1-Propanol

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-256. ± 3.kJ/molAVGN/AAverage of 7 values; Individual data points
Quantity Value Units Method Reference Comment
gas322.49J/mol*KN/AChao J., 1986Other values based on low-temperature thermal measurements are: 321.6 [ Buckley E., 1967], 321.7 [ Counsell J.F., 1968], 322.59 [ Green J.H.S., 1961], 323.42 [ Chermin H.A.G., 1961], and 324.72 J/mol*K [ Wilhoit R.C., 1973].; GT

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
40.5850.Thermodynamics Research Center, 1997p=1 bar. Discrepancies with other statistically calculated S(T) and Cp(T) values [ Green J.H.S., 1961, Mathews J.F., 1961, Chao J., 1986, 2], [ Chermin H.A.G., 1961], and [ Kobe K.A., 1951, Zhuravlev E.Z., 1959] amount up to 2.5, 4, and 7 J/mol*K, respectively. Please also see Chao J., 1986.; GT
51.53100.
58.92150.
66.37200.
80.19273.15
85.56 ± 0.14298.15
85.96300.
108.03400.
128.19500.
145.41600.
160.05700.
172.62800.
183.51900.
192.971000.
201.221100.
208.401200.
214.671300.
220.141400.
224.931500.
234.51750.
241.42000.
246.62250.
250.52500.
254.2750.
256.3000.

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
102.26 ± 0.20371.2Stromsoe E., 1970Ideal gas heat capacities are given by [ Stromsoe E., 1970] as a linear function Cp=f1*(a+bT). This expression approximates the experimental values with the average deviation of 0.96 J/mol*K. The accuracy of the experimental heat capacities [ Stromsoe E., 1970] is estimated as less than 0.3%. Please also see Mathews J.F., 1961.; GT
107.28 ± 0.96375.45
108.67 ± 0.96383.05
109.42 ± 0.96387.15
106.44 ± 0.21391.2
111.21 ± 0.96396.95
113.59 ± 0.96409.95
110.42 ± 0.22411.2
115.56 ± 0.96420.75
115.97 ± 0.96422.95
114.35 ± 0.23431.2
118.71 ± 0.96437.95
118.62 ± 0.24451.2
122.94 ± 0.96461.05
125.55 ± 0.96475.35
130.97 ± 0.96504.95
132.23 ± 0.96511.85
135.98 ± 0.96532.35
141.05 ± 0.96560.05
144.49 ± 0.96578.85
148.95 ± 0.96603.25

References

Go To: Top, Gas phase thermochemistry data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Chao J., 1986
Chao J., Thermodynamic properties of key organic oxygen compounds in the carbon range C1 to C4. Part 2. Ideal gas properties, J. Phys. Chem. Ref. Data, 1986, 15, 1369-1436. [all data]

Buckley E., 1967
Buckley E., Chemical equilibria. Part 2. Dehydrogenation of propanol and butanol, Trans. Faraday Soc., 1967, 63, 895-901. [all data]

Counsell J.F., 1968
Counsell J.F., Thermodynamic properties of organic oxygen compounds. Part XIX. Low-temperature heat capacity and entropy of propan-1-ol, 2-methylpropan-1-ol, and pentan-1-ol, J. Chem. Soc. A, 1968, 1819-1823. [all data]

Green J.H.S., 1961
Green J.H.S., Thermodynamic properties of the normal alcohols C1-C12, J. Appl. Chem., 1961, 11, 397-404. [all data]

Chermin H.A.G., 1961
Chermin H.A.G., Thermo data for petrochemicals. Part 28. Gaseous normal alcohols. The important thermo properties are presented for all the gaseous normal alcohols from methanol through n-decanol, Petrol. Refiner, 1961, 40 (4), 127-130. [all data]

Wilhoit R.C., 1973
Wilhoit R.C., Physical and thermodynamic properties of aliphatic alcohols, J. Phys. Chem. Ref. Data, 1973, 2, Suppl. 1, 1-420. [all data]

Thermodynamics Research Center, 1997
Thermodynamics Research Center, Selected Values of Properties of Chemical Compounds., Thermodynamics Research Center, Texas A&M University, College Station, Texas, 1997. [all data]

Mathews J.F., 1961
Mathews J.F., The thermodynamic properties of the n-propyl alcohol, J. Phys. Chem., 1961, 65, 758-762. [all data]

Chao J., 1986, 2
Chao J., Ideal gas thermodynamic properties of simple alkanols, Int. J. Thermophys., 1986, 7, 431-442. [all data]

Kobe K.A., 1951
Kobe K.A., Thermochemistry for the petrochemical industry. Part XVII. Some C3 oxygenated hydrocarbons, Petrol. Refiner, 1951, 30 (8), 119-122. [all data]

Zhuravlev E.Z., 1959
Zhuravlev E.Z., Isotopic effect on thermodynamic functions of some organic deuterocompounds in the ideal gas state, Tr. Khim. i Khim. Tekhnol., 1959, 2, 475-485. [all data]

Stromsoe E., 1970
Stromsoe E., Heat capacity of alcohol vapors at atmospheric pressure, J. Chem. Eng. Data, 1970, 15, 286-290. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, References