Trimethyltin
- Formula: C3H9Sn
- Molecular weight: 163.814
- IUPAC Standard InChIKey: UKHQRARQNZOXRL-UHFFFAOYSA-N
- CAS Registry Number: 17272-57-0
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Reaction thermochemistry data
Go To: Top, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: José A. Martinho Simões
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
C3H10Sn (g) = (g) + (g)
By formula: C3H10Sn (g) = H (g) + C3H9Sn (g)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 312. ± 11. | kJ/mol | ICR | Brinkman, Salomon, et al., 1995 | The reaction enthalpy was derived from the acidity of Sn(Me)3(H)(g), 1460.2 ± 8.4 kJ/mol, the electron affinity of Sn(Me)3(g), 164.0 ± 6.3 kJ/mol Brinkman, Salomon, et al., 1995, and the ionization energy of H(g), 1312.0 kJ/mol Lias, Bartmess, et al., 1988. |
By formula: C4H12Sn (g) = C3H9Sn (g) + CH4 (g)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 297. ± 17. | kJ/mol | N/A | McMillen and Golden, 1982 | |
ΔrH° | 289. ± 8. | kJ/mol | VLPP | Baldwin, Lewis, et al., 1979 | Please also see Smith and Patrick, 1983. |
References
Go To: Top, Reaction thermochemistry data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Brinkman, Salomon, et al., 1995
Brinkman, E.A.; Salomon, K.; Tumas, W.; Brauman, J.I.,
Electron affinities and gas-phase acidities of organogermanium and organotin compounds,
J. Am. Chem. Soc., 1995, 117, 17, 4905, https://doi.org/10.1021/ja00122a022
. [all data]
Lias, Bartmess, et al., 1988
Lias, S.G.; Bartmess, J.E.; Liebman, J.F.; Holmes, J.L.; Levin, R.D.; Mallard, W.G.,
Gas-Phase Ion and Neutral Thermochemistry, J. Phys. Chem. Ref. Data, 1988, 17, Suppl. 1. [all data]
McMillen and Golden, 1982
McMillen, D.F.; Golden, D.M.,
Hydrocarbon bond dissociation energies,
Ann. Rev. Phys. Chem., 1982, 33, 493. [all data]
Baldwin, Lewis, et al., 1979
Baldwin, A.C.; Lewis, K.E.; Golden, D.M.,
Int. J. Chem. Kinet., 1979, 11, 529. [all data]
Smith and Patrick, 1983
Smith, G.P.; Patrick, R.,
Int. J. Chem. Kinet., 1983, 15, 167. [all data]
Notes
Go To: Top, Reaction thermochemistry data, References
- Symbols used in this document:
ΔrH° Enthalpy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.