mol | MKER | Wei, Tzeng, et al., 1990 | gas phase; from graph; M |
By formula: (H4N+ • 8H3N) + H3N = (H4N+ • 9H3N)
Bond type: Hydrogen bond (positive ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 20. | kJ/mol | MKER | Wei, Tzeng, et al., 1990 | gas phase; from graph; M |
By formula: (H4N+ • 9H3N) + H3N = (H4N+ • 10H3N)
Bond type: Hydrogen bond (positive ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 20. | kJ/mol | MKER | Wei, Tzeng, et al., 1990 | gas phase; from graph; M |
By formula: (H4N+ • 10H3N) + H3N = (H4N+ • 11H3N)
Bond type: Hydrogen bond (positive ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 20. | kJ/mol | MKER | Wei, Tzeng, et al., 1990 | gas phase; from graph; M |
By formula: (H4N+ • 11H3N) + H3N = (H4N+ • 12H3N)
Bond type: Hydrogen bond (positive ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 20. | kJ/mol | MKER | Wei, Tzeng, et al., 1990 | gas phase; from graph; M |
By formula: (H4N+ • 12H3N) + H3N = (H4N+ • 13H3N)
Bond type: Hydrogen bond (positive ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 20. | kJ/mol | MKER | Wei, Tzeng, et al., 1990 | gas phase; from graph; M |
By formula: (H4N+ • 13H3N) + H3N = (H4N+ • 14H3N)
Bond type: Hydrogen bond (positive ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 20. | kJ/mol | MKER | Wei, Tzeng, et al., 1990 | gas phase; from graph; M |
By formula: (H4N+ • 14H3N) + H3N = (H4N+ • 15H3N)
Bond type: Hydrogen bond (positive ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 20. | kJ/mol | MKER | Wei, Tzeng, et al., 1990 | gas phase; from graph; M |
By formula: (H4N+ • 15H3N) + H3N = (H4N+ • 16H3N)
Bond type: Hydrogen bond (positive ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 20. | kJ/mol | MKER | Wei, Tzeng, et al., 1990 | gas phase; from graph; M |
By formula: I- + H3N = (I- • H3N)
Bond type: Hydrogen bond (negative ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 31.0 ± 1.3 | kJ/mol | TDAs | Evans, Keesee, et al., 1987 | gas phase; B,M |
ΔrH° | 31. ± 4.2 | kJ/mol | TDAs | Caldwell, Masucci, et al., 1989 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 87.4 | J/mol*K | HPMS | Evans, Keesee, et al., 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 5.0 ± 2.5 | kJ/mol | TDAs | Evans, Keesee, et al., 1987 | gas phase; B |
By formula: K+ + H3N = (K+ • H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 84.1 | kJ/mol | HPMS | Castleman, 1978 | gas phase; M |
ΔrH° | 74.5 | kJ/mol | HPMS | Davidson and Kebarle, 1976 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 96.2 | J/mol*K | HPMS | Castleman, 1978 | gas phase; M |
ΔrS° | 117. | J/mol*K | HPMS | Davidson and Kebarle, 1976 | gas phase; M |
By formula: (K+ • H3N) + H3N = (K+ • 2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 68.2 | kJ/mol | HPMS | Castleman, 1978 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 95.4 | J/mol*K | HPMS | Castleman, 1978 | gas phase; M |
By formula: (K+ • 2H3N) + H3N = (K+ • 3H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 56.5 | kJ/mol | HPMS | Castleman, 1978 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 116. | J/mol*K | HPMS | Castleman, 1978 | gas phase; M |
By formula: (K+ • 3H3N) + H3N = (K+ • 4H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 48.5 | kJ/mol | HPMS | Castleman, 1978 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 106. | J/mol*K | HPMS | Castleman, 1978 | gas phase; M |
By formula: Li+ + H3N = (Li+ • H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 164. | kJ/mol | ICR | Woodin and Beauchamp, 1978 | gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 interpolated; M |
ΔrH° | 161. | kJ/mol | ICR | Staley and Beauchamp, 1975 | gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 extrapolated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 96. | J/mol*K | N/A | Woodin and Beauchamp, 1978 | gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 interpolated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 134. | kJ/mol | ICR | Woodin and Beauchamp, 1978 | gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 interpolated; M |
By formula: (Li+ • H3N) + H3N = (Li+ • 2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 138. | kJ/mol | HPMS | Castleman, Holland, et al., 1978 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 124. | J/mol*K | HPMS | Castleman, Holland, et al., 1978 | gas phase; M |
By formula: (Li+ • 2H3N) + H3N = (Li+ • 3H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 87.9 | kJ/mol | HPMS | Castleman, Holland, et al., 1978 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 106. | J/mol*K | HPMS | Castleman, Holland, et al., 1978 | gas phase; M |
By formula: (Li+ • 3H3N) + H3N = (Li+ • 4H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 69.0 | kJ/mol | HPMS | Castleman, Holland, et al., 1978 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 136. | J/mol*K | HPMS | Castleman, Holland, et al., 1978 | gas phase; M |
By formula: (Li+ • 4H3N) + H3N = (Li+ • 5H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 46.4 | kJ/mol | HPMS | Castleman, Holland, et al., 1978 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 117. | J/mol*K | HPMS | Castleman, Holland, et al., 1978 | gas phase; M |
By formula: (Li+ • 5H3N) + H3N = (Li+ • 6H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 39. | kJ/mol | HPMS | Castleman, Holland, et al., 1978 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 106. | J/mol*K | HPMS | Castleman, Holland, et al., 1978 | gas phase; M |
By formula: Mg+ + H3N = (Mg+ • H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 154. ± 12. | kJ/mol | CIDT | Andersen, Muntean, et al., 2000 | RCD |
By formula: (Mg+ • H3N) + H3N = (Mg+ • 2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 122. ± 6.7 | kJ/mol | CIDT | Andersen, Muntean, et al., 2000 | RCD |
By formula: (Mg+ • 2H3N) + H3N = (Mg+ • 3H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 95.4 ± 8.8 | kJ/mol | CIDT | Andersen, Muntean, et al., 2000 | RCD |
By formula: (Mg+ • 3H3N) + H3N = (Mg+ • 4H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 44. ± 10. | kJ/mol | CIDT | Andersen, Muntean, et al., 2000 | RCD |
By formula: (Mg+ • 4H3N) + H3N = (Mg+ • 5H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 56. ± 12. | kJ/mol | CIDT | Andersen, Muntean, et al., 2000 | 5th ligand is NH3; RCD |
By formula: Mn+ + H3N = (Mn+ • H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 147. ± 7.9 | kJ/mol | CIDT | Walter and Armentrout, 1998 | RCD |
ΔrH° | 154. | kJ/mol | CID | Marinelli and Squires, 1989 | gas phase; M |
By formula: (Mn+ • H3N) + H3N = (Mn+ • 2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 152. ± 12. | kJ/mol | CIDT | Walter and Armentrout, 1998 | RCD |
ΔrH° | 143. | kJ/mol | CID | Marinelli and Squires, 1989 | gas phase; M |
By formula: (Mn+ • 2H3N) + H3N = (Mn+ • 3H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 64.0 ± 9.2 | kJ/mol | CIDT | Walter and Armentrout, 1998 | RCD |
ΔrH° | 49.4 | kJ/mol | CID | Marinelli and Squires, 1989 | gas phase; M |
By formula: (Mn+ • 3H3N) + H3N = (Mn+ • 4H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 36. ± 5.9 | kJ/mol | CIDT | Walter and Armentrout, 1998 | RCD |
+ = H3N2O-
By formula: NO- + H3N = H3N2O-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 43.51 | kJ/mol | N/A | Hendricks, de Clercq, et al., 2002 | gas phase; B |
By formula: Na+ + H3N = (Na+ • H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 102. ± 5.4 | kJ/mol | CIDC | Amicangelo and Armentrout, 2001 | Anchor NH3=24.41; RCD |
ΔrH° | 102. ± 5.4 | kJ/mol | CIDT | Armentrout and Rodgers, 2000 | RCD |
ΔrH° | 107. ± 0.8 | kJ/mol | HPMS | Hoyau, Norrman, et al., 1999 | RCD |
ΔrH° | 122. | kJ/mol | HPMS | Castleman, Holland, et al., 1978 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 91200. | J/mol*K | HPMS | Hoyau, Norrman, et al., 1999 | RCD |
ΔrS° | 108. | J/mol*K | HPMS | Castleman, Holland, et al., 1978 | gas phase; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
77.8 | 298. | IMRE | McMahon and Ohanessian, 2000 | Anchor alanine=39.89; RCD |
By formula: (Na+ • H3N) + H3N = (Na+ • 2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 93. ± 5. | kJ/mol | AVG | N/A | Average of 6 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 105. | J/mol*K | HPMS | Castleman, Holland, et al., 1978 | gas phase; M |
By formula: (Na+ • 2H3N) + H3N = (Na+ • 3H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 71.5 | kJ/mol | HPMS | Castleman, Holland, et al., 1978 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 100. | J/mol*K | HPMS | Castleman, Holland, et al., 1978 | gas phase; M |
By formula: (Na+ • 3H3N) + H3N = (Na+ • 4H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 61.5 | kJ/mol | HPMS | Castleman, Holland, et al., 1978 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 121. | J/mol*K | HPMS | Castleman, Holland, et al., 1978 | gas phase; M |
By formula: (Na+ • 4H3N) + H3N = (Na+ • 5H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 44.8 | kJ/mol | HPMS | Castleman, Holland, et al., 1978 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 125. | J/mol*K | HPMS | Castleman, Holland, et al., 1978 | gas phase; M |
By formula: (Na+ • 5H3N) + H3N = (Na+ • 6H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 41. | kJ/mol | HPMS | Castleman, Holland, et al., 1978 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 124. | J/mol*K | HPMS | Castleman, Holland, et al., 1978 | gas phase; M |
By formula: Ni+ + H3N = (Ni+ • H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 231. ± 16. | kJ/mol | CIDT | Walter and Armentrout, 1998 | RCD |
ΔrH° | 214. | kJ/mol | CID | Marinelli and Squires, 1989 | gas phase; M |
By formula: (Ni+ • H3N) + H3N = (Ni+ • 2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 249. ± 13. | kJ/mol | CIDT | Walter and Armentrout, 1998 | RCD |
ΔrH° | 231. | kJ/mol | CID | Marinelli and Squires, 1989 | gas phase; M |
By formula: (Ni+ • 2H3N) + H3N = (Ni+ • 3H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 90.0 ± 7.9 | kJ/mol | CIDT | Walter and Armentrout, 1998 | RCD |
ΔrH° | 74.5 | kJ/mol | CID | Marinelli and Squires, 1989 | gas phase; M |
By formula: (Ni+ • 3H3N) + H3N = (Ni+ • 4H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 37. ± 5.9 | kJ/mol | CIDT | Walter and Armentrout, 1998 | RCD |
By formula: Pb+ + H3N = (Pb+ • H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 118. | kJ/mol | HPMS | Guo and Castleman, 1991 | gas phase; ΔrS from graph; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 98.7 | J/mol*K | HPMS | Guo and Castleman, 1991 | gas phase; ΔrS from graph; M |
By formula: (Pb+ • H3N) + H3N = (Pb+ • 2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 80.3 | kJ/mol | HPMS | Guo and Castleman, 1991 | gas phase; ΔrS from graph; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 113. | J/mol*K | HPMS | Guo and Castleman, 1991 | gas phase; ΔrS from graph; M |
By formula: (Pb+ • 2H3N) + H3N = (Pb+ • 3H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 54.4 | kJ/mol | HPMS | Guo and Castleman, 1991 | gas phase; ΔrS from graph; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 89.5 | J/mol*K | HPMS | Guo and Castleman, 1991 | gas phase; ΔrS from graph; M |
By formula: (Pb+ • 3H3N) + H3N = (Pb+ • 4H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 44.8 | kJ/mol | HPMS | Guo and Castleman, 1991 | gas phase; ΔrS from graph; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 102. | J/mol*K | HPMS | Guo and Castleman, 1991 | gas phase; ΔrS from graph; M |
By formula: Rb+ + H3N = (Rb+ • H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 78.2 | kJ/mol | HPMS | Castleman, 1978 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 102. | J/mol*K | HPMS | Castleman, 1978 | gas phase; M |
By formula: (Rb+ • H3N) + H3N = (Rb+ • 2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 63.6 | kJ/mol | HPMS | Castleman, 1978 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 98.7 | J/mol*K | HPMS | Castleman, 1978 | gas phase; M |
By formula: (Rb+ • 2H3N) + H3N = (Rb+ • 3H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 54.8 | kJ/mol | HPMS | Castleman, 1978 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 105. | J/mol*K | HPMS | Castleman, 1978 | gas phase; M |
By formula: (Rb+ • 3H3N) + H3N = (Rb+ • 4H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 47.7 | kJ/mol | HPMS | Castleman, 1978 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 159. | J/mol*K | HPMS | Castleman, 1978 | gas phase; M |
By formula: (Rb+ • 4H3N) + H3N = (Rb+ • 5H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 42.7 | kJ/mol | HPMS | Castleman, 1978 | gas phase; M |
By formula: Ti+ + H3N = (Ti+ • H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 195. ± 7.1 | kJ/mol | CIDT | Walter and Armentrout, 1998 | RCD |
By formula: (Ti+ • H3N) + H3N = (Ti+ • 2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 175. ± 15. | kJ/mol | CIDT | Walter and Armentrout, 1998 | RCD |
By formula: (Ti+ • 2H3N) + H3N = (Ti+ • 3H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 176. ± 15. | kJ/mol | CIDT | Walter and Armentrout, 1998 | RCD |
By formula: (Ti+ • 3H3N) + H3N = (Ti+ • 4H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 156. ± 10. | kJ/mol | CIDT | Walter and Armentrout, 1998 | RCD |
By formula: V+ + H3N = (V+ • H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 190. ± 11. | kJ/mol | CIDT | Walter and Armentrout, 1998 | RCD |
ΔrH° | 217. | kJ/mol | CID | Marinelli and Squires, 1989 | gas phase; M |
By formula: (V+ • H3N) + H3N = (V+ • 2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 164. ± 9.2 | kJ/mol | CIDT | Walter and Armentrout, 1998 | RCD |
ΔrH° | 188. | kJ/mol | CID | Marinelli and Squires, 1989 | gas phase; M |
By formula: (V+ • 2H3N) + H3N = (V+ • 3H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 104. ± 11. | kJ/mol | CIDT | Walter and Armentrout, 1998 | RCD |
ΔrH° | 94.6 | kJ/mol | CID | Marinelli and Squires, 1989 | gas phase; M |
By formula: (V+ • 3H3N) + H3N = (V+ • 4H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 95. ± 11. | kJ/mol | CIDT | Walter and Armentrout, 1998 | RCD |
ΔrH° | 78.2 | kJ/mol | CID | Marinelli and Squires, 1989 | gas phase; M |
References
Go To: Top, Ion clustering data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Holland and Castleman, 1982
Holland, P.M.; Castleman, A.W.,
The Thermochemical Properties of Gas - Phase Transition Metal Ion Complexes,
J. Chem. Phys., 1982, 76, 8, 4195, https://doi.org/10.1063/1.443497
. [all data]
Castleman, 1978
Castleman, A.W.,
The Properties of Clusters in the Gas Phase: Ammonia about Bi+, Rb+, and K+,
Chem. Phys. Lett., 1978, 53, 3, 560, https://doi.org/10.1016/0009-2614(78)80069-4
. [all data]
Evans, Keesee, et al., 1987
Evans, D.H.; Keesee, R.G.; Castleman Jr.,
The Association of Ammonia with Halide Ions in the Gas Phase,
J. Chem. Phys., 1987, 86, 5, 2927, https://doi.org/10.1063/1.452043
. [all data]
Yamdagni and Kebarle, 1974
Yamdagni, R.; Kebarle, P.,
The hydrogen bond energies in ClHCl- and Cl-(HCl)n,
Can. J. Chem., 1974, 52, 2449. [all data]
Li and Stone, 1990
Li, X.; Stone, A.J.,
Gas-Phase (CH3)3Si+ Affinities of Alkylamines and Proton Affinities of Trimethylsilyl Alkylamines,
Int. J. Mass Spectrom. Ion Proc., 1990, 101, 2-3, 149, https://doi.org/10.1016/0168-1176(90)87008-5
. [all data]
Wojtyniak and Stone, 1986
Wojtyniak, A.C.M.; Stone, A.J.,
A High-Pressure Mass Spectrometric Study of the Bonding of Trimethylsilylium to Oxygen and Aromatic Bases,
Can. J. Chem., 1986, 74, 59. [all data]
Stone and Splinter, 1984
Stone, J.A.; Splinter, D.E.,
A high-pressure mass spectrometric study of the binding of (CH3)3Sn+ to lewis bases in the gas phase,
Int. J. Mass Spectrom. Ion Processes, 1984, 59, 169. [all data]
Meot-Ner (Mautner) and Sieck, 1991
Meot-Ner (Mautner), M.; Sieck, L.W.,
Proton affinity ladders from variable-temperature equilibrium measurements. 1. A reevaluation of the upper proton affinity range,
J. Am. Chem. Soc., 1991, 113, 12, 4448, https://doi.org/10.1021/ja00012a012
. [all data]
Szulejko and McMahon, 1991
Szulejko, J.E.; McMahon, T.B.,
A Pulsed Electron Beam, Variable Temperature, High Pressure Mass Spectrometric Reevaluation of the Proton Affinity Difference Between 2-Methylpropene and Ammonia,
Int. J. Mass Spectrom. Ion Proc., 1991, 109, 279, https://doi.org/10.1016/0168-1176(91)85109-Y
. [all data]
Meot-Ner (Mautner) and Sieck, 1990
Meot-Ner (Mautner), M.; Sieck, L.W.,
Ion Thermochemistry at High Temperatures. 1. Thermochemistry of the Ammonium Ion from Variable - Temperature Equilibrium Measurements. Proton Transfer, Association, and Decomposition Reactions in Ammonia, Isobutene, and t-Butylamine,
J. Phys. Chem., 1990, 94, 19, 7730, https://doi.org/10.1021/j100382a076
. [all data]
Meot-Ner and Field, 1974
Meot-Ner, (Mautner); Field, F.H.,
Solvation and Association of Protonated Gaseous Amino Acids,
J. Am. Chem. Soc., 1974, 96, 10, 3168, https://doi.org/10.1021/ja00817a024
. [all data]
Meot-Ner (Mautner), Sieck, et al., 1996
Meot-Ner (Mautner), M.; Sieck, L.W.; Liebman, J.F.; Scheiner, S.,
Complexing of the Ammonium Ion by Polyethers. Comparative Complexing Thermochemistry of Ammonium, Hydronium, and Alkali Cations,
J. Phys. Chem., 1996, 100, 16, 6445, https://doi.org/10.1021/jp9514943
. [all data]
Tschurl and Boesl, 2008
Tschurl, M.; Boesl, U.,
IR-photodissociation and photodetachment spectroscopy of Cl-center dot(NH3)(x) (IR : x=1-4, PD : x=1),
Chem. Phys. Lett., 2008, 456, 4-6, 150-155, https://doi.org/10.1016/j.cplett.2008.03.041
. [all data]
Markovich, Chesnovsky, et al., 1993
Markovich, G.; Chesnovsky, O.; Kaldor, U.,
Charge Transfer Excitations in the Photoelectron Spectrum of Cl-NH3: Experiment and calculation, J. Chem. Phys, 1993, https://doi.org/10.1063/1.465913
. [all data]
Larson and McMahon, 1984
Larson, J.W.; McMahon, T.B.,
Hydrogen bonding in gas phase anions. An experimental investigation of the interaction between chloride ion and bronsted acids from ICR chloride exchange equilibria,
J. Am. Chem. Soc., 1984, 106, 517. [all data]
Larson and McMahon, 1984, 2
Larson, J.W.; McMahon, T.B.,
Gas phase negative ion chemistry of alkylchloroformates,
Can. J. Chem., 1984, 62, 675. [all data]
Walter and Armentrout, 1998
Walter, D.; Armentrout, P.B.,
Periodic Trends in Chemical Reactivity: Reactions of Sc+, Y+, La+, and Lu+ with H2, D2 and HD,
J. Am. Chem. Soc., 1998, 120, 13, 3176, https://doi.org/10.1021/ja973202c
. [all data]
Marinelli and Squires, 1989
Marinelli, P.J.; Squires, R.R.,
Sequential Solvation of Atomic Transition Metal Ions: The Second Solvent Molecule Can Bind More Strongly than the First,
J. Am. Chem. Soc., 1989, 111, 11, 4101, https://doi.org/10.1021/ja00193a052
. [all data]
Spears and Ferguson, 1973
Spears, K.G.; Ferguson, E.E.,
Termolecular and Saturated Termolecular Kinetics for Li+ and F-,
J. Chem. Phys., 1973, 59, 8, 4174, https://doi.org/10.1063/1.1680610
. [all data]
Snodgrass, Coe, et al., 1995
Snodgrass, J.T.; Coe, J.V.; Freidhoff, C.B.; Mchugh, K.M.; Arnold, S.T.; Bowen, K.H.,
Negative ion photoelectron spectroscopy of NH2-(NH3)1 and NH2-(NH3)2: Gas phase basicities of partially solvated anions,
J. Phys. Chem., 1995, 99, 24, 9675, https://doi.org/10.1021/j100024a006
. [all data]
Coe, Snodgrass, et al., 1985
Coe, J.V.; Snodgrass, J.T.; Friedhoff, C.B.; McHugh, K.M.; Bowen, K.H.,
Negative ion photoelectron spectroscopy of the negative ion H-(NH3),
J. Chem. Phys., 1985, 83, 3169. [all data]
Schwartz, Davico, et al., 2000
Schwartz, R.L.; Davico, G.E.; Kim, J.B.; Lineberger, C.W.,
Negative Ion Photoelectron Spectroscopy of OH-(NH3),
J. Chem. Phys., 2000, 112, 11, 4966, https://doi.org/10.1063/1.481051
. [all data]
Snodgrass, Coe, et al., 1989
Snodgrass, J.T.; Coe, J.V.; Freidhoff, C.B.; McHugh, K.M.; Bowen, K.H.,
Photoelectron Spectroscopy of the Negative Cluster Ions, NH2-(NH3)n=1,2,
J. Chem. Phys., 1989, 92, xxxx. [all data]
Stephan, Futrell, et al., 1982
Stephan, K.; Futrell, J.H.; Peterson, K.I.; Castleman, A.W.; Wagner, H.E.; Djuric, N.; Mark, T.D.,
An Electron - Impact Study of Ammonia Clusters in a Supersonic Molecular Beam: Appearence Potentials of NH4+, (NH3)2H+, (NH3)3+, (NH3)3H+ and (NH2 NH3)+,
Int. J. Mass Spectrom. Ion Phys., 1982, 44, 3-4, 167, https://doi.org/10.1016/0020-7381(82)80023-5
. [all data]
Ng, Trevor, et al., 1977
Ng, C.Y.; Trevor, D.J.; Tiedemann, P.W.; Ceyer, S.T.; Kronebush, B.H.; Mahan, B.H.; Lee, Y.T.,
Photoinization of Dimeric Polyatomic Molecules: Proton Affinities of H2O and HF,
J. Chem. Phys., 1977, 67, 9, 4235, https://doi.org/10.1063/1.435404
. [all data]
Breen, Tzeng, et al., 1989
Breen, J.J.; Tzeng, W.B.; Kilgore, K.; Keesee, R.G.; Castleman, A.W.,
Intracluster Reactions in Phenylacetylene - Ammonia Clusters Initiated through Resonant Enhanced Ionization,
J. Phys. Chem., 1989, 90, 1, 19, https://doi.org/10.1063/1.456521
. [all data]
Deakyne, Knuth, et al., 1994
Deakyne, C.A.; Knuth, D.M.; Speller, C.V.; Meot-Ner (Mautner), M.; Sieck, L.W.,
Filling of Solvent Shells about Ions. Part 3. Isomeric Clusters of (HCN)n(NH3)mH+,
J. Mol. Structure (Theochem), 1994, 307, 217, https://doi.org/10.1016/0166-1280(94)80130-4
. [all data]
Payzant, Cunningham, et al., 1973
Payzant, J.D.; Cunningham, A.J.; Kebarle, P.,
Gas - Phase Solvation of Ammonium Ion by NH3 and H2O and Stabilities of Mixed Clusters NH4+(NH3)n(H2O)w,
Can. J. Chem., 1973, 51, 19, 3242, https://doi.org/10.1139/v73-485
. [all data]
Wincel, 1972
Wincel, H.,
Ion-Molecule Reactions in Ammonia at High Pressures,
Int. J. Mass Spectrom. Ion Phys., 1972, 9, 3, 267, https://doi.org/10.1016/0020-7381(72)80053-6
. [all data]
Tzeng, Wei, et al., 1991
Tzeng, W.B.; Wei, S.; Castleman, A.W.,
Stability, Structure and Binding - Energies of Solvated Cluster Ions - Ammonia Acetonitrile and Ammonia Acetaldehyde Systems,
J. Phys. Chem., 1991, 95, 15, 5757, https://doi.org/10.1021/j100168a011
. [all data]
Tang and Castleman, 1975
Tang, I.N.; Castleman, A.W.,
Gas - Phase Solvation of the Ammonium Ion in Ammonia,
J. Chem. Phys., 1975, 62, 11, 4576, https://doi.org/10.1063/1.430331
. [all data]
Arshadi and Futrell, 1974
Arshadi, M.R.; Futrell, J.H.,
Studies in High - Pressure Mass Spectrometry. V. Thermodynamics of Solvation Reactions. NH4+ - NH3,
J. Phys. Chem., 1974, 78, 15, 1482, https://doi.org/10.1021/j100608a008
. [all data]
Long and Franklin, 1973
Long, J.W.; Franklin, J.L.,
Ion-Cluster Reactions in a Drift Tube Ion Source,
Int. J. Mass Spectrom. Ion Phys, 1973, 12, 5, 403, https://doi.org/10.1016/0020-7381(73)80025-7
. [all data]
Searles and Kebarle, 1968
Searles, S.K.; Kebarle, P.,
Ion-Solvent-Molecule Interactions in the Gas Phase. Enthalpies and Entropies for the Reactions NH4+(NH3)(n-1) + NH3 = NH4+(NH3)n,
J. Phys. Chem., 1968, 72, 2, 742, https://doi.org/10.1021/j100848a061
. [all data]
Fehsenfeld and Ferguson, 1973
Fehsenfeld, F.C.; Ferguson, E.E.,
Thermal Energy Positive Ion Reactions in a Wet Atmosphere Containing Ammonia,
J. Chem. Phys., 1973, 59, 12, 6272, https://doi.org/10.1063/1.1680006
. [all data]
Puckett and Teague, 1971
Puckett, L.J.; Teague, M.W.,
Ion-Molecule Reactions in NO - NH3 Gas Mixtures,
J. Chem. Phys., 1971, 54, 11, 4860, https://doi.org/10.1063/1.1674763
. [all data]
Wei, Tzeng, et al., 1990
Wei, S.; Tzeng, W.B.; Castleman, A.W.,
Kinetic Energy Release Measurements of Ammonia Cluster Ions During Metastable Decomposition and Determination of Cluster Ion Binding Energies,
J. Chem. Phys., 1990, 92, 1, 332, https://doi.org/10.1063/1.458434
. [all data]
Kamke, Herrmann, et al., 1988
Kamke, W.; Herrmann, R.; Wang, Z.; Hertel, I.V.,
On the Photoionization and Fragmentation of Ammonia Clusters using TPEPICO,
Z. Phys. D., 1988, 10, 4, 491, https://doi.org/10.1007/BF01425768
. [all data]
Hogg, Haynes, et al., 1966
Hogg, A.M.; Haynes, R.M.; Kebarle, P.,
Ion-Solvent Molecule Interactions Studied in the Gas Phase. Heats and Entropies of Individual Steps. NH4+.(n-1)NH3 = NH4+.nNH3,
J. Am. Chem. Soc., 1966, 88, 1, 28, https://doi.org/10.1021/ja00953a006
. [all data]
Caldwell, Masucci, et al., 1989
Caldwell, G.W.; Masucci, J.A.; Ikonomou, M.G.,
Negative Ion Chemical Ionization Mass Spectrometry - Binding of Molecules to Bromide and Iodide Anions,
Org. Mass Spectrom., 1989, 24, 1, 8, https://doi.org/10.1002/oms.1210240103
. [all data]
Davidson and Kebarle, 1976
Davidson, W.R.; Kebarle, P.,
Binding Energies and Stabilities of Potassium Ion Complexes from Studies of Gas Phase Ion Equilibria K+ + M = K+.M,
J. Am. Chem. Soc., 1976, 98, 20, 6133, https://doi.org/10.1021/ja00436a011
. [all data]
Woodin and Beauchamp, 1978
Woodin, R.L.; Beauchamp, J.L.,
Bonding of Li+ to Lewis Bases in the Gas Phase. Reversals in Methyl Substituent Effects for Different Reference Acids,
J. Am. Chem. Soc., 1978, 100, 2, 501, https://doi.org/10.1021/ja00470a024
. [all data]
Dzidic and Kebarle, 1970
Dzidic, I.; Kebarle, P.,
Hydration of the Alkali Ions in the Gas Phase. Enthalpies and Entropies of Reactions M+(H2O)n-1 + H2O = M+(H2O)n,
J. Phys. Chem., 1970, 74, 7, 1466, https://doi.org/10.1021/j100702a013
. [all data]
Staley and Beauchamp, 1975
Staley, R.H.; Beauchamp, J.L.,
Intrinsic Acid - Base Properties of Molecules. Binding Energies of Li+ to pi - and n - Donor Bases,
J. Am. Chem. Soc., 1975, 97, 20, 5920, https://doi.org/10.1021/ja00853a050
. [all data]
Castleman, Holland, et al., 1978
Castleman, A.W.; Holland, P.M.; Lindsay, D.M.; Peterson, K.I.,
The Properties of Clusters in the Gas Phase. 2. Ammonia about Metal Ions,
J. Am. Chem. Soc., 1978, 100, 19, 6039, https://doi.org/10.1021/ja00487a011
. [all data]
Andersen, Muntean, et al., 2000
Andersen, A.; Muntean, F.; Walter, D.; Rue, C.; Armentrout, P.B.,
Collision-Induced Dissociation and Theoretical Studies of Mg+ Complexes with CO, CO2, NH3, CH4, CH3OH, and C6H6,
J. Phys. Chem. A, 2000, 104, 4, 692, https://doi.org/10.1021/jp993031t
. [all data]
Hendricks, de Clercq, et al., 2002
Hendricks, J.H.; de Clercq, H.L.; Freidhoff, C.B.; Arnold, S.T.; Eaton, J.G.; Fancher, C.; Lyapustina, S.A.; S.,
Anion solvation at the microscopic level: Photoelectron spectroscopy of the solvated anion clusters, NO-(Y)(n), where Y=Ar, Kr, Xe, N2O, H2S, NH3, H2O, and C2H4(OH)(2),
J. Chem. Phys., 2002, 116, 18, 7926-7938, https://doi.org/10.1063/1.1457444
. [all data]
Amicangelo and Armentrout, 2001
Amicangelo, J.C.; Armentrout, P.B.,
Relative and Absolute Bond Dissociation Energies of Sodium Cation Complexes Determined Using Competitive Collision-Induced Dissociation Experiments,
Int. J. Mass Spectrom., 2001, 212, 1-3, 301, https://doi.org/10.1016/S1387-3806(01)00494-8
. [all data]
Armentrout and Rodgers, 2000
Armentrout, P.B.; Rodgers, M.T.,
An Absolute Sodium Cation Affinity Scale: Threshold Collision-Induced Dissociation Experiments and ab Initio Theory,
J. Phys. Chem A, 2000, 104, 11, 2238, https://doi.org/10.1021/jp991716n
. [all data]
Hoyau, Norrman, et al., 1999
Hoyau, S.; Norrman, K.; McMahon, T.B.; Ohanessian, G.,
A Quantitative Basis for a Scale of Na+ Affinities of Organic and Small Biological Molecules in the Gas Phase,
J. Am. Chem. Soc., 1999, 121, 38, 8864, https://doi.org/10.1021/ja9841198
. [all data]
McMahon and Ohanessian, 2000
McMahon, T.B.; Ohanessian, G.,
An Experimental and Ab Initio Study of the Nature of the Binding in Gas-Phase Complexes of Sodium Ions,
Chem. Eur. J., 2000, 6, 16, 2931, https://doi.org/10.1002/1521-3765(20000818)6:16<2931::AID-CHEM2931>3.0.CO;2-7
. [all data]
Guo and Castleman, 1991
Guo, B.C.; Castleman, A.W.,
The Clustering Reactions of Na+ and Pb+ with Several Important Ligands,
Zeit. Phys. D., 1991, 19, 1-4, 397, https://doi.org/10.1007/BF01448337
. [all data]
Notes
Go To: Top, Ion clustering data, References
- Symbols used in this document:
T Temperature ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.