Hydrogen cation


Reaction thermochemistry data

Go To: Top, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: John E. Bartmess

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Reactions 51 to 100

NO3 anion + Hydrogen cation = Nitric acid

By formula: NO3- + H+ = HNO3

Quantity Value Units Method Reference Comment
Δr1357.7 ± 0.84kJ/molTDEqDavidson, Fehsenfeld, et al., 1977gas phase; Relative to HBr, reevaluated with current HBr acidity. Excited state at 3.0 eV,81WU /TIE.
Δr1380. ± 20.kJ/molNBAEMathur, Rothe, et al., 1976gas phase; From HNO3
Δr1377. ± 24.kJ/molEndoRefaey and Franklin, 1976gas phase; I- + HNO3 ->.
Δr1357.7 ± 2.1kJ/molTDEqFerguson, Dunkin, et al., 1972gas phase
Δr1490.8kJ/molEndoBerkowitz, Chupka, et al., 1971gas phase
Quantity Value Units Method Reference Comment
Δr1329.7 ± 0.84kJ/molTDEqDavidson, Fehsenfeld, et al., 1977gas phase; Relative to HBr, reevaluated with current HBr acidity. Excited state at 3.0 eV,81WU /TIE.

C3H7O- + Hydrogen cation = 1-Propanol

By formula: C3H7O- + H+ = C3H8O

Quantity Value Units Method Reference Comment
Δr1572. ± 5.4kJ/molD-EAEllison, Engleking, et al., 1982gas phase
Δr1573. ± 8.8kJ/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale
Δr1574. ± 8.4kJ/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.
Quantity Value Units Method Reference Comment
Δr1545. ± 5.9kJ/molH-TSEllison, Engleking, et al., 1982gas phase
Δr1546. ± 8.4kJ/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale
Δr1546. ± 8.8kJ/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.

C6H13O- + Hydrogen cation = 3-Pentanol, 2-methyl-

By formula: C6H13O- + H+ = C6H14O

Quantity Value Units Method Reference Comment
Δr1554. ± 8.8kJ/molG+TSHiggins and Bartmess, 1998gas phase
Δr1555. ± 8.4kJ/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.
Δr1554. ± 12.kJ/molG+TSBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale
Quantity Value Units Method Reference Comment
Δr1526. ± 8.4kJ/molIMREHiggins and Bartmess, 1998gas phase
Δr1527. ± 8.8kJ/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.
Δr1527. ± 11.kJ/molCIDCBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale

C6H13O- + Hydrogen cation = 1-Butanol, 3,3-dimethyl-

By formula: C6H13O- + H+ = C6H14O

Quantity Value Units Method Reference Comment
Δr1555. ± 8.8kJ/molG+TSHiggins and Bartmess, 1998gas phase
Δr1561. ± 8.4kJ/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.
Δr1559. ± 12.kJ/molG+TSBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale
Quantity Value Units Method Reference Comment
Δr1527. ± 8.4kJ/molIMREHiggins and Bartmess, 1998gas phase
Δr1533. ± 8.8kJ/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.
Δr1531. ± 11.kJ/molCIDCBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale

C5H11O- + Hydrogen cation = 1-Pentanol

By formula: C5H11O- + H+ = C5H12O

Quantity Value Units Method Reference Comment
Δr1565. ± 8.8kJ/molG+TSHiggins and Bartmess, 1998gas phase
Δr1568. ± 8.4kJ/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.
Δr1564. ± 12.kJ/molG+TSBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale
Quantity Value Units Method Reference Comment
Δr1538. ± 8.4kJ/molIMREHiggins and Bartmess, 1998gas phase
Δr1541. ± 8.8kJ/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.
Δr1537. ± 11.kJ/molCIDCBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale

C5H11O- + Hydrogen cation = 1-Propanol, 2,2-dimethyl-

By formula: C5H11O- + H+ = C5H12O

Quantity Value Units Method Reference Comment
Δr1559. ± 8.8kJ/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale
Δr1561. ± 9.6kJ/molD-EAJanousek, Zimmerman, et al., 1978gas phase
Δr1559. ± 8.4kJ/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.
Quantity Value Units Method Reference Comment
Δr1531. ± 8.4kJ/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale
Δr1533. ± 10.kJ/molH-TSJanousek, Zimmerman, et al., 1978gas phase
Δr1532. ± 8.8kJ/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.

C10H7- + Hydrogen cation = Naphthalene

By formula: C10H7- + H+ = C10H8

Quantity Value Units Method Reference Comment
Δr1649. ± 5.0kJ/molBranReed and Kass, 2000gas phase
Δr1649. ± 5.0kJ/molTDEqMeot-ner, Liebman, et al., 1988gas phase; anchored to 88MEO scale, not the "87 acidity scale". The Kiefer, Zhang, et al., 1997 BDE is for ortho.
Δr1648. ± 21.kJ/molCIDCLardin, Squires, et al., 2001gas phase
Quantity Value Units Method Reference Comment
Δr1613. ± 5.4kJ/molH-TSReed and Kass, 2000gas phase
Δr1606. ± 5.0kJ/molTDEqMeot-ner, Liebman, et al., 1988gas phase; anchored to 88MEO scale, not the "87 acidity scale". The Kiefer, Zhang, et al., 1997 BDE is for ortho.
Δr1613. ± 21.kJ/molH-TSLardin, Squires, et al., 2001gas phase

C6H4Cl- + Hydrogen cation = Benzene, chloro-

By formula: C6H4Cl- + H+ = C6H5Cl

Quantity Value Units Method Reference Comment
Δr1636. ± 7.9kJ/molBranWenthold and Squires, 1995gas phase
Δr1633. ± 8.8kJ/molG+TSWenthold and Squires, 1994gas phase; between furan, pyridine
Δr1633. ± 8.8kJ/molG+TSWenthold, Paulino, et al., 1991gas phase; Between H2O, furan. Wenthold and Squires, 1994 indicates isomerization occuring.
Quantity Value Units Method Reference Comment
Δr1602. ± 8.4kJ/molH-TSWenthold and Squires, 1995gas phase
Δr1598. ± 8.4kJ/molIMRBWenthold and Squires, 1994gas phase; between furan, pyridine
Δr1598. ± 8.4kJ/molIMRBWenthold, Paulino, et al., 1991gas phase; Between H2O, furan. Wenthold and Squires, 1994 indicates isomerization occuring.

C6H4Cl- + Hydrogen cation = Benzene, chloro-

By formula: C6H4Cl- + H+ = C6H5Cl

Quantity Value Units Method Reference Comment
Δr1650. ± 5.4kJ/molBranWenthold and Squires, 1995gas phase
Δr1631. ± 8.8kJ/molG+TSWenthold and Squires, 1994gas phase; between furan, pyridine
Δr1631. ± 8.8kJ/molG+TSWenthold, Paulino, et al., 1991gas phase; Between H2O, furan. Wenthold and Squires, 1994 indicates isomerization occuring.
Quantity Value Units Method Reference Comment
Δr1618. ± 5.9kJ/molH-TSWenthold and Squires, 1995gas phase
Δr1598. ± 8.4kJ/molIMRBWenthold and Squires, 1994gas phase; between furan, pyridine
Δr1598. ± 8.4kJ/molIMRBWenthold, Paulino, et al., 1991gas phase; Between H2O, furan. Wenthold and Squires, 1994 indicates isomerization occuring.

Fe- + Hydrogen cation = HFe

By formula: Fe- + H+ = HFe

Quantity Value Units Method Reference Comment
Δr1439. ± 18.kJ/molG+TSMiller, Miller, et al., 1993gas phase; Acidity stronger than EtCO2H, comparable to HCO2H.
Δr1454. ± 7.9kJ/molD-EALeopold and Lineberger, 1986gas phase
Δr1413. ± 13.kJ/molG+TSSallans, Lane, et al., 1985gas phase
Δr>1445. ± 21.kJ/molD-EACompton and Stockdale, 1976gas phase; From Fe(CO)5
Quantity Value Units Method Reference Comment
Δr1415. ± 17.kJ/molIMRBMiller, Miller, et al., 1993gas phase; Acidity stronger than EtCO2H, comparable to HCO2H.
Δr1431. ± 8.4kJ/molH-TSLeopold and Lineberger, 1986gas phase
Δr1389. ± 13.kJ/molIMRBSallans, Lane, et al., 1985gas phase

CH3- + Hydrogen cation = Methane

By formula: CH3- + H+ = CH4

Quantity Value Units Method Reference Comment
Δr1743.6 ± 2.9kJ/molD-EAEllison, Engelking, et al., 1978gas phase
Δr1749. ± 15.kJ/molCIDTGraul and Squires, 1990gas phase
Δr>1691.1 ± 0.42kJ/molG+TSBohme, Lee-Ruff, et al., 1972gas phase
Δr1735.5kJ/molN/ACheck, Faust, et al., 2001gas phase; FeBr3; ; ΔS(EA)=9.3
Quantity Value Units Method Reference Comment
Δr1709.8 ± 3.3kJ/molH-TSEllison, Engelking, et al., 1978gas phase
Δr1715. ± 15.kJ/molH-TSGraul and Squires, 1990gas phase
Δr>1657.3kJ/molIMRBBohme, Lee-Ruff, et al., 1972gas phase
Δr1704.1kJ/molN/ACheck, Faust, et al., 2001gas phase; FeBr3; ; ΔS(EA)=9.3

C3H8P- + Hydrogen cation = Trimethylphosphine

By formula: C3H8P- + H+ = C3H9P

Quantity Value Units Method Reference Comment
Δr1636. ± 8.8kJ/molG+TSIngemann and Nibbering, 1985gas phase
Δr1612. ± 17.kJ/molG+TSRomer, Gatev, et al., 1998gas phase; The conflict with Ingemann and Nibbering, 1985, 22 is not resolved
Δr1607. ± 13.kJ/molG+TSGrabowski, Roy, et al., 1988gas phase; Between O-. and MeO-, nearer the latter.
Quantity Value Units Method Reference Comment
Δr1606. ± 8.4kJ/molIMREIngemann and Nibbering, 1985gas phase
Δr1582. ± 17.kJ/molIMRBRomer, Gatev, et al., 1998gas phase; The conflict with Ingemann and Nibbering, 1985, 22 is not resolved
Δr1577. ± 13.kJ/molIMRBGrabowski, Roy, et al., 1988gas phase; Between O-. and MeO-, nearer the latter.

CHN2- + Hydrogen cation = Methane, diazo-

By formula: CHN2- + H+ = CH2N2

Quantity Value Units Method Reference Comment
Δr1554. ± 9.2kJ/molG+TSClifford, Wenthold, et al., 1998gas phase; Lit values of DfH(H2CNN) range from 71 (78BEN) to 51 ( Laufer and Okabe, 1972). Here we use the computational ( Dixon, de Jong, et al., 2005) agreeing with G3MP2B3
Quantity Value Units Method Reference Comment
Δr1523. ± 8.4kJ/molIMREClifford, Wenthold, et al., 1998gas phase; Lit values of DfH(H2CNN) range from 71 (78BEN) to 51 ( Laufer and Okabe, 1972). Here we use the computational ( Dixon, de Jong, et al., 2005) agreeing with G3MP2B3
Δr1527. ± 17.kJ/molIMRBDePuy, Van Doren, et al., 1989gas phase; Near HF, between H2O2 & acetone. G2 calculations( Gordon and Kass, 1997) give ΔHf(CH2N2)=63.1 kcal/mol

CH2Cl- + Hydrogen cation = Chloromethane

By formula: CH2Cl- + H+ = CH3Cl

Quantity Value Units Method Reference Comment
Δr1672. ± 10.kJ/molEndoHierl, Henchman, et al., 1992gas phase; HO- + ClCH3: 8.8±2.3 kcal/mol endo
Δr1657. ± 13.kJ/molG+TSIngemann and Nibbering, 1985gas phase
Δr1659. ± 19.kJ/molEIAERogers, Simpson, et al., 2010gas phase
Δr1674. ± 8.4kJ/molIMRBPoutsma, Nash, et al., 1997gas phase
Δr1670. ± 17.kJ/molG+TSHenchman, Hierl, et al., 1985gas phase; HO- + MeCl: 0.38±0.1 eV endo
Quantity Value Units Method Reference Comment
Δr1628. ± 13.kJ/molIMREIngemann and Nibbering, 1985gas phase
Δr1641. ± 17.kJ/molIMRBHenchman, Hierl, et al., 1985gas phase; HO- + MeCl: 0.38±0.1 eV endo

Hydrogen anion + Hydrogen cation = Hydrogen

By formula: H- + H+ = H2

Quantity Value Units Method Reference Comment
Δr1675.3kJ/molN/AShiell, Hu, et al., 2000gas phase; Given: 139714.8±1 cm-1 at 0K, or 399.465±0.003 kcal/mol
Δr1675.3kJ/molN/APratt, McCormack, et al., 1992gas phase; 399.46±0.01 kcal/mol at 0K; 0.94 correction, Gurvich, Veyts, et al.
Δr1675.3kJ/molD-EALykke, Murray, et al., 1991gas phase; Reported: 6082.99±0.15 cm-1, or 0.754195(18) eV
Quantity Value Units Method Reference Comment
Δr1649.3 ± 0.42kJ/molH-TSShiell, Hu, et al., 2000gas phase; Given: 139714.8±1 cm-1 at 0K, or 399.465±0.003 kcal/mol
Δr1649.3kJ/molH-TSLykke, Murray, et al., 1991gas phase; Reported: 6082.99±0.15 cm-1, or 0.754195(18) eV

C5H4N- + Hydrogen cation = Pyridine

By formula: C5H4N- + H+ = C5H5N

Quantity Value Units Method Reference Comment
Δr1631. ± 8.4kJ/molIMRESchafman and Wenthold, 2007gas phase
Δr1636. ± 10.kJ/molTDEqMeot-ner and Kafafi, 1988gas phase; anchored to 88MEO scale, not the "87 acidity scale". The Kiefer, Zhang, et al., 1997 BDE is for ortho.
Quantity Value Units Method Reference Comment
Δr1601. ± 8.4kJ/molTDEqMeot-ner and Kafafi, 1988gas phase; anchored to 88MEO scale, not the "87 acidity scale". The Kiefer, Zhang, et al., 1997 BDE is for ortho.
Δr1607. ± 13.kJ/molIMRBDePuy, Kass, et al., 1988gas phase; Comparable to water in acidity
Δr<1574. ± 8.4kJ/molIMRBBruins, Ferrer-Correia, et al., 1978gas phase; O- deprotonates

CF3O3S- + Hydrogen cation = CHF3O3S

By formula: CF3O3S- + H+ = CHF3O3S

Quantity Value Units Method Reference Comment
Δr1278. ± 9.2kJ/molG+TSKoppel, Taft, et al., 1994gas phase; Per Leito, Raamat, et al., 2009, dGacid is likely too weak by at least 1.3 kcal/mol, and possibly 5.3, due to problems in the ladder at dGacid=299
Δr<1312. ± 8.4kJ/molEIAEAdams, Smith, et al., 1986gas phase; From CF3SO3H,anhydride
Quantity Value Units Method Reference Comment
Δr1253. ± 8.4kJ/molIMREKoppel, Taft, et al., 1994gas phase; Per Leito, Raamat, et al., 2009, dGacid is likely too weak by at least 1.3 kcal/mol, and possibly 5.3, due to problems in the ladder at dGacid=299
Δr1250. ± 10.kJ/molIMRBViggiano, Henchman, et al., 1992gas phase

CCl3- + Hydrogen cation = Trichloromethane

By formula: CCl3- + H+ = CHCl3

Quantity Value Units Method Reference Comment
Δr1507.6kJ/molAcidPaulino and Squires, 1991gas phase
Δr1496. ± 8.8kJ/molG+TSPaulino and Squires, 1991gas phase
Δr1494. ± 26.kJ/molG+TSBohme, Lee-Ruff, et al., 1972gas phase; > acetone, <= C5H6; value altered from reference due to change in acidity scale
Quantity Value Units Method Reference Comment
Δr1464. ± 8.4kJ/molIMRBPaulino and Squires, 1991gas phase
Δr1464. ± 13.kJ/molIMRBBorn, Ingemann, et al., 2000gas phase
Δr1461. ± 25.kJ/molIMRBBohme, Lee-Ruff, et al., 1972gas phase; > acetone, <= C5H6; value altered from reference due to change in acidity scale

C2H2N3- + Hydrogen cation = 1H-1,2,3-Triazole

By formula: C2H2N3- + H+ = C2H3N3

Quantity Value Units Method Reference Comment
Δr1449. ± 8.8kJ/molG+TSCatalan, Claramunt, et al., 1988gas phase; The authors state the acidity is for the 2H isomer, which is more stable(G3MP2B3)in the gas phase than the 1H isomer by 3 kcal/mol. However, only the 1H isomer is commercially available; thus, this may not be a clean equilibrium.
Quantity Value Units Method Reference Comment
Δr1419. ± 8.4kJ/molIMRECatalan, Claramunt, et al., 1988gas phase; The authors state the acidity is for the 2H isomer, which is more stable(G3MP2B3)in the gas phase than the 1H isomer by 3 kcal/mol. However, only the 1H isomer is commercially available; thus, this may not be a clean equilibrium.

CH3N2O- + Hydrogen cation = Urea

By formula: CH3N2O- + H+ = CH4N2O

Quantity Value Units Method Reference Comment
Δr1514. ± 12.kJ/molCIDCMa, Wang, et al., 1998gas phase; H and S (20.5±1.8 eu) directly from kinetic method
Δr1517. ± 11.kJ/molG+TSTaft, 1987gas phase; value altered from reference due to change in acidity scale
Δr1495. ± 8.8kJ/molEIAEMuftakhov, Vasil'ev, et al., 1999gas phase
Quantity Value Units Method Reference Comment
Δr1488. ± 13.kJ/molH-TSMa, Wang, et al., 1998gas phase; H and S (20.5±1.8 eu) directly from kinetic method
Δr1487. ± 10.kJ/molIMRETaft, 1987gas phase; value altered from reference due to change in acidity scale

Bromine anion + Hydrogen cation = Hydrogen bromide

By formula: Br- + H+ = HBr

Quantity Value Units Method Reference Comment
Δr1353.69 ± 0.21kJ/molD-EABlondel, Cacciani, et al., 1989gas phase; reported: 27129.170±0.015 cm-1
Δr1353. ± 8.8kJ/molG+TSTaft and Bordwell, 1988gas phase
Δr1341.4kJ/molN/ACheck, Faust, et al., 2001gas phase; F-; ; ΔS(acid)=19.2; ΔS(EA)=6.4
Quantity Value Units Method Reference Comment
Δr1331.8 ± 0.63kJ/molH-TSBlondel, Cacciani, et al., 1989gas phase; reported: 27129.170±0.015 cm-1
Δr1331. ± 8.4kJ/molIMRETaft and Bordwell, 1988gas phase
Δr1319.6kJ/molN/ACheck, Faust, et al., 2001gas phase; F-; ; ΔS(acid)=19.2; ΔS(EA)=6.4

C3H6NO2S- + Hydrogen cation = L-Cysteine

By formula: C3H6NO2S- + H+ = C3H7NO2S

Quantity Value Units Method Reference Comment
Δr1395. ± 9.2kJ/molCIDCJones, Bernier, et al., 2007gas phase
Δr1399. ± 9.6kJ/molG+TSTian, Pawlow, et al., 2007gas phase; Calcn say SH is 3.1 kcal/mol more acidic than CO2H. See DeBlase, Kass, et al., 2014 for spectroscopy saying that it is a cyclic H-bonded species
Quantity Value Units Method Reference Comment
Δr1370. ± 8.8kJ/molN/ATian, Pawlow, et al., 2007gas phase; Calcn say SH is 3.1 kcal/mol more acidic than CO2H. See DeBlase, Kass, et al., 2014 for spectroscopy saying that it is a cyclic H-bonded species
Δr1364. ± 13.kJ/molCIDCO'Hair, Bowie, et al., 1992gas phase

L-Tyrosine anion + Hydrogen cation = Tyrosine

By formula: C9H10NO3- + H+ = C9H11NO3

Quantity Value Units Method Reference Comment
Δr1425. ± 7.5kJ/molG+TSTian, Wang, et al., 2009gas phase; Probes indicate 70% phenoxide, 30% carboxylate (0.5 kcal/mol). dSacid calc at B3LYP, mixture of anions
Δr1413. ± 11.kJ/molCIDCJones, Bernier, et al., 2007gas phase
Δr1413. ± 13.kJ/molG+TSO'Hair, Bowie, et al., 1992gas phase
Quantity Value Units Method Reference Comment
Δr1391. ± 6.3kJ/molN/ATian, Wang, et al., 2009gas phase; Probes indicate 70% phenoxide, 30% carboxylate (0.5 kcal/mol). dSacid calc at B3LYP, mixture of anions
Δr1379. ± 13.kJ/molCIDCO'Hair, Bowie, et al., 1992gas phase

C6H6N- + Hydrogen cation = Pyridine, 4-methyl-

By formula: C6H6N- + H+ = C6H7N

Quantity Value Units Method Reference Comment
Δr1547. ± 21.kJ/molG+TSMeot-ner and Kafafi, 1988gas phase; anchored to 88MEO scale, not the "87 acidity scale". The Kiefer, Zhang, et al., 1997 BDE is for ortho.
Δr1568. ± 13.kJ/molG+TSDePuy, Kass, et al., 1988gas phase; Acid: p-methylpyridine. Between iPrOH, MeCN.
Quantity Value Units Method Reference Comment
Δr1518. ± 21.kJ/molIMRBMeot-ner and Kafafi, 1988gas phase; anchored to 88MEO scale, not the "87 acidity scale". The Kiefer, Zhang, et al., 1997 BDE is for ortho.
Δr1540. ± 13.kJ/molIMRBDePuy, Kass, et al., 1988gas phase; Acid: p-methylpyridine. Between iPrOH, MeCN.

pyrrolide anion + Hydrogen cation = Pyrrole

By formula: C4H4N- + H+ = C4H5N

Quantity Value Units Method Reference Comment
Δr1504.3 ± 1.0kJ/molD-EAGianola, Ichino, et al., 2004gas phase
Δr1500. ± 9.2kJ/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale
Δr1505. ± 12.kJ/molG+TSCumming and Kebarle, 1978gas phase
Δr1500. ± 21.kJ/molEIAEMuftakhov, Vasil'ev, et al., 1999, 2gas phase
Quantity Value Units Method Reference Comment
Δr1468. ± 8.4kJ/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale
Δr1472. ± 8.4kJ/molIMRECumming and Kebarle, 1978gas phase

CN- + Hydrogen cation = Hydrogen cyanide

By formula: CN- + H+ = CHN

Quantity Value Units Method Reference Comment
Δr1464. ± 4.2kJ/molCIDTAkin and Ervin, 2006gas phase
Δr1466.5 ± 0.71kJ/molD-EABradforth, Kim, et al., 1993gas phase
Δr1469. ± 8.8kJ/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale
Quantity Value Units Method Reference Comment
Δr1433. ± 4.6kJ/molH-TSAkin and Ervin, 2006gas phase
Δr1435.8 ± 1.1kJ/molH-TSBradforth, Kim, et al., 1993gas phase
Δr1438. ± 8.4kJ/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale

CH2NO2- + Hydrogen cation = Methane, nitro-

By formula: CH2NO2- + H+ = CH3NO2

Quantity Value Units Method Reference Comment
Δr1498. ± 21.kJ/molD-EAMetz, Cyr, et al., 1991gas phase
Δr1491. ± 9.2kJ/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale
Δr1495. ± 12.kJ/molG+TSCumming and Kebarle, 1978gas phase
Quantity Value Units Method Reference Comment
Δr1463. ± 8.4kJ/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale
Δr1467. ± 8.4kJ/molIMRECumming and Kebarle, 1978gas phase
Δr1467. ± 8.4kJ/molIMREMacKay and Bohme, 1978gas phase; EA: < NO2

CH2Br- + Hydrogen cation = Methane, bromo-

By formula: CH2Br- + H+ = CH3Br

Quantity Value Units Method Reference Comment
Δr1660. ± 10.kJ/molEndoHierl, Henchman, et al., 1992gas phase; HO- + MeBr:6.0±2.3 kcal/mol endo. "Better than Ingemann and Nibbering, 1985, 22" 2.0 kcal would not show barrier
Δr1650. ± 19.kJ/molEIAERogers, Simpson, et al., 2010gas phase
Δr1643. ± 13.kJ/molG+TSIngemann and Nibbering, 1985gas phase
Quantity Value Units Method Reference Comment
Δr1631. ± 14.kJ/molH-TSHierl, Henchman, et al., 1992gas phase; HO- + MeBr:6.0±2.3 kcal/mol endo. "Better than Ingemann and Nibbering, 1985, 22" 2.0 kcal would not show barrier
Δr1614. ± 13.kJ/molIMRBIngemann and Nibbering, 1985gas phase

C6F5- + Hydrogen cation = Benzene, pentafluoro-

By formula: C6F5- + H+ = C6HF5

Quantity Value Units Method Reference Comment
Δr1492. ± 8.8kJ/molG+TSBuker, Nibbering, et al., 1997gas phase
Δr<1559.6 ± 1.3kJ/molG+TSHerd, Adams, et al., 1989gas phase; More acidic than HF, less than HCl
Δr1539. ± 21.kJ/molD-EACompton and Reinhardt, 1982gas phase; From perfluorobenzene
Quantity Value Units Method Reference Comment
Δr1460. ± 8.4kJ/molIMREBuker, Nibbering, et al., 1997gas phase
Δr<1527.2kJ/molIMRBHerd, Adams, et al., 1989gas phase; More acidic than HF, less than HCl
Δr1507. ± 21.kJ/molH-TSCompton and Reinhardt, 1982gas phase; From perfluorobenzene

C6H4Cl- + Hydrogen cation = Benzene, chloro-

By formula: C6H4Cl- + H+ = C6H5Cl

Quantity Value Units Method Reference Comment
Δr1618. ± 8.8kJ/molG+TSAndrade and Riveros, 1996gas phase
Δr1624. ± 8.4kJ/molBranWenthold and Squires, 1995gas phase
Δr1622. ± 13.kJ/molG+TSWenthold, Paulino, et al., 1991gas phase; Between PhF, furan
Quantity Value Units Method Reference Comment
Δr1584. ± 8.4kJ/molIMREAndrade and Riveros, 1996gas phase
Δr1590. ± 8.8kJ/molH-TSWenthold and Squires, 1995gas phase
Δr1588. ± 13.kJ/molIMRBWenthold, Paulino, et al., 1991gas phase; Between PhF, furan
Δr1586. ± 21.kJ/molIMRBBartmess and McIver Jr., 1979gas phase; Between H2O, MeOH

C9H9- + Hydrogen cation = Benzene, 2-propenyl-

By formula: C9H9- + H+ = C9H10

Quantity Value Units Method Reference Comment
Δr1540. ± 9.2kJ/molG+TSGlasovac, Eckert-Maksic, et al., 2002gas phase; The PhCH2CH=CH2 HOF by 81CHY/HIM is at least 4 kcal/mol too high in energy
Δr1540. ± 19.kJ/molG+TSDahlke and Kass, 1991gas phase; Between Et2NOH, Me2CH=NOH. Reprotonation site uncertain.
Quantity Value Units Method Reference Comment
Δr1513. ± 8.8kJ/molIMREGlasovac, Eckert-Maksic, et al., 2002gas phase; The PhCH2CH=CH2 HOF by 81CHY/HIM is at least 4 kcal/mol too high in energy
Δr1513. ± 19.kJ/molIMRBDahlke and Kass, 1991gas phase; Between Et2NOH, Me2CH=NOH. Reprotonation site uncertain.

C6H4FO- + Hydrogen cation = Phenol, 3-fluoro-

By formula: C6H4FO- + H+ = C6H5FO

Quantity Value Units Method Reference Comment
Δr1438. ± 8.8kJ/molG+TSFujio, McIver, et al., 1981gas phase; value altered from reference due to change in acidity scale
Δr1438. ± 12.kJ/molD-EAHernandez-Gill, Wentworth, et al., 1984gas phase
Δr1441. ± 9.6kJ/molG+TSKebarle and McMahon, 1977gas phase
Quantity Value Units Method Reference Comment
Δr1409. ± 8.4kJ/molIMREFujio, McIver, et al., 1981gas phase; value altered from reference due to change in acidity scale
Δr1409. ± 12.kJ/molH-TSHernandez-Gill, Wentworth, et al., 1984gas phase
Δr1413. ± 8.4kJ/molIMREKebarle and McMahon, 1977gas phase

C3H5O- + Hydrogen cation = Acetone

By formula: C3H5O- + H+ = C3H6O

Quantity Value Units Method Reference Comment
Δr1543. ± 8.8kJ/molD-EABrinkman, Berger, et al., 1993gas phase
Δr1544. ± 8.8kJ/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale
Δr1546. ± 11.kJ/molG+TSCumming and Kebarle, 1978gas phase
Δr1538. ± 7.5kJ/molEIAEMuftakhov, Vasil'ev, et al., 1999gas phase
Quantity Value Units Method Reference Comment
Δr1514. ± 8.4kJ/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale
Δr1516. ± 8.4kJ/molIMRECumming and Kebarle, 1978gas phase

C2HF2O2- + Hydrogen cation = Difluoroacetic acid

By formula: C2HF2O2- + H+ = C2H2F2O2

Quantity Value Units Method Reference Comment
Δr1385. ± 9.2kJ/molG+TSCaldwell, Renneboog, et al., 1989gas phase
Δr1385. ± 9.2kJ/molG+TSFujio, McIver, et al., 1981gas phase; value altered from reference due to change in acidity scale
Δr1384. ± 12.kJ/molG+TSCumming and Kebarle, 1978gas phase
Quantity Value Units Method Reference Comment
Δr1355. ± 8.4kJ/molIMRECaldwell, Renneboog, et al., 1989gas phase
Δr1355. ± 8.4kJ/molIMREFujio, McIver, et al., 1981gas phase; value altered from reference due to change in acidity scale
Δr1354. ± 8.4kJ/molIMRECumming and Kebarle, 1978gas phase

ClCH2CO2 anion + Hydrogen cation = Acetic acid, chloro-

By formula: C2H2ClO2- + H+ = C2H3ClO2

Quantity Value Units Method Reference Comment
Δr1408. ± 9.2kJ/molG+TSCaldwell, Renneboog, et al., 1989gas phase
Δr1407. ± 9.2kJ/molG+TSFujio, McIver, et al., 1981gas phase; value altered from reference due to change in acidity scale
Δr1407. ± 12.kJ/molG+TSCumming and Kebarle, 1978gas phase
Quantity Value Units Method Reference Comment
Δr1377. ± 8.4kJ/molIMRECaldwell, Renneboog, et al., 1989gas phase
Δr1376. ± 8.4kJ/molIMREFujio, McIver, et al., 1981gas phase; value altered from reference due to change in acidity scale
Δr1376. ± 8.4kJ/molIMRECumming and Kebarle, 1978gas phase

FCH2CO2 anion + Hydrogen cation = Fluoroacetic acid

By formula: C2H2FO2- + H+ = C2H3FO2

Quantity Value Units Method Reference Comment
Δr1418. ± 9.2kJ/molG+TSCaldwell, Renneboog, et al., 1989gas phase
Δr1417. ± 9.2kJ/molG+TSFujio, McIver, et al., 1981gas phase; value altered from reference due to change in acidity scale
Δr1416. ± 12.kJ/molG+TSCumming and Kebarle, 1978gas phase
Quantity Value Units Method Reference Comment
Δr1387. ± 8.4kJ/molIMRECaldwell, Renneboog, et al., 1989gas phase
Δr1386. ± 8.4kJ/molIMREFujio, McIver, et al., 1981gas phase; value altered from reference due to change in acidity scale
Δr1385. ± 8.4kJ/molIMRECumming and Kebarle, 1978gas phase

C6H4ClO- + Hydrogen cation = Phenol, 4-chloro-

By formula: C6H4ClO- + H+ = C6H5ClO

Quantity Value Units Method Reference Comment
Δr1435. ± 8.8kJ/molG+TSFujio, McIver, et al., 1981gas phase; Exptl ΔHf(AH) more stable than group additivity by ca. 8 kcal/mol; value altered from reference due to change in acidity scale
Δr1438. ± 9.6kJ/molG+TSKebarle and McMahon, 1977gas phase
Quantity Value Units Method Reference Comment
Δr1407. ± 8.4kJ/molIMREFujio, McIver, et al., 1981gas phase; Exptl ΔHf(AH) more stable than group additivity by ca. 8 kcal/mol; value altered from reference due to change in acidity scale
Δr1409. ± 8.4kJ/molIMREKebarle and McMahon, 1977gas phase

CF3CO2 anion + Hydrogen cation = Trifluoroacetic acid

By formula: C2F3O2- + H+ = C2HF3O2

Quantity Value Units Method Reference Comment
Δr1355. ± 12.kJ/molG+TSCaldwell, Renneboog, et al., 1989gas phase
Δr1351. ± 12.kJ/molG+TSJinfeng, Topsom, et al., 1988gas phase; value altered from reference due to change in acidity scale
Δr1351. ± 17.kJ/molG+TSCumming and Kebarle, 1978gas phase
Quantity Value Units Method Reference Comment
Δr1328. ± 8.4kJ/molIMRECaldwell, Renneboog, et al., 1989gas phase
Δr1324. ± 8.4kJ/molIMREJinfeng, Topsom, et al., 1988gas phase; value altered from reference due to change in acidity scale
Δr1323. ± 8.4kJ/molIMRECumming and Kebarle, 1978gas phase

C2HCl2O2- + Hydrogen cation = Acetic acid, dichloro-

By formula: C2HCl2O2- + H+ = C2H2Cl2O2

Quantity Value Units Method Reference Comment
Δr1374. ± 8.8kJ/molG+TSCaldwell, Renneboog, et al., 1989gas phase
Δr1374. ± 11.kJ/molG+TSCumming and Kebarle, 1978gas phase
Δr1369. ± 8.8kJ/molG+TSFujio, McIver, et al., 1981gas phase; value altered from reference due to change in acidity scale
Quantity Value Units Method Reference Comment
Δr1347. ± 8.4kJ/molIMRECaldwell, Renneboog, et al., 1989gas phase
Δr1347. ± 8.4kJ/molIMRECumming and Kebarle, 1978gas phase
Δr1342. ± 8.4kJ/molIMREFujio, McIver, et al., 1981gas phase; value altered from reference due to change in acidity scale

C6H4ClO- + Hydrogen cation = Phenol, 3-chloro-

By formula: C6H4ClO- + H+ = C6H5ClO

Quantity Value Units Method Reference Comment
Δr1430. ± 15.kJ/molG+TSFujio, McIver, et al., 1981gas phase; Exptl ΔHf(AH) more stable than group additivity by 6 kcal/mol; value altered from reference due to change in acidity scale
Δr1433. ± 21.kJ/molG+TSKebarle and McMahon, 1977gas phase
Quantity Value Units Method Reference Comment
Δr1402. ± 8.4kJ/molIMREFujio, McIver, et al., 1981gas phase; Exptl ΔHf(AH) more stable than group additivity by 6 kcal/mol; value altered from reference due to change in acidity scale
Δr1404. ± 8.4kJ/molIMREKebarle and McMahon, 1977gas phase

C3H4F- + Hydrogen cation = 2-Fluoropropene

By formula: C3H4F- + H+ = C3H5F

Quantity Value Units Method Reference Comment
Δr1586. ± 13.kJ/molG+TSBartmess and Burnham, 1984gas phase; value altered from reference due to change in acidity scale
Δr1579. ± 8.8kJ/molG+TSMcMahon and Northcott, 1978gas phase; value altered from reference due to change in acidity scale
Quantity Value Units Method Reference Comment
Δr1559. ± 13.kJ/molIMRBBartmess and Burnham, 1984gas phase; value altered from reference due to change in acidity scale
Δr1551. ± 8.4kJ/molIMRBMcMahon and Northcott, 1978gas phase; value altered from reference due to change in acidity scale

CHN2- + Hydrogen cation = Cyanamide

By formula: CHN2- + H+ = CH2N2

Quantity Value Units Method Reference Comment
Δr1467. ± 9.6kJ/molG+TSKoppel, Taft, et al., 1994gas phase; DH: 99±3, 97BOR/JI 2
Δr1461. ± 12.kJ/molG+TSCacace, Depetris, et al., 1993gas phase
Δr1472. ± 13.kJ/molG+TSKroeker and Kass, 1990gas phase; Between tBuSH, HOAc
Quantity Value Units Method Reference Comment
Δr1440. ± 8.4kJ/molIMREKoppel, Taft, et al., 1994gas phase; DH: 99±3, 97BOR/JI 2
Δr1433. ± 10.kJ/molIMRECacace, Depetris, et al., 1993gas phase
Δr1445. ± 13.kJ/molIMRBKroeker and Kass, 1990gas phase; Between tBuSH, HOAc

C2H3O- + Hydrogen cation = Acetaldehyde

By formula: C2H3O- + H+ = C2H4O

Quantity Value Units Method Reference Comment
Δr1645.1 ± 4.0kJ/molD-EANimlos, Soderquist, et al., 1989gas phase
Δr1636. ± 8.8kJ/molG+TSDePuy, Bierbaum, et al., 1985gas phase
Δr1619. ± 33.kJ/molCIDTGraul and Squires, 1990gas phase
Δr<1598.3kJ/molCIDTGraul and Squires, 1988gas phase
Quantity Value Units Method Reference Comment
Δr1613. ± 4.6kJ/molH-TSNimlos, Soderquist, et al., 1989gas phase
Δr1604. ± 8.4kJ/molIMRBDePuy, Bierbaum, et al., 1985gas phase
Δr<1565.9 ± 2.5kJ/molH-TSGraul and Squires, 1988gas phase

C7H4F3O3S- + Hydrogen cation = C7H5F3O3S

By formula: C7H4F3O3S- + H+ = C7H5F3O3S

Quantity Value Units Method Reference Comment
Δr1349. ± 8.8kJ/molG+TSKoppel, Taft, et al., 1994gas phase
Δr1348. ± 8.8kJ/molG+TSTaft and Topsom, 1987gas phase; Slightly revised with re-anchoring, 1991. 91TAF; value altered from reference due to change in acidity scale
Quantity Value Units Method Reference Comment
Δr1321. ± 8.4kJ/molIMREKoppel, Taft, et al., 1994gas phase
Δr1319. ± 8.4kJ/molIMRETaft and Topsom, 1987gas phase; Slightly revised with re-anchoring, 1991. 91TAF; value altered from reference due to change in acidity scale

C3H9Si- + Hydrogen cation = Silane, trimethyl-

By formula: C3H9Si- + H+ = C3H10Si

Quantity Value Units Method Reference Comment
Δr1614. ± 9.2kJ/molD-EAWetzel, Salomon, et al., 1989gas phase
Δr1607. ± 17.kJ/molG+TSDamrauer, Kass, et al., 1988gas phase; Between furan and methanol.
Quantity Value Units Method Reference Comment
Δr1584. ± 9.6kJ/molH-TSWetzel, Salomon, et al., 1989gas phase
Δr1577. ± 17.kJ/molIMRBDamrauer, Kass, et al., 1988gas phase; Between furan and methanol.
Δr1565. ± 13.kJ/molIMRBGrimm and Bartmess, 1992gas phase
Δr>1569. ± 13.kJ/molIMRBWetzel, Salomon, et al., 1989gas phase

C5H11O- + Hydrogen cation = 1-Butanol, 3-methyl-

By formula: C5H11O- + H+ = C5H12O

Quantity Value Units Method Reference Comment
Δr1566. ± 8.4kJ/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.
Δr1563. ± 12.kJ/molG+TSBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale
Quantity Value Units Method Reference Comment
Δr1538. ± 8.8kJ/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.
Δr1535. ± 11.kJ/molCIDCBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale

C5H11O- + Hydrogen cation = 3-Pentanol

By formula: C5H11O- + H+ = C5H12O

Quantity Value Units Method Reference Comment
Δr1560. ± 8.4kJ/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.
Δr1559. ± 12.kJ/molG+TSBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale
Quantity Value Units Method Reference Comment
Δr1532. ± 8.8kJ/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.
Δr1532. ± 11.kJ/molCIDCBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale

C5H11O- + Hydrogen cation = 2-Butanol, 3-methyl-

By formula: C5H11O- + H+ = C5H12O

Quantity Value Units Method Reference Comment
Δr1559. ± 8.4kJ/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.
Δr1561. ± 12.kJ/molG+TSBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale
Quantity Value Units Method Reference Comment
Δr1532. ± 8.8kJ/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.
Δr1533. ± 11.kJ/molCIDCBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale

C6H13O- + Hydrogen cation = 1-Pentanol, 4-methyl-

By formula: C6H13O- + H+ = C6H14O

Quantity Value Units Method Reference Comment
Δr1564. ± 8.4kJ/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.
Δr1561. ± 10.kJ/molG+TSBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale
Quantity Value Units Method Reference Comment
Δr1536. ± 8.8kJ/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.
Δr1533. ± 9.6kJ/molCIDCBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale

C6H13O- + Hydrogen cation = 2-Pentanol, 2-methyl-

By formula: C6H13O- + H+ = C6H14O

Quantity Value Units Method Reference Comment
Δr1558. ± 8.4kJ/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.
Δr1557. ± 12.kJ/molG+TSBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale
Quantity Value Units Method Reference Comment
Δr1531. ± 8.8kJ/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.
Δr1529. ± 11.kJ/molCIDCBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale

References

Go To: Top, Reaction thermochemistry data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Davidson, Fehsenfeld, et al., 1977
Davidson, J.A.; Fehsenfeld, F.C.; Howard, C.J., The heats of formation of NO3- and NO3- association complexes with HNO3 and HBr, Int. J. Chem. Kinet., 1977, 9, 17. [all data]

Mathur, Rothe, et al., 1976
Mathur, B.P.; Rothe, E.W.; Tang, S.Y.; Mahajan, K.; Reck, G.P., Negative gaseous ions from nitric acid, J. Chem. Phys., 1976, 64, 1247. [all data]

Refaey and Franklin, 1976
Refaey, K.M.A.; Franklin, J.L., Endoergic ion-molecule-collision processes of negative ions. V. Collision of I- on HNO3. The electron affinity of NO3, J. Chem. Phys., 1976, 64, 4810. [all data]

Ferguson, Dunkin, et al., 1972
Ferguson, E.E.; Dunkin, D.B.; Fehsenfeld, F.C., Reactions of NO2- and NO3- with HCl and HBr, J. Chem. Phys., 1972, 57, 1459. [all data]

Berkowitz, Chupka, et al., 1971
Berkowitz, J.; Chupka, W.A.; Gutman, D., Electron Affinities of O2, O3, NO, NO2, and NO3 by Endothermic Charge Transfer, J. Chem. Phys., 1971, 55, 6, 2733, https://doi.org/10.1063/1.1676488 . [all data]

Ellison, Engleking, et al., 1982
Ellison, G.B.; Engleking, P.C.; Lineberger, W.C., Photoelectron spectroscopy of alkoxide and enolate negative ions, J. Phys. Chem., 1982, 86, 4873. [all data]

Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr., The gas phase acidity scale from methanol to phenol, J. Am. Chem. Soc., 1979, 101, 6047. [all data]

Haas and Harrison, 1993
Haas, M.J.; Harrison, A.G., The Fragmentation of Proton-Bound Cluster Ions and the Gas-Phase Acidities of Alcohols, Int. J. Mass Spectrom. Ion Proc., 1993, 124, 2, 115, https://doi.org/10.1016/0168-1176(93)80003-W . [all data]

Higgins and Bartmess, 1998
Higgins, P.R.; Bartmess, J.E., The Gas Phase Acidities of Long Chain Alcohols., Int. J. Mass Spectrom., 1998, 175, 1-2, 71-79, https://doi.org/10.1016/S0168-1176(98)00125-6 . [all data]

Boand, Houriet, et al., 1983
Boand, G.; Houriet, R.; Baumann, T., The gas phase acidity of aliphatic alcohols, J. Am. Chem. Soc., 1983, 105, 2203. [all data]

Janousek, Zimmerman, et al., 1978
Janousek, B.K.; Zimmerman, A.H.; Reed, K.J.; Brauman, J.I., Electron detachment from aliphatic molecular anions. Gas phase electron affinites of methoxyl, tert-butoxyl, and neopentoxyl radicals, J. Am. Chem. Soc., 1978, 100, 6142. [all data]

Reed and Kass, 2000
Reed, D.R.; Kass, S.R., Experimental determination of the alpha and beta C-H bond dissociation energies in naphthalene, J. Mass Spectrom., 2000, 35, 4, 534-539, https://doi.org/10.1002/(SICI)1096-9888(200004)35:4<534::AID-JMS964>3.0.CO;2-T . [all data]

Meot-ner, Liebman, et al., 1988
Meot-ner, M.; Liebman, J.F.; Kafafi, S.A., Ionic Probes of Aromaticity in Annelated Rings, J. Am. Chem. Soc., 1988, 110, 18, 5937, https://doi.org/10.1021/ja00226a001 . [all data]

Kiefer, Zhang, et al., 1997
Kiefer, J.H.; Zhang, Q.; Kern, R.D.; Yao, J.; Jursic, B., Pyrolysis of Aromatic Azines: Pyrazine, Pyrimidine, and Pyridine, J. Phys. Chem. A, 1997, 101, 38, 7061, https://doi.org/10.1021/jp970211z . [all data]

Lardin, Squires, et al., 2001
Lardin, H.A.; Squires, R.R.; Wenthold, P.G., Determination of the electron affinities of alpha- and beta- naphthyl radicals using the kinetic method with full entropy analysis. The C-H bond dissociation energies of naphthalene, J. Mass Spectrom., 2001, 36, 6, 607-615, https://doi.org/10.1002/jms.159 . [all data]

Wenthold and Squires, 1995
Wenthold, P.G.; Squires, R.R., Determination of the gas-phase acidities of halogen-substituted aromatic compounds using the silane-cleavage method, J. Mass Spectrom., 1995, 30, 1, 17, https://doi.org/10.1002/jms.1190300105 . [all data]

Wenthold and Squires, 1994
Wenthold, P.G.; Squires, R.R., Gas-phase properties and reactivity of the acetate radical anion. Determination of the C-H bond strengths in acetic acid and acetate ion, J. Am. Chem. Soc., 1994, 116, 26, 11890, https://doi.org/10.1021/ja00105a032 . [all data]

Wenthold, Paulino, et al., 1991
Wenthold, P.G.; Paulino, J.A.; Squires, R.R., The Absolute Heats of Formation of ortho-Benzyne, meta-Benzyne, and para-Benzyne, J. Am. Chem. Soc., 1991, 113, 19, 7414, https://doi.org/10.1021/ja00019a044 . [all data]

Miller, Miller, et al., 1993
Miller, A.E.S.; Miller, T.M.; Morris, R.A.; Viggiano, A.A.; Vandoren, J.M.; Paulson, J.F., Reactions of Fe- with Acids - Gas-Phase Acidity and Bond Energy of FeH, Int. J. Mass Spectrom. Ion Proc., 1993, 123, 3, 205, https://doi.org/10.1016/0168-1176(93)87099-E . [all data]

Leopold and Lineberger, 1986
Leopold, D.G.; Lineberger, W.C., A study of the low-lying electronic states of Fe2 and Co2 by negative ion photoelectron spectroscopy, J. Chem. Phys., 1986, 85, 51. [all data]

Sallans, Lane, et al., 1985
Sallans, L.; Lane, K.R.; Squires, R.R.; Freiser, B.S., Generation and reactions of atomic metal anions in the gas phase. Determination of the heterolytic and homolytic bond energies of VH, VrH, FeH, CoH, and MoH, J. Am. Chem. Soc., 1985, 107, 4379. [all data]

Compton and Stockdale, 1976
Compton, R.N.; Stockdale, J.A.D., Formation of gas phase negative ions in Fe(CO)5 and Ni(CO)4, Int. J. Mass Spectrom. Ion Phys., 1976, 22, 47. [all data]

Ellison, Engelking, et al., 1978
Ellison, G.B.; Engelking, P.C.; Lineberger, W.C., An experimental determination of the geometry and electron affinity of CH3, J. Am. Chem. Soc., 1978, 100, 2556. [all data]

Graul and Squires, 1990
Graul, S.T.; Squires, R.R., Gas-Phase Acidities Derived from Threshold Energies for Activated Reactions, J. Am. Chem. Soc., 1990, 112, 7, 2517, https://doi.org/10.1021/ja00163a007 . [all data]

Bohme, Lee-Ruff, et al., 1972
Bohme, D.K.; Lee-Ruff, E.; Young, L.B., Acidity order of selected bronsted acids in the gas phase at 300K, J. Am. Chem. Soc., 1972, 94, 5153. [all data]

Check, Faust, et al., 2001
Check, C.E.; Faust, T.O.; Bailey, J.M.; Wright, B.J.; Gilbert, T.M.; Sunderlin, L.S., Addition of Polarization and Diffuse Functions to the LANL2DZ Basis Set for P-Block Elements, J. Phys. Chem. A,, 2001, 105, 34, 8111, https://doi.org/10.1021/jp011945l . [all data]

Ingemann and Nibbering, 1985
Ingemann, S.; Nibbering, N.M.M., Gas-phase acidity of CH3X [X = P(CH3)2, SCH3, F, Cl, Br, I] compounds, J. Chem. Soc. Perkin Trans. 2, 1985, 837. [all data]

Romer, Gatev, et al., 1998
Romer, B.; Gatev, G.G.; Zhong, M.; Brauman, J.I., Alpha-Stabilization by Silyl and Phosphino Substitution, J. Am. Chem. Soc., 1998, 120, 12, 2919, https://doi.org/10.1021/ja970279s . [all data]

Ingemann and Nibbering, 1985, 2
Ingemann, S.; Nibbering, N.M.M., Gas phase chemistry of alpha-thio carbanions, Can. J. Chem., 1985, 62, 2273. [all data]

Grabowski, Roy, et al., 1988
Grabowski, J.J.; Roy, P.D.; Leone, R., Trimethylphosphine: Anion-Molecule Reactions and Acidity in the Gas Phase, J. Chem. Soc. Perkin Trans., 1988, 2, 8, 1627, https://doi.org/10.1039/p29880001627 . [all data]

Clifford, Wenthold, et al., 1998
Clifford, E.P.; Wenthold, P.G.; Lineberger, W.C.; Peterssom, G.A.; Broaddus, K.M.; Kass, S.R.; Kato, S., Properties of Diazocarbene [CNN] and the diazomethyl Radical [HCNN] via Ion Chemistry and Spectroscopy, J. Phys. Chem. A, 1998, 102, 36, 7100, https://doi.org/10.1021/jp9802735 . [all data]

Laufer and Okabe, 1972
Laufer, A.H.; Okabe, H., J. Phys. Chem., 1972, 76, 3504. [all data]

Dixon, de Jong, et al., 2005
Dixon, D.A.; de Jong, W.A.; Peterson, K.A.; McMahon, T.B., Methyl cation affinities of rare gases and nitrogen and the heat of formation of diazomethane, J. Phys. Chem. A, 2005, 109, 18, 4073-4080, https://doi.org/10.1021/jp044561e . [all data]

DePuy, Van Doren, et al., 1989
DePuy, C.H.; Van Doren, J.M.; Gronert, S.; Kass, S.R.; Motell, E.L.; Ellison, G.B.; Bierbaum, V.M., Gas-Phase Negative-Ion Chemistry of Diazomethane, J. Org. Chem., 1989, 54, 8, 1846, https://doi.org/10.1021/jo00269a020 . [all data]

Gordon and Kass, 1997
Gordon, M.S.; Kass, S.R., CHN2-: A biradical anion and a potentially new type of reactive intermediate (vol 99, pg 6548, 1995), J. Phys. Chem. A, 1997, 101, 42, 7922-7922, https://doi.org/10.1021/jp972321b . [all data]

Hierl, Henchman, et al., 1992
Hierl, P.M.; Henchman, M.J.; Paulson, J.F., Threshold Energies for the Reactions HO- + MeX - MeOH + X- measured by Tandem Mass Spectrometry: Acidities of MeCl and MeBr, Int. J. Mass Spectrom. Ion Proc., 1992, 117, 475, https://doi.org/10.1016/0168-1176(92)80109-E . [all data]

Rogers, Simpson, et al., 2010
Rogers, N.J.; Simpson, M.J.; Tuckett, R.P.; Dunn, K.F.; Latimer, C.J., Vacuum-UV negative photoion spectroscopy of CH3F, CH3Cl and CH3Br, Phys. Chem. Chem. Phys., 2010, 12, 36, 10971-10980, https://doi.org/10.1039/c0cp00234h . [all data]

Poutsma, Nash, et al., 1997
Poutsma, J.C.; Nash, J.J.; Paulino, J.A.; Squires, R.R., Absolute Heats of Formation of Phenylcarbene and Vinylcarbene, J. Am. Chem. Soc., 1997, 119, 20, 4686, https://doi.org/10.1021/ja963918s . [all data]

Henchman, Hierl, et al., 1985
Henchman, M.; Hierl, P.M.; Paulson, J.F., Nucleophilic displacement vs. proton tranfer: The system OH-.(H2O)0,1,2 + CH3Cl in the relative energy range 0.03-5 eV, J. Am. Chem. Soc., 1985, 107, 2812. [all data]

Shiell, Hu, et al., 2000
Shiell, R.C.; Hu, X.K.; Hu, Q.C.J.; Hepburn, J.W., Threshold Ion-pair Production spectroscopy (TIPPS) of H2 and D2, Faraday Disc. Chem. Soc., 2000, 115, 331, https://doi.org/10.1039/a909428h . [all data]

Pratt, McCormack, et al., 1992
Pratt, S.T.; McCormack, E.F.; Dehmer, J.L.; Dehmer, P.M., Field-Induced Ion-Pair Formation in Molecular Hydrogen, Phys. Rev. Lett., 1992, 68, 5, 584, https://doi.org/10.1103/PhysRevLett.68.584 . [all data]

Gurvich, Veyts, et al.
Gurvich, L.V.; Veyts, I.V.; Alcock, C.B., Hemisphere Publishing, NY, 1989, V. 1 2, Thermodynamic Properties of Individual Substances, 4th Ed. [all data]

Lykke, Murray, et al., 1991
Lykke, K.R.; Murray, K.K.; Lineberger, W.C., Threshold Photodetachment of H-, Phys. Rev. A, 1991, 43, 11, 6104, https://doi.org/10.1103/PhysRevA.43.6104 . [all data]

Schafman and Wenthold, 2007
Schafman, B.S.; Wenthold, P.G., Regioselectivity of pyridine deprotonation in the gas phase, J. Org. Chem., 2007, 72, 5, 1645-1651, https://doi.org/10.1021/jo062117x . [all data]

Meot-ner and Kafafi, 1988
Meot-ner, M.; Kafafi, S.A., Carbon Acidities of Aromatic Compounds, J. Am. Chem. Soc., 1988, 110, 19, 6297, https://doi.org/10.1021/ja00227a003 . [all data]

DePuy, Kass, et al., 1988
DePuy, C.H.; Kass, S.R.; Bean, G.P., Formation and Reactions of Heteroaromatic Anions in the Gas Phase, J. Org. Chem., 1988, 53, 19, 4427, https://doi.org/10.1021/jo00254a001 . [all data]

Bruins, Ferrer-Correia, et al., 1978
Bruins, A.P.; Ferrer-Correia, A.J.; Harrison, A.G.; Jennings, K.R.; Mithcum, R.K., Negative ion chemical ionization mass spectrometry of some aromatic compounds using O-. as the reagent ion, Adv. Mass Spectrom., 1978, 7, 355. [all data]

Koppel, Taft, et al., 1994
Koppel, I.A.; Taft, R.W.; Anvia, F.; Zhu, S.Z.; Hu, L.Q.; Sung, K.S.; Desmarteau, D.D.; Yagupolskii, L.M., The Gas-Phase Acidities of Very Strong Neutral Bronsted Acids, J. Am. Chem. Soc., 1994, 116, 7, 3047, https://doi.org/10.1021/ja00086a038 . [all data]

Leito, Raamat, et al., 2009
Leito, I.; Raamat, E.; Kutt, A.; Saame, J.; Kipper, K.; Koppel, I.A.; Koppel, I.; Zhang, M.; Mishima, M.; Yagupolskii, L.M.; Garlyauskayte, R.Y.; Filatov, A.A., Revision of the Gas-Phase Acidity Scale below 300 kcal mol(-1), J. Phys. Chem. A, 2009, 113, 29, 8421-8424, https://doi.org/10.1021/jp903780k . [all data]

Adams, Smith, et al., 1986
Adams, N.G.; Smith, D.; Viggiano, A.A.; Paulson, J.F.; Henchman, M.J., Dissociative attachment reactions of electron with strong acid molecules, J. Chem. Phys., 1986, 84, 6728. [all data]

Viggiano, Henchman, et al., 1992
Viggiano, A.A.; Henchman, M.J.; Dale, F.; Deakyne, C.A.; Paulson, J.F., Gas-Phase Reactions of Weak Bronsted Bases I-, PO3-, HSO4-, FSO3-, and CF3SO3- with Strong Bronsted Acids H2SO4, FSO3H, and CF3SO3H - A Quantitative Study, J. Am. Chem. Soc., 1992, 114, 11, 4299, https://doi.org/10.1021/ja00037a039 . [all data]

Paulino and Squires, 1991
Paulino, J.A.; Squires, R.R., Carbene Thermochemistry from Collision-Induced Dissociation Threshold Energy Measurements - The Heats of Formation of X1A1 CF2 and X1A1 CCl2, J. Am. Chem. Soc., 1991, 113, 15, 5573, https://doi.org/10.1021/ja00015a009 . [all data]

Born, Ingemann, et al., 2000
Born, M.; Ingemann, S.; Nibbering, N.M.M., Thermochemical properties of halogen-substituted methanes, methyl radicals, and carbenes in the gas phase, Int. J. Mass Spectrom., 2000, 194, 2-3, 103-113, https://doi.org/10.1016/S1387-3806(99)00125-6 . [all data]

Catalan, Claramunt, et al., 1988
Catalan, J.; Claramunt, R.M.; Elguero, J.; Menedez, M.; Anvia, F.; Quian, J.H.; Taagepera, M.; Taft, R.W., Basicity and Acidity of Azoles. The Annelation Effect in Azoles., J. Am. Chem. Soc., 1988, 110, 13, 4107, https://doi.org/10.1021/ja00221a001 . [all data]

Ma, Wang, et al., 1998
Ma, S.G.; Wang, F.; Cooks, R.G., Gas-phase acidity of urea, J. Mass Spectrom., 1998, 33, 10, 943-949, https://doi.org/10.1002/(SICI)1096-9888(1998100)33:10<943::AID-JMS703>3.0.CO;2-B . [all data]

Taft, 1987
Taft, R.W., The Nature and Analysis of Substitutent Electronic Effects, Personal communication. See also Prog. Phys. Org. Chem., 1987, 16, 1. [all data]

Muftakhov, Vasil'ev, et al., 1999
Muftakhov, M.V.; Vasil'ev, Y.V.; Mazunov, V.A., Determination of electron affinity of carbonyl radicals by means of negative ion mass spectrometry, Rapid Commun. Mass Spectrom., 1999, 13, 12, 1104-1108, https://doi.org/10.1002/(SICI)1097-0231(19990630)13:12<1104::AID-RCM619>3.0.CO;2-C . [all data]

Blondel, Cacciani, et al., 1989
Blondel, C.; Cacciani, P.; Delsart, C.; Trainham, R., High Resolution Determination of the Electron Affinity of Fluorine and Bromine using Crossed Ion and Laser Beams, Phys. Rev. A, 1989, 40, 7, 3698, https://doi.org/10.1103/PhysRevA.40.3698 . [all data]

Taft and Bordwell, 1988
Taft, R.W.; Bordwell, F.G., Structural and Solvent Effects Evaluated from Acidities Measured in Dimethyl Sulfoxide and in the Gas Phase, Acc. Chem. Res., 1988, 21, 12, 463, https://doi.org/10.1021/ar00156a005 . [all data]

Jones, Bernier, et al., 2007
Jones, C.M.; Bernier, M.; Carson, E.; Colyer, K.E.; Metz, R.; Pawlow, A.; Wischow, E.D.; Webb, I.; Andriole, E.J.; Poutsma, J.C., Gas-phase Acities of the 20 Protein Amino Acids, Int. J. Mass Spectrom., 2007, 267, 1-3, 54-62, https://doi.org/10.1016/j.ijms.2007.02.018 . [all data]

Tian, Pawlow, et al., 2007
Tian, Z.X.; Pawlow, A.; Poutsma, J.C.; Kass, S.R., Are carboxyl groups the most acidic sites in amino acids? Gas-phase acidity, H/D exchange experiments, and computations on cysteine and its conjugate base, J. Am. Chem. Soc., 2007, 129, 17, 5403-5407, https://doi.org/10.1021/ja0666194 . [all data]

DeBlase, Kass, et al., 2014
DeBlase, A.F.; Kass, S.R.; Johnson, M.A., On the character of the cyclic ionic H-bond in cryogenically cooled deprotonated cysteine, Phys. Chem. Chem. Phys., 2014, 16, 10, 4569-4575, https://doi.org/10.1039/c3cp54117g . [all data]

O'Hair, Bowie, et al., 1992
O'Hair, R.J.; Bowie, J.H.; Gronert, S., Gas Phase Acidity of the alpha-Amino Acids, Int. J. Mass Spectrom. Ion Proc., 1992, 117, 23, https://doi.org/10.1016/0168-1176(92)80083-D . [all data]

Tian, Wang, et al., 2009
Tian, Z.X.; Wang, X.B.; Wang, L.S.; Kass, S.R., Are Carboxyl Groups the Most Acidic Sites in Amino Acids? Gas-Phase Acidities, Photoelectron Spectra, and Computations on Tyrosine, p-Hydroxybenzoic Acid, and Their Conjugate Bases, J. Am. Chem. Soc., 2009, 131, 3, 1174-1181, https://doi.org/10.1021/ja807982k . [all data]

Gianola, Ichino, et al., 2004
Gianola, A.J.; Ichino, T.; Hoenigman, R.L.; Kato, S.; Bierbaum, V.M.; Lineberger, W.C., Thermochemistry and electronic structure of the pyrrolyl radical, J. Phys. Chem. A, 2004, 108, 46, 10326-10335, https://doi.org/10.1021/jp047790+ . [all data]

Cumming and Kebarle, 1978
Cumming, J.B.; Kebarle, P., Summary of gas phase measurements involving acids AH. Entropy changes in proton transfer reactions involving negative ions. Bond dissociation energies D(A-H) and electron affinities EA(A), Can. J. Chem., 1978, 56, 1. [all data]

Muftakhov, Vasil'ev, et al., 1999, 2
Muftakhov, M.V.; Vasil'ev, Y.V.; Khatymov, R.V.; Mazunov, V.A.; Takhistov, V.V.; Travkin, O.V.; Yakovleva, E.V., Thermochemistry of negatively charged ions. II. Energetics of formation of negative ions from acridanone and some of its derivatives, Rapid Commun. Mass Spectrom., 1999, 13, 10, 912-923, https://doi.org/10.1002/(SICI)1097-0231(19990530)13:10<912::AID-RCM585>3.0.CO;2-W . [all data]

Akin and Ervin, 2006
Akin, F.A.; Ervin, K.M., Collision-induced dissociation of HS-(HCN): Unsymmetrical hydrogen bonding in a proton-bound dimer anion, J. Phys. Chem. A, 2006, 110, 4, 1342-1349, https://doi.org/10.1021/jp0540454 . [all data]

Bradforth, Kim, et al., 1993
Bradforth, S.E.; Kim, E.H.; Arnold, D.W.; Neumark, D.M., Photoelectron Spectroscopy of CN-, NCO-, and NCS-, J. Chem. Phys., 1993, 98, 2, 800, https://doi.org/10.1063/1.464244 . [all data]

Metz, Cyr, et al., 1991
Metz, R.B.; Cyr, D.R.; Neumark, D.M., Study of the 2B1 and 2A2 States of CH2NO2 via Ultraviolet Photoelectron Spectroscopy of the CH2NO2- Anion, J. Phys. Chem., 1991, 95, 7, 2900, https://doi.org/10.1021/j100160a047 . [all data]

MacKay and Bohme, 1978
MacKay, G.I.; Bohme, D.K., Proton-Transfer Reactions in Nitromethane at 297K, Int. J. Mass Spectrom. Ion Phys., 1978, 26, 4, 327, https://doi.org/10.1016/0020-7381(78)80052-7 . [all data]

Buker, Nibbering, et al., 1997
Buker, H.H.; Nibbering, N.M.M.; Espinosa, D.; Mongin, F.; Schlosser, M., Additivity of substituent effects in the fluoroarene series: Equilibrium acidity in the gas phase and deprotonation rates in ethereal solution, Tetrahed. Lett., 1997, 38, 49, 8519-8522, https://doi.org/10.1016/S0040-4039(97)10303-3 . [all data]

Herd, Adams, et al., 1989
Herd, C.R.; Adams, N.G.; Smith, D., FALP Studies of Electron Attachment Reactions of C6F5Cl, C6F5Br, and C6F5I, Int. J. Mass Spectrom. Ion Proc., 1989, 87, 3, 331, https://doi.org/10.1016/0168-1176(89)80032-1 . [all data]

Compton and Reinhardt, 1982
Compton, R.N.; Reinhardt, P.W., Collisonal ionization between fast alkali atoms and hexafluorobenzene, Chem. Phys. Lett., 1982, 91, 268. [all data]

Andrade and Riveros, 1996
Andrade, P.B.M.; Riveros, J.M., Relative Gas-phase Acidities of Fluoro- and Chlorobenzene, J. Mass Spectrom., 1996, 31, 7, 767, https://doi.org/10.1002/(SICI)1096-9888(199607)31:7<767::AID-JMS345>3.0.CO;2-Q . [all data]

Bartmess and McIver Jr., 1979
Bartmess, J.E.; McIver Jr., The Gas Phase Acidity Scale in Gas Phase Ion Chemistry, Gas Phase Ion Chemistry, V. 2, M.T. Bowers, Ed., Academic Press, NY, 1979, Ch. 11, Elsevier, 1979. [all data]

Glasovac, Eckert-Maksic, et al., 2002
Glasovac, Z.; Eckert-Maksic, M.; Dacres, J.E.; Kass, S.R., Gas phase formation of 1-phenylcyclobuten-3-yl and 1- phenylallyl anions and a determination of the allylic C-H acidities and bond dissociation energies of 1-phenylcyclobutene and (E)-1-phen, J. Chem. Soc. Perkin Trans., 2002, 2, 3, 410-415, https://doi.org/10.1039/b111398d . [all data]

Dahlke and Kass, 1991
Dahlke, G.D.; Kass, S.R., Substituent Effects in the Gas Phase - 1-Substituted Allyl Anions, J. Am. Chem. Soc., 1991, 113, 15, 5566, https://doi.org/10.1021/ja00015a008 . [all data]

Fujio, McIver, et al., 1981
Fujio, M.; McIver, R.T., Jr.; Taft, R.W., Effects on the acidities of phenols from specific substituent-solvent interactions. Inherent substituent parameters from gas phase acidities, J. Am. Chem. Soc., 1981, 103, 4017. [all data]

Hernandez-Gill, Wentworth, et al., 1984
Hernandez-Gill, N.; Wentworth, W.E.; Chen, E.C.M., Electron affinities of fluorinated phenoxy radicals, J. Phys. Chem., 1984, 88, 6181. [all data]

Kebarle and McMahon, 1977
Kebarle, P.; McMahon, T.B., Intrinsic Acidities of Substituted Phenols and Benzoic Acids Determined by Gas Phase Proton Transfer Equilibria, J. Am. Chem. Soc., 1977, 99, 7, 2222, https://doi.org/10.1021/ja00449a032 . [all data]

Brinkman, Berger, et al., 1993
Brinkman, E.A.; Berger, S.; Marks, J.; Brauman, J.I., Molecular Rotation and the Observation of Dipole-Bound States of Anions, J. Chem. Phys., 1993, 99, 10, 7586, https://doi.org/10.1063/1.465688 . [all data]

Caldwell, Renneboog, et al., 1989
Caldwell, G.; Renneboog, R.; Kebarle, P., Gas Phase Acidities of Aliphatic Carboxylic Acids, Based on Measurements of Proton Transfer Equilibria, Can. J. Chem., 1989, 67, 4, 661, https://doi.org/10.1139/v89-092 . [all data]

Jinfeng, Topsom, et al., 1988
Jinfeng, C.; Topsom, R.D.; Headley, A.D.; Koppel, I.; Mishima, M.; Taft, R.W.; Veji, S., Acidities of Substituted Acetic Acids, J. Mol. Struct., 1988, 168, 141, https://doi.org/10.1016/0166-1280(88)80349-X . [all data]

Bartmess and Burnham, 1984
Bartmess, J.E.; Burnham, R., Effect of central substituents on the gas phase acidities of propenes, J. Org. Chem., 1984, 49, 1382. [all data]

McMahon and Northcott, 1978
McMahon, T.B.; Northcott, C.J., The Fluoroformate Ion FCO2-: An ICR study of the gas phase lewis acidity of carbon dioxide and related isoelectronic species, Can. J. Chem., 1978, 56, 1068. [all data]

Cacace, Depetris, et al., 1993
Cacace, F.; Depetris, G.; Grandinetti, F.; Occhiucci, G., Gas-Phase Ion Chemistry of Cyanamide - A Mass Spectrometric and Abinitio Study of Gaseous [H2N-CN]+, [H2N-CN]H+, and [HN-CN]- Ions, J. Phys. Chem., 1993, 97, 16, 4239, https://doi.org/10.1021/j100118a048 . [all data]

Kroeker and Kass, 1990
Kroeker, R.L.; Kass, S.R., Diazirinyl Anion: A Cyclic 4-pi Electron System, J. Am. Chem. Soc., 1990, 112, 24, 9024, https://doi.org/10.1021/ja00180a082 . [all data]

Nimlos, Soderquist, et al., 1989
Nimlos, M.R.; Soderquist, J.A.; Ellison, G.B., Spectroscopy of CH3CO- and CH3CO, J. Am. Chem. Soc., 1989, 111, 20, 7675, https://doi.org/10.1021/ja00202a001 . [all data]

DePuy, Bierbaum, et al., 1985
DePuy, C.H.; Bierbaum, V.M.; Damrauer, R.; Soderquist, J.A., Gas-phase reactions of the acetyl anion, J. Am. Chem. Soc., 1985, 107, 3385. [all data]

Graul and Squires, 1988
Graul, S.T.; Squires, R.R., On the Existence of Alkyl Carbanions in the Gas Phase, J. Am. Chem. Soc., 1988, 110, 2, 607, https://doi.org/10.1021/ja00210a054 . [all data]

Taft and Topsom, 1987
Taft, R.W.; Topsom, R.D., The Nature and Analysis of Substituent Effects, Prog. Phys. Org. Chem., 1987, 16, 1. [all data]

Wetzel, Salomon, et al., 1989
Wetzel, D.M.; Salomon, K.E.; Berger, S.; Brauman, J.I., Gas-Phase Acidities of Organosilanes and Electron Affinities of Organosilyl Radicals, J. Am. Chem. Soc., 1989, 111, 11, 3835, https://doi.org/10.1021/ja00193a013 . [all data]

Damrauer, Kass, et al., 1988
Damrauer, R.; Kass, S.R.; DePuy, C.H., Gas-Phase Acidities of Methylsilanes: C-H versus Si-H, Organomet., 1988, 7, 3, 637, https://doi.org/10.1021/om00093a011 . [all data]

Grimm and Bartmess, 1992
Grimm, D.T.; Bartmess, J.E., The Intrinsic (Gas Phase) Basicity of some Anions Commonly Used in Condensed-Phase Synthesis, J. Am. Chem. Soc., 1992, 114, 4, 1227, https://doi.org/10.1021/ja00030a016 . [all data]


Notes

Go To: Top, Reaction thermochemistry data, References