2-Heptanol
- Formula: C7H16O
- Molecular weight: 116.2013
- IUPAC Standard InChIKey: CETWDUZRCINIHU-UHFFFAOYSA-N
- CAS Registry Number: 543-49-7
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Stereoisomers:
- Other names: s-Heptyl alcohol; Amyl methyl carbinol; Methyl amyl carbinol; 2-Heptyl alcohol; 2-Hydroxyheptane; CH3(CH2)4CHOHCH3; Heptanol-2; n-Heptan-2-ol; Heptan-2-ol; 1-Methylhexanol; NSC 2220
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Phase change data
Go To: Top, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 432. ± 3. | K | AVG | N/A | Average of 13 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 608.3 ± 0.6 | K | N/A | Gude and Teja, 1995 | |
Tc | 608.6 | K | N/A | Rosenthal and Teja, 1990 | Uncertainty assigned by TRC = 0.6 K; TRC |
Tc | 608.3 | K | N/A | Rosenthal and Teja, 1989 | Uncertainty assigned by TRC = 0.6 K; TRC |
Tc | 608.38 | K | N/A | Teja, Lee, et al., 1989 | TRC |
Tc | 611.4 | K | N/A | Smith, Anselme, et al., 1986 | Uncertainty assigned by TRC = 0.25 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Pc | 30.2 ± 0.2 | bar | N/A | Gude and Teja, 1995 | |
Pc | 30.21 | bar | N/A | Rosenthal and Teja, 1990 | Uncertainty assigned by TRC = 0.20 bar; TRC |
Pc | 30.21 | bar | N/A | Rosenthal and Teja, 1989 | Uncertainty assigned by TRC = 0.20 bar; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Vc | 0.442 | l/mol | N/A | Gude and Teja, 1995 | |
Quantity | Value | Units | Method | Reference | Comment |
ρc | 2.26 ± 0.02 | mol/l | N/A | Gude and Teja, 1995 | |
ρc | 2.26 | mol/l | N/A | Smith, Anselme, et al., 1986 | Uncertainty assigned by TRC = 0.17 mol/l; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 62.1 ± 0.4 | kJ/mol | GS | Verevkin and Schick, 2007 | Based on data from 275. to 312. K.; AC |
Enthalpy of vaporization
ΔvapH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
66.1 | 259. | N/A | N'Guimbi, Berro, et al., 1999 | Based on data from 244. to 338. K.; AC |
51.6 | 372. | A | Stephenson and Malanowski, 1987 | Based on data from 357. to 431. K. See also Brazhnikov, Andreevskii, et al., 1975.; AC |
54.4 | 366. | N/A | Sachek, Markovnik, et al., 1984 | Based on data from 351. to 433. K.; AC |
59.8 | 338. | N/A | Wilhoit and Zwolinski, 1973 | Based on data from 323. to 433. K.; AC |
References
Go To: Top, Phase change data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Gude and Teja, 1995
Gude, M.; Teja, A.S.,
Vapor-Liquid Critical Properties of Elements and Compounds. 4. Aliphatic Alkanols,
J. Chem. Eng. Data, 1995, 40, 1025-1036. [all data]
Rosenthal and Teja, 1990
Rosenthal, D.J.; Teja, A.S.,
The Critical Pressures and temperatures of Isomeric Alkanols,
Ind. Eng. Chem. to be published 1990 1990, 1990. [all data]
Rosenthal and Teja, 1989
Rosenthal, D.J.; Teja, A.S.,
Critical pressures and temperatures of isomeric alkanols,
Ind. Eng. Chem. Res., 1989, 28, 1693. [all data]
Teja, Lee, et al., 1989
Teja, A.S.; Lee, R.J.; Rosenthal, D.J.; Anselme, M.J.,
Correlation of the Critical Properties of Alkanes and Alkanols
in 5th IUPAC Conference on Alkanes and AlkanolsGradisca, 1989. [all data]
Smith, Anselme, et al., 1986
Smith, R.L.; Anselme, M.J.; Teja, A.S.,
The Critical Temperatures of Isomeric Pentanols and Heptanols,
Fluid Phase Equilib., 1986, 31, 161. [all data]
Verevkin and Schick, 2007
Verevkin, Sergey P.; Schick, Christoph,
Vapour pressures and heat capacity measurements on the C7--C9 secondary aliphatic alcohols,
The Journal of Chemical Thermodynamics, 2007, 39, 5, 758-766, https://doi.org/10.1016/j.jct.2006.10.007
. [all data]
N'Guimbi, Berro, et al., 1999
N'Guimbi, J.; Berro, C.; Mokbel, I.; Rauzy, E.; Jose, J.,
Experimental vapour pressures of 13 secondary and tertiary alcohols---correlation and prediction by a group contribution method,
Fluid Phase Equilibria, 1999, 162, 1-2, 143-158, https://doi.org/10.1016/S0378-3812(99)00168-5
. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Brazhnikov, Andreevskii, et al., 1975
Brazhnikov, M.M.; Andreevskii, D.N.; Sachek, A.I.; Peshchenko, A.D.,
Zh. Prikl. Khim. (Leningrad), 1975, 48, 10, 2181. [all data]
Sachek, Markovnik, et al., 1984
Sachek, A.I.; Markovnik, V.S.; Peshchenko, A.D.; Shvaro, A.V.; Andreevskii, D.N.,
Khim. Prom-st. (Moscow), 1984, 337. [all data]
Wilhoit and Zwolinski, 1973
Wilhoit, R.C.; Zwolinski, B.J.,
Physical and thermodynamic properties of aliphatic alcohols,
J. Phys. Chem. Ref. Data Suppl., 1973, 1, 2, 1. [all data]
Notes
Go To: Top, Phase change data, References
- Symbols used in this document:
Pc Critical pressure Tboil Boiling point Tc Critical temperature Vc Critical volume ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions ρc Critical density - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.